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Tuberculosis (TB) in goats is a chronic infectious disease caused by Mycobacterium 
tuberculosis complex (MTBC) organisms that pose a great health and economic 
challenge for the caprine industry in some European and developing countries. 
It is also a zoonotic disease posing a risk for public health. The control programs 
of the disease are based on a test-and-slaughter strategy, and vaccination is 
not feasible with available vaccines due to its interferences with the current TB 
immunodiagnosis. There is still a need for the development of an effective TB 
vaccine and, concurrently, diagnostic methods that allow differentiation between 
infected and vaccinated animals (DIVA approach). In this study, we investigated 
the interferences caused by the tuberculin (PPD)-based TB diagnostic tests in 
goats immunized by different mucosal and parenteral vaccination strategies: three 
single-dose strategies based on intranasal administration of BCG and two heat-
inactivated M. bovis (HIMB) vaccines, and two prime-boost strategies based on 
parenteral BCG or HIMB priming and intranasal HIMB boosting. In addition, the 
defined antigens ESAT-6, CPF10, and EspC were evaluated as alternative diagnostic 
reagents to PPDs. At week 14 after prime vaccination of the animals, skin tests, 
IFN-γ release assay, and antibody detection assays were performed. The two 
prime-boosted and the single-dose intranasal BCG groups displayed greater cell-
mediated immune responses to PPDs than the two single-dose intranasal HIMB 
vaccines. However, the use of reagents based on the defined antigens eliminated 
or reduced the vaccine-induced diagnostic interferences in all groups. Based on 
these results, the use of defined antigens in the current immunodiagnostic tests 
appears to be suitable in a future goat TB vaccination scenario.
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1 Introduction

Mammalian TB is a chronic infectious disease of animals and 
humans that results from infection with members of the 
Mycobacterium tuberculosis complex (MTBC) (1). The two main 
species of the MTBC affecting domestic small ruminants are M. caprae 
and M. bovis (2). TB in goats represents a great health challenge for 
the caprine industry in Spain and can pose a risk of new TB outbreaks 
in cattle. Spain ranks second in the European Union for goat 
population and is also the second-largest producer of goat milk and 
milk products (3). In spite of this, TB in goats is not subjected to 
official eradication campaigns; however, control programs applied in 
bovine tuberculosis control can be adapted in caprine herds (4). The 
control strategy used at present is based on the test and slaughter of 
positive animals. The primary screening tests in animals are the single 
intradermal tuberculin (SIT) test and the comparative intradermal 
tuberculin (CIT) test, and the in vitro IFN-γ release assay (IGRA) as 
ancillary method (5). These diagnostic techniques measure the cell-
mediated immune (CMI) response to M. bovis and M. avium 
tuberculins (PPDB and PPDA, respectively) (6).

Nowadays, the only available vaccine against mycobacterial 
infection is Bacille Calmette-Guerin (BCG), a live attenuated strain of 
M. bovis, which confers variable protection in vaccinated animals (7). 
An additional challenge to the use of BCG or other whole-cell 
mycobacterial vaccines is that, administered parenterally, they 
sensitize individuals to respond to the tuberculin-based diagnostic 
tests, currently used in the TB eradication programs (8, 9). Thus, when 
studying new vaccination strategies for the control of TB, it is essential 
for the development and assessment of new diagnostic reagents to 
distinguish between vaccinated and infected individuals (DIVA 
approach), enabling the compatibility of the test-and-slaughter 
strategy with the implementation of vaccination.

In the last two decades, research has focused on identifying new 
antigens that can serve as DIVA reagents to differentiate between 
animals that are infected with MTBC and those that have been 
vaccinated with BCG. Early secretory antigenic target-6 kDa (ESAT-
6), culture filtrate protein 10 (CFP10) (10), and, to a lesser extent, 
ESX-1 secretion-associated protein C (EspC or Rv3615c) (11) are the 
most promising DIVA reagent candidates (12–14). These antigens 
have already been tested in regular antemortem diagnostic methods 
(skin test and IGRA) in cattle and goats (15–17).

Most recently, a heat-inactivated M. bovis (HIMB) vaccine against 
TB has also been developed, showing comparable efficacy to BCG 
when administrated parentally (18, 19). However, HIMB displayed 
variable degrees of diagnostic interference in parentally vaccinated 
cattle or goats when using DIVA reagents developed for BCG, ranging 
from null or low reactivity to skin test in cattle (14) or IGRA in goats 
(9, 19), to significant interference with IGRA in cattle (20). On the 
contrary, the oral administration of HIMB can avoid these 
interferences on TB diagnosis in cattle (20) and goats (21). The effects 
on the diagnosis after the administration of vaccines through 
respiratory mucosal routes have not yet been evaluated.

The aim of this study was to assess the effects of different 
vaccination regimes based on intranasal and parenteral administration 
of BCG and HIMB vaccines on the tuberculin-based immunodiagnosis 
of TB in goats. In addition, the performance of the defined antigens 
ESAT-6, CFP1, and EspC, as an alternative to tuberculins for skin 
testing and IGRA in these vaccination settings, was also evaluated.

2 Materials and methods

2.1 Animals and study design

Thirty Murciano-Granadina goat kids (15 males and 15 females) 
of approximately 4 months old were randomly divided into 5 groups 
of 6 animals each (3 males and 3 females): (A) M. bovis Bacillus 
Calmette-Guerin (BCG, i.n.); (B) heat-inactivated M. bovis (HIMB, 
i.n.); (C) HIMB with mucosal adjuvant (HIMBmuc, i.n.); (D) 
homologous prime-boost regimen: priming with HIMB (s.c.) with 
parenteral adjuvant (HIMBpar) and boosting 6 weeks later with 
HIMBmuc (i.n.); (E) heterologous prime-boost regimen: priming with 
BCG (s.c.) and boosting 6 weeks later with HIMBmuc (i.n.). Two 
goats (one male and one female) were used as non-vaccinated (NV) 
controls. Priming immunizations were carried out at week 0, whereas 
boosting and single-dose vaccinations were carried out at week 6. 
Figure 1 summarizes the study design.

All animals were confirmed negative for TB by the IFN-γ release 
assay (IGRA, ID Screen® Ruminant IFNg, ID, Grabels, France) before 
the experiment.

Experimental animals were allocated at Servei de Granges 
i Camps Experimentals (SGCE) at the Autonomous University of 
Barcelona (Register No. B9900042). Males and females were separated 
into two different pens, with 16 animals each. Animals were daily 
followed up for clinical signs, and body weights were measured every 
2 weeks throughout the study. Rectal temperatures were recorded 
before and at 6, 24, and 48 h after i.n. vaccinations. All animals were 
bled (10–20 mL) through the jugular vein at weeks 14 and 16. At week 
16, all animals were humanely euthanized by intravenous 
administration of pentobarbital (200 mg/kg).

All experimental procedures were approved by the Animal 
Welfare Committees of the Autonomous University of Barcelona 
(Procedure No. 5482-CEEAH-UAB) and the Generalitat de Catalunya 
(Reference No. 12164). These procedures agreed with the European 
Union laws for the protection of experimental animals.

2.2 Vaccines and vaccination procedure

2.2.1 Bacille Calmette-Guerin
The M. bovis BCG Danish strain 1331 (ATCC35733) was prepared 

as described previously (19). For the subcutaneous vaccination, BCG 
was diluted in phosphate-buffered saline (PBS) to reach a suspension 
of ⁓ 105 colony forming units (CFU)/mL, and 1 mL of the suspension 
was injected subcutaneously into the right scapula.

For the intranasal administration, 1 mL of the suspension of BCG 
at 2–3·107 CFU/mL was administered intranasally into the right and 
left nostrils (0.5 mL each).

2.2.2 Heat-inactivated Mycobacterium bovis 
vaccines

HIMB was produced by NEIKER (Derio, Bizkaia, Spain) as 
previously described (18). HIMB i.n. was administered without 
adjuvant. HIMBmuc i.n. was adjuvanted with 20% MontanideTM 
GEL 02 PR (Seppic, Paris, France). All intranasally delivered vaccines 
were administered as described above for BCG i.n. HIMBpar was 
adjuvanted with MontanideTM ISA 61 VG (Seppic) and administered 
as BCG s.c (1 mL injected subcutaneously into the right scapula).
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2.3 Antigens and peptides

Mycobacterium bovis and M. avium purified protein derivatives 
(PPDB and PPDA, respectively, 25,000 IU/mL) were obtained from 
CZ Vaccines (O Porriño, Pontevedra, Spain). The antigenic cocktail 
composed of ESAT-6, CFP10, and EspC (Rv3615c) recombinant 
proteins (DIGRA-C) was formulated as a 1:1:1 mixture at 500 μg/mL 
each and was obtained from Lionex (Braunschweig, Germany). The 
ESAT-6-CFP10-EspC recombinant fusion protein (DST-F, 300 μg/
mL) (14) and the MTBC-specific antigen MPB83 were also produced 
by Lionex.

2.4 Skin test

Skin tests were performed in all goats at week 14 of the 
experiment (at 14 or 8 weeks after vaccination or boosting depending 
on the group) by inoculating intradermally 0.1 mL of PPDB and 
PPDA into the upper and lower right side of the neck, respectively, 
and 0.1 mL of DST-F into the left side of the neck, using a 
Groteerman® syringe (Inserbo S.L., Lleida, Spain). The skin fold 
thickness was measured before PPDs and DST-F injections and 
again after 72 h. Skin tests were done following the standard 
protocols defined by the European Union Reference Laboratory for 
Bovine TB (VISAVET, Madrid, Spain). As appropriate cutoffs for 
DST-F have not been evaluated in goats, the interpretation of the 
PPD-based assay results was done following the indications of 
VISAVET and adapted to the interpretation of the DST-F-based 
assays. SIT and DST-F skin tests were considered positive if ∆ skin 
fold thickness (measures at 72 h minus 0 h) to PPDB or 
DST-F > 2 mm (low cutoff value) or ≥ 4 mm (high cutoff value). CIT 
was considered positive if positive SIT and PPDB reaction minus 
PPDA reaction ≥1 mm (low cutoff value) or > 4 mm (high 
cutoff value).

2.5 Whole-blood IFN-γ release assay

The IGRAs were performed by collecting whole-blood samples 
from the jugular vein in heparinized blood tubes from the animals at 
week 14 post-vaccination. Two aliquots of 1 mL each of whole blood 
were stimulated in 2.2 mL 96-well cell culture plates (Eppendorf, 
Hamburg, Germany) with PPDB and PPDA at final concentrations of 
20 μg/mL each, and another aliquot of 225 μL of whole blood was 
stimulated in 300 μL 96-well cell culture plates (Thermo Fisher 
Scientific, Waltham, MA, United States) with DIGRA-C at a final 
concentration of 30 μg/mL (10 μg/mL of each antigen—ESAT-6, 
CFP10, and EspC). PBS was added to cultures as a non-stimulated 
control. Blood samples were incubated overnight at 37°C with 5% 
CO2, and plasma supernatants were collected after centrifugation at 
1260 g for 10 min and stored at −20°C until further analysis. Plasma 
samples were defrosted just before performing the IFN-γ enzyme-
linked immunosorbent assay (ELISA) using in parallel the ID Screen® 
Ruminant IFNg (ID, Grabels, France) and BOVIGAM TB® (Thermo 
Fisher Scientific) kits. ELISAs were performed according to the 
manufacturer’s instructions. ELISA results were obtained as optical 
density (OD) determined at 450 nm using a spectrophotometer 
(Biotek Power Wave XS®, Agilent, Santa Clara, United States). In the 
BOVIGAM TB assay, the ΔOD was calculated as PPDB OD or 
DIGRA-C OD - PBS OD. A sample was considered positive when 
ΔOD ≥ 0.1 and PPDB OD > PPDA OD for the tuberculin-based test 
and ΔOD ≥ 0.1 for the DIGRA-C-based assay. In the ID Screen® 
Ruminant IFNg assay, the S/P (%) ratio was calculated by dividing 
(PPDB OD – PPDA OD) or (DIGRA-C OD – PBS OD) by (plate 
positive control mean OD – plate negative control mean OD) x 100. 
A sample was classified as positive when S/p ≥ 16%. The interpretation 
of the results of the tuberculin-based assays was done following the 
indications of the Spanish National Reference Laboratory for bovine 
TB (LCSA, Santa Fe, Granada, Spain), and an equivalent criterion was 
adapted for the results interpretation of the DIGRA-C-based assay.

FIGURE 1

Study design. Goat kids were divided into five groups: (A) M. bovis Bacillus Calmette-Guerin (BCG, i.n.); (B) heat-inactivated M. bovis (HIMB, i.n.); 
(C) HIMB with mucosal adjuvant (HIMBmuc, i.n.); (D) homologous prime-boost regimen: priming with HIMB (s.c.) with parenteral adjuvant (HIMBpar) 
and boosting 6 weeks later with HIMBmuc (i.n.); (E) heterologous prime-boost regimen: priming with BCG (s.c.) and boosting 6 weeks later with 
HIMBmuc (i.n.). Priming immunizations were carried out at week 0, whereas boosting and single-dose vaccinations were carried out at week 6. Skin 
tests and IGRAs were performed in all goats at week 14 of the experiment. MTBC-specific antibody response was analyzed at weeks 14 and 16 post-
vaccination. 1Whole-blood IFNγ release assay.
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2.6 Antibody detection assay

Plasma samples from all experimental animals were analyzed in 
duplicate to follow-up the MTBC-specific antibody response at weeks 
14 and 16 post-vaccination (before and at 2 weeks after skin testing, 
respectively). An indirect ELISA was used to detect total IgG against 
MPB83 antigen as described previously (22), determined at 450 nm. 
MPB83–IgG levels were calculated as the mean OD of antigen-coated 
well—OD of non-coated well (ΔOD). A sample was classified as 
positive when ΔOD ≥ 0.5.

2.7 Data analysis

Intragroup comparisons between tuberculin-based and defined 
antigen-based tests were performed within each treatment group. SIT, 
CIT, and DST-F results, measured as skin thickness increase (Δmm), 
were compared within each group and between groups by the 
non-parametric Kruskal–Wallis test with post-hoc one-tailed Dunn’s test. 
Whole-blood IFN-γ responses to PPDB and DIGRA-C, measured as 
ΔOD or S/P ratio, were compared within each group by one-tailed 
non-parametric Mann–Whitney test. Whole-blood IFN-γ responses 
were also compared between vaccination groups by the non-parametric 
Kruskal–Wallis test with post-hoc one-tailed Dunn’s test. The antibody 
IgG responses between week 14 and week 16 were compared within each 
group by two-way ANOVA with matched values and post-hoc one-tailed 
Bonferroni’s multiple comparisons test. The two non-vaccinated animals 
were used as negative controls and were not included in the statistical 
analysis. GraphPad Prism version 8.0.0 software (San Diego, CA, 
United States) was used for the statistical analysis.

3 Results

No animals presented remarkable clinical symptoms or adverse 
reactions during the entire experiment. Non-vaccinated animals were 
negative for all skin tests and IGRAs, as well as for the IgG ELISA (data 
not shown).

3.1 Defined antigens enabled null or 
reduced vaccine-induced diagnostic 
interferences

All animals of the BCG i.n. and prime-boosted groups were 
positive to the SIT, either to low or high cutoff values, and two and one 
animal of HIMB and HIMBmuc i.n. groups, respectively, were positive 
using the low cutoff point, although only one animal of the HIMB i.n. 
group remained positive when using the high threshold (Table 1). 
Similarly, all BCG i.n. and HIMBpar-HIMBmuc vaccinated animals, 
and four BCG-HIMBmuc animals were positive to the CIT with low 
cutoff value, decreasing to 4, 3, and 3, respectively, when using the 
high threshold. The positivity cutoff criteria used in the SIT were also 
applied for the interpretation of the skin tests using the DST-F. In 
contrast to the SIT results, all animals were negative to the DST-F 
(high cutoff value) except one of the HIMBpar-HIMBmuc group. All 
animals of the BCG i.n., HIMB i.n., and HIMBmuc groups remained 
negative to the DST-F skin test when the low cutoff point was used, T
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while three animals of the HIMBpar-HIMBmuc and one of the 
BCG-HIMBmuc groups became positive, respectively.

Regarding the IGRA results obtained using the ID Screen 
Ruminant IFNg kit, five out of six animals in the BCG i.n., all animals 
in the prime-boosted groups and only one animal in the HIMB i.n. 
group were positive using PPDs, whereas all animals, except four of 
the HIMBpar-HIMBmuc group, were negative when using the 
DIGRA-C as stimuli. Similarly, the BOVIGAM TB kit detected three 
positive animals in the BCG i.n. group, and four in each prime-
boosted group using PPDs, whereas only one animal in the HIMBpar-
HIMBmuc group was positive when using DIGRA-C.

3.2 Intranasal BCG induced similar 
cell-mediated immune responses to PPDs 
than parenteral regimes

The delayed-hypersensitivity (DTH) reaction measured by the 
skin tests showed significantly higher responses using PPDB compared 
to DST-F in the BCG i.n. (p ≤ 0.001), HIMBpar-HIMBmuc 
(p ≤ 0.001), and BCG-HIMBmuc (p ≤ 0.01) groups but not in the 
HIMB i.n. and HIMBmuc groups (Figure 2). There were no statistically 
significant differences in the DTH to PPDB between the BCG i.n and 
both prime-boosted groups. However, PPDB-specific skin thickness 
increase was significantly higher in the groups BCG i.n. and HIMBpar-
HIMBmuc compared to the HIMB i.n. and HIMBmuc groups 

(p ≤ 0.05). This DTH response was also higher in the BCG-HIMBmuc 
group compared to the intranasal HIMB groups but yet not statistically 
significant. The DTH showed no differences between groups when 
using DST-F.

IFN-γ responses were also significantly higher using PPDB 
compared to DIGRA-C in the BCG i.n., HIMBpar-HIMBmuc, and 
BCG-HIMBmuc groups using both commercial kits (Figure 3). There 
were no statistically significant differences in the IFN-γ PPDB-specific 
responses among these three groups. On the contrary, IFN-γ DIGRA-
C-specific responses were significantly higher in the HIMBpar-
HIMBmuc group compared to the BCG i.n. and BCG-HIMBmuc 
groups (p ≤ 0.01), when using the ID Ruminant IFNg kit, and only the 
BCG-HIMBmuc (p ≤ 0.05) group, when using the BOVIGAM TB kit.

3.3 HIMB prime-boosted goats showed 
strong antibody responses regardless of 
the skin test boosting effect

The MPB83-specific IgG titers of the HIMBpar-HIMBmuc 
prime-boosted group were significantly higher compared to the other 
groups at week 14 (before the skin testing, p ≤ 0.0001, Figure 4A). In 
addition, all animals of the HIMBpar-HIMBmuc prime-boosted 
group were seropositive, while none of the BCG i.n. animals and only 
one animal of HIMB i.n and HIMBmuc i.n. and two animals of the 
BCG-HIMBmuc groups were seropositive at that time point.

FIGURE 2

Skin fold thickness increases after PPDB, PPDA, and DST-F inoculation. PPDB: M. bovis tuberculin; PPDA: M. avium tuberculin; DST-F: fusion protein 
containing ESAT-6, CFP10, and EspC antigens; SIT: single intradermal cervical tuberculin test; CIT: single intradermal comparative cervical tuberculin 
test. Each color represents a different vaccination group. Horizontal lines in each group represent the median values. As appropriate cutoffs for DST-F 
have not been evaluated in goats, the interpretation of the PPDs-based assay results was done following the indications of VISAVET and adapted to the 
interpretation of the DST-F-based assays. The dotted lines show the positivity cutoffs for the low (gray, > 2 mm) and high (black, ≥ 4 mm) cutoff values 
of the SIT and DST-F skin tests. *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, non-parametric Kruskal–Wallis test with post-hoc one-tailed Dunn’s test.
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Two weeks after the skin testing performed at week 14, 
enhanced antibody responses were observed in the BCG-HIMBmuc 
group, being significantly higher compared to all the single-dose 
vaccinated groups (p ≤ 0.0001; Figures 4B,C), and all the animals 
of this group had already seroconverted at week 16. To a lesser 

extent, the skin testing also enhanced the IgG levels of BCG i.n. 
vaccinated animals (although they were not yet statistically 
significantly higher compared to the other single-dose vaccinated 
groups), and only one out of the six animals of this group 
seroconverted at week 16.

FIGURE 3

IFN-γ responses using each IGRA kit. (A) Antigen-specific IFN-γ levels measured with the ID Screen® Ruminant IFNg kit (ID, Grabels, France). The S/P 
(%) ratio was calculated by dividing the optical density (OD) PPDB minus PPDA or PBS by OD positive control-negative control x 100. Cutoff for 
positivity: S/P ≥ 16%. (B) BOVIGAM™ TB (Thermo Fisher Scientific, Waltham, MA, United States). The ΔOD was calculated using PPDB OD or DIGRA-C 
OD minus PBS OD. The dotted lines show the cutoff for positivity: ΔOD ≥ 0.1 and PPDB OD > PDDA OD for the tuberculin-based assay and ΔOD ≥ 0.1 
for the DIGRA-C-based test. The interpretation of the PPDs-based assay results was done following the indications of the Spanish National Reference 
Laboratory for bovine TB (LCSA, Santa Fe, Granada, Spain) and adapted to the interpretation of the DIGRA-C-based assays. Horizontal lines in each 
group in (A) and (B) represent the median values. One-tailed non-parametric Mann–Whitney test: *p ≤ 0.05, **p ≤ 0.01.

FIGURE 4

Antibody IgG responses against the MPB83 antigen. (A,B) IgG responses to the MTBC-specific MPB83 antigen at weeks 14 (A) and 16 (B) after s.c. 
vaccinations (weeks 8 and 10 after i.n. vaccinations). (C) Comparison between IgG plasma levels at weeks 14 and 16 within individuals. MPB83-IgG 
levels were calculated as OD of antigen-coated well minus OD of non-coated well (ΔOD). Continuous horizontal lines represent the median values. 
The dotted line shows the cutoff for positivity: ΔOD ≥ 0.5. ****p < 0.0001, two-way ANOVA with matched values and post-hoc one-tailed Bonferroni’s 
multiple comparisons test.
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4 Discussion

The findings of the present study further strengthen the evidence 
that the use of the defined antigens ESAT-6, CFP10, and EspC can 
significantly reduce or even eliminate vaccine-induced interference in 
diagnostic tests. Across all vaccination strategies tested, both in skin 
tests and IGRAs, these antigens displayed minimal or null cross-
reactivity. These reagents have already been successfully evaluated to 
distinguish between parenterally BCG-vaccinated from infected goats 
(23, 24). In addition, our recent studies have recently suggested that 
heat-inactivated mycobacterial vaccines induce minimal or 
undetectable specific immune responses against ESAT-6 and CFP10 in 
goats, these antigens being suitable to specifically identify infected 
animals and avoid cross-reactivity with vaccinated ones (9, 19). Since 
these proteins are only secreted by replicating bacilli, they can no 
longer be secreted after bacterial inactivation (18).

However, despite all goats vaccinated intranasally with single-dose 
vaccines showed negative results on DIVA tests, the homologous 
prime-boost strategy (priming with HIMBpar s.c. followed by 
boosting with HIMBmuc i.n.) showed false-positive animals to all 
DIVA tests when high cutoff points were used, mainly with the ID 
Screen Ruminant IFNg kit (four out of six animals were positive). This 
result disagrees with the absence of positivity to this test in goats 
parentally vaccinated with a single dose of HIMBpar (9, 19). Notably, 
in these studies, the EspC (Rv3615c) protein was not added in the 
diagnostic reagents, and diagnostic tests were performed up to 7 weeks 
of vaccination (instead of 14), and these differences may account for 
the observed variations in the results. In addition, it is also possible 
that a minimal content of the remaining defined antigens in HIMB 
vaccines would be sufficient to induce detectable immune responses 
when these are enhanced by the boosting effect of HIMB i.n.

On the other hand, only one animal in the heterologous 
BCG-HIMB i.n. prime-boost immunization schedule presented a 
single diagnostic interference when applying the more stringent 
interpretation of the DST-F skin test, whereas all animals remained 
negative when using high cutoff points. In addition, two animals from 
the HIMB i.n. and HIMBmuc groups, respectively, showed small 
responses to the DST-F skin test but did not yet reach the cutoff value 
for positivity. Therefore, the limited interference observed in the 
BCG-HIMBmuc prime-boost schedule may be  explained by the 
intranasal administration of the HIMB vaccine since the expression 
or secretion of the defined antigens is restricted in BCG due to the lack 
of the Esx-1 secretion system (25).

To date, the majority of studies investigating TB vaccination 
routes have concentrated on subcutaneous (26), intramuscular (27), 
and, to a lesser extent, intravenous (28) and oral administration (29). 
However, the intranasal route has been relatively underexplored in the 
field of TB vaccination, but it has been attracting growing interest in 
recent times (30, 31).

Given that inhalation is the main route of MTBC entry, causing 
primarily respiratory disease, it has been hypothesized that vaccination 
via the respiratory mucosal route could improve efficacy against 
pulmonary TB compared to the systemic route (30). In this study, 
we assessed three vaccines formulated for intranasal administration 
alone or in combination with well-defined parenteral vaccines.

As expected from previous studies, vaccination schedules that 
included parenteral vaccination were highly effective in inducing a 

strong systemic immune response to PPDs (19, 26, 32, 33), but 
interestingly, we  observed that a single-dose intranasal BCG 
vaccination induced similar DTH and IFN-γ responses to PPDs to 
those observed in goats vaccinated parenterally with BCG or HIMB. In 
light of these results, intranasal nebulization of BCG not only 
completely avoided diagnostic interference when using defined 
antigens but also induced robust cell-mediated systemic immune 
responses, representing a promising alternative to parenteral  
administration.

In contrast, when a single intranasal dose of HIMB was 
administered, either alone or in combination with an adjuvant, it 
induced only mild or undetectable cell-mediated immune responses 
using the diagnostic tools and reagents applied in this study, except 
for one goat of the HIMB i.n. group that was positive to SIT, CIT, and 
one of the two IGRAs. These results align with studies on oral 
vaccination using HIMB, delivered as edible bait, which suggests that 
while this approach can provide partial protection to vaccinated 
individuals, it does not elicit a strong systemic immune response (34). 
This suggests that the HIMB vaccine, when delivered intranasally, 
does not provoke the same level of systemic immune activation as 
either the parenteral vaccines or the BCG i.n. vaccine, but further 
studies are needed to conduct a more comprehensive characterization 
of vaccine immunogenicity and its translation to the degree 
of protection.

In this study, the interpretation of the DST-F-based assay results 
was adapted from the established interpretation for tuberculin use in 
goats. However, defined antigen reagents such as DST-F might not 
elicit immune responses in the same way as PPDs. Applying the 
conventional PPD criteria to these new reagents could potentially 
affect the interpretation of TB diagnostic results as they may not fully 
capture the immune responses associated with defined antigens. On 
the other hand, using the threshold tailored to cattle reactivity to 
DST-F (response considered positive if Δ skin thickness ≥ 2 mm (14)) 
can influence the accuracy and specificity of the TB diagnosis in goats 
since one more animal of each of the groups HIMB i.n., HIMBmuc, 
and BCG-HIMBmuc would be positive when using the cattle cutoff 
compared to the adapted tuberculin cutoff for goats. Establishing 
specific reactivity criteria for defined antigen reagents could improve 
the diagnostic reliability of these new tools in the goat species.

When comparing the two IGRA kits used in this study, the ID 
Screen Ruminant IFNg kit showed slightly higher vaccine-induced 
interferences on a tuberculin-based test when compared to the 
BOVIGAM TB kit, in terms of both higher PPDB-specific IFN-γ levels 
and a greater number of individuals being classified as positive for 
TB. Notwithstanding, the two kits use different approaches for 
classifying positive and negative animals, and it may also have 
consequences on the diagnostic performance (35).

Finally, significant differences between treatment groups were also 
found in serology. Previous research has described that both infected 
cattle (36) and goats (24) experienced a boosting effect of MTBC-
specific antibody responses 2–3 weeks after skin testing. In contrast, 
HIMB has been shown to induce strong antibody responses without 
the need for this boosting effect from skin tests (9, 19, 37), unlike BCG 
(19). Consistent with this, in our study, all animals of the HIMBpar-
HIMBmuc group seroconverted prior to skin testing, and IgG titters 
in this group were significantly higher compared to the other 
vaccination groups at that time point. On the contrary, both 
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HIMBmuc and HIMB i.n. did not elicit significant antibody titters in 
plasma, and seroconversion was only detected in one animal from 
each group, indicating that the intranasal route of administration may 
not be as effective in inducing systemic antibody responses compared 
to the parenteral one.

Two weeks after the skin test, antibody responses in the 
BCG-HIMBmuc group were elevated to levels comparable to 
those observed in the HIMBpar-HIMBmuc group. This suggests 
a lack of induction by BCG of early detectable MPB83-specific 
humoral responses compared to HIMB until these are enhanced 
through skin testing. It could be a consequence of the retained 
expression of MPB83 protein in BCG strains compared to wild-
type M. bovis (38). Furthermore, no seroconversion was observed 
in any animal that received intranasal BCG prior to skin testing, 
after which a mild increase in antibody levels was observed, 
resulting in only one seropositive animal with IgG titers just above 
the threshold.

Interestingly, the same animal of the HIMB i.n. group that was 
positive for IGRA and skin tests also exhibited significantly 
stronger humoral responses compared to the other animals in the 
group, suggesting a more pronounced immune activation that set 
it apart from its counterparts. Moreover, one animal in the 
HIMBmuc group shifted from a weak seropositive status at week 
14 to seronegative by week 16, just after undergoing the skin test. 
We hypothesize that this fluctuation may indicate a non-specific 
response that is not directly associated with the administered  
vaccine.

5 Conclusion

Among the different vaccination regimes evaluated in this 
study, the heterologous primer-boost strategy with BCG s.c. 
followed by HIMBmuc i.n. and single-dose intranasal 
administration of BCG demonstrated higher diagnostic specificity 
in DIVA skin test and IGRA compared to the homologous prime-
boost strategy (HIMB s.c. followed by HIMBmuc i.n.) while 
exhibiting similar systemic cellular immune responses to 
PPDB. Based on these results, further research could focus on 
efficacy studies to evaluate the potential of these two vaccination 
strategies in the protection against the MTBC challenge. The results 
also reinforce the suitability of combining the defined antigens 
ESAT-6, CFP10, and EspC to improve the accuracy of TB 
diagnostics in vaccination settings.
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