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Trained immunity, characterized by long-term functional reprogramming of innate 
immune cells, offers promising new directions for veterinary vaccine development. 
This perspective examines how trained immunity can be integrated into veterinary 
vaccine design through metabolic reprogramming and epigenetic modifications. 
We analyze key molecular mechanisms, including the shift to aerobic glycolysis and 
sustained epigenetic changes, that enable enhanced immune responses. Strategic 
approaches for vaccine optimization are proposed, focusing on selecting effective 
trained immunity inducers, developing innovative adjuvant systems, and achieving 
synergistic enhancement of immune responses. While implementation challenges 
exist, including individual response variations and safety considerations, trained 
immunity-based vaccines show potential for providing broader protection against 
emerging pathogens. This approach could revolutionize veterinary vaccinology by 
offering enhanced efficacy and cross-protection against heterologous infections, 
particularly valuable for zoonotic disease control.
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1 Introduction

In the field of veterinary medicine, vaccine design faces unprecedented challenges as 
rapidly mutating viruses, like Avian Influenza H5N1 and H7N9, undermine traditional 
vaccine efficacy. High mutation rates in these strains increase zoonotic spillovers and pandemic 
risks. H5N1’s genomic reassortment and expanded mammalian host range heighten human 
infection risks, while H7N9 mutations further reduce vaccine effectiveness (1, 2). These 
challenges underscore the urgent need for innovative vaccine strategies. Netea et al. (3) first 
proposed the emerging concept of “trained immunity,” suggesting that the long-term 
functional reprogramming of innate immune cells can significantly enhance the host’s defense 
against various pathogens. Further research by Netea et al. (4) demonstrated that trained 
immunity confers broad protection against heterologous pathogens through metabolic and 
epigenetic reprogramming. According to Netea et al. (5), whole-microbe-based vaccines can 
enhance innate immune responses by inducing trained immunity, thereby reducing 
susceptibility and disease severity against emerging pathogens such as SARS-CoV-2, providing 
new insights for vaccine design. This article explores the potential application of trained 
immunity in the design of veterinary vaccines and proposes new strategies to optimize vaccine 
development through metabolic reprogramming and epigenetic regulation, with the aim of 
improving vaccine efficacy and safety.

Trained immunity, through the long-term functional reprogramming of innate 
immune cells, has emerged as a cutting-edge paradigm in vaccine design, offering new 
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strategies to address complex pathogens (6). Recent studies have 
further revealed that trained immunity not only enhances innate 
immune responses but also promotes adaptive immune functions, 
thereby providing broad protection against a variety of heterologous 
pathogens (7). This reprogramming process involves unique 
tolerance, activation, and differentiation mechanisms, enabling the 
immune system to respond more robustly to recurrent or novel 
pathogens. During the COVID-19 pandemic, research on trained 
immunity has underscored its critical role in antiviral defense and 
vaccine efficacy, particularly through mechanisms involving 
epigenetic modifications that amplify immune responses, offering 
fresh insights and theoretical support for the development of novel 
vaccines (8).

Kaufmann et  al. (9) found that the BCG vaccine exhibits a 
significant protective effect against influenza viruses, though its 
protective capacity against SARS-CoV-2 remains limited. This finding 
highlights the impact of pathogen-specific pathologies and tissue 
tropism on the effectiveness of trained immunity. Against this 
backdrop, this article proposes innovative strategies to integrate 
trained immunity into veterinary vaccines design. Approaches to 
vaccine design based on trained immunity include optimizing 
inducers, developing novel adjuvant systems, and enhancing the 
spatial and temporal control of immune responses. Such integrated 
strategies contribute to increased vaccine efficacy, expanded protective 
spectra, and improved immune memory.

Moreover, recent advancements in vaccine delivery systems and 
production technologies are steadily advancing trained immunity-
based vaccines toward practical application (10, 11). Nonetheless, the 
implementation of trained immunity faces several challenges, 
including individual variations in immune response, the need for a 
comprehensive safety assessment framework, and the standardization 
of efficacy evaluation metrics (12, 13). Future research should focus 
on elucidating the molecular mechanisms underlying trained 
immunity, developing more efficient inducers, and optimizing vaccine 
delivery strategies. Integrating trained immunity into the design of 
veterinary vaccines holds promise not only for enhancing vaccine 
efficacy but also for providing more robust protection against 
emerging viral threats.

2 Metabolic and epigenetic basis for 
vaccine innovation

The molecular mechanisms underlying trained immunity-based 
vaccine innovation primarily involve two interconnected processes: 
metabolic reprogramming and epigenetic modifications. Figure  1 
provides a comprehensive illustration of how metabolic 
reprogramming and epigenetic modifications are integrated in trained 
immunity, demonstrating the complex molecular networks that form 
the foundation for innovative vaccine design strategies. Understanding 

FIGURE 1

Mechanisms of metabolic and epigenetic reprogramming in trained immunity.
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these processes is essential for developing more effective vaccines that 
can fully harness the potential of trained immunity.

2.1 Metabolic reprogramming in vaccine 
immunity

In trained immunity, metabolic reprogramming plays a critical 
role in determining the function and persistence of immune cells. Arts 
et al. (14) found that trained immunity drives a metabolic shift in 
innate immune cells, particularly monocytes and macrophages, from 
oxidative phosphorylation to aerobic glycolysis. This reprogramming, 
termed the “Warburg effect,” not only provides the energy and 
metabolic intermediates required to enhance immune responses but 
also establishes a link between metabolism and epigenetic regulation, 
with intermediates like fumarate stabilizing epigenetic marks critical 
for immune memory. Recent studies further highlight the relevance 
of this metabolic-epigenetic interplay in vaccine responses. For 
instance, Apps et al. (15) demonstrated that H5N1 vaccination induces 
persistent transcriptional changes in classical monocytes and CD8+ T 
cells, effectively modulating baseline immune states to enhance future 
responses. Similarly, Song et al. (16) revealed that mucosal vaccines 
not only elicit adaptive immunity but also induce durable trained 
immunity in myeloid cells through metabolic and epigenetic 
reprogramming, providing broad protection. These findings 
underscore the central role of metabolic reprogramming in trained 
immunity and suggest innovative directions for vaccine design to 
optimize long-lasting and broad-spectrum immune responses.

The metabolic regulation of trained immunity relies on key 
pathways within glycolysis and the tricarboxylic acid (TCA) cycle. 
Moorlag et al. (17) demonstrated that inducers like β-glucan enhance 
trained immunity through specific epigenetic modifications, and upon 
re-exposure to Mycobacterium tuberculosis, the induced monocytes 
produce heightened levels of pro-inflammatory cytokines, effectively 
limiting pathogen growth. This enhanced response is mediated by the 
AKT–mTOR-HIF1α signaling pathway, which serves as a core 
regulatory mechanism of trained immunity. Additionally, research by 
Bekkering et  al. (18) found that the intermediate mevalonate, a 
product of the mevalonate pathway, promotes trained immunity via 
the IGF1R and mTOR signaling pathways. This process not only 
increases glycolytic activity but also promotes lipid metabolism and 
cholesterol synthesis, reinforcing the trained state of immune cells. 
The accumulation of mevalonate establishes a positive feedback loop 
that continuously enhances the effects of trained immunity. These 
studies illustrate how metabolic reprogramming functions in the 
induction and maintenance of trained immunity, offering potential 
new strategies for vaccine development.

2.2 Epigenetic modifications as Long-term 
mediators

The persistence of trained immunity relies heavily on epigenetic 
reprogramming, which induces long-term changes in gene expression 
without altering the DNA sequence. This reprogramming involves 
specific histone modifications and DNA methylation patterns that 
sustain the effects of trained immunity even after the initial stimulus 
has faded. Fanucchi et al. (19) proposed that a core mechanism of 

trained immunity is the interaction between epigenetic and metabolic 
pathways, which ensures that immune cells can respond rapidly to 
subsequent infections.

In terms of histone modifications, increased activating marks such 
as H3K4me3 and H3K27ac, along with the reduction of repressive 
marks like H3K9me3, are crucial for maintaining the trained immunity 
phenotype (20, 21). These modifications create an open chromatin state 
in the promoter regions of inflammatory genes, enabling faster 
activation of these genes upon secondary stimulation (22). Noz et al. 
(23) demonstrated in their study on the BCG vaccine that these histone 
modifications can persist in immune cells for several months, providing 
a molecular foundation for the long-term effects of trained immunity.

The process of trained immunity is accompanied by significant 
alterations in DNA methylation patterns, particularly in the promoter 
regions of immune-related genes (20). Genome-wide analyses have 
revealed specific methylation signatures associated with trained 
immunity, which correlate with an enhanced transcriptional response 
(21). These epigenetic modifications serve as potential biomarkers for 
successful induction of trained immunity and are closely linked to the 
metabolic reprogramming of innate immune cells (14). Notably, these 
DNA methylation changes persist even after the initial stimulus has 
been removed, suggesting their role in maintaining the trained 
immunity phenotype (20).

The interplay between cellular metabolism and epigenetic 
modifications forms a self-sustaining feedback loop that is critical for 
the long-term maintenance of the trained immunity phenotype (22). 
Key metabolic intermediates generated through metabolic 
reprogramming, such as acetyl-CoA, α-ketoglutarate, and NAD+, 
function as essential cofactors for epigenetic regulatory enzymes, 
bridging the metabolic network and epigenetic regulation within the 
cell (4). Activation of this metabolic-epigenetic axis promotes histone 
modifications and chromatin remodeling, thereby sustaining an 
enhanced transcriptional program and immune response (14). A 
deeper understanding of this metabolic-epigenetic regulatory network 
provides new therapeutic targets for optimizing vaccine design and 
immunotherapeutic strategies, with the potential to enhance immune 
memory formation and maintenance through targeted manipulation 
of metabolic pathways.

3 Strategic approaches for vaccine 
enhancement

Integrating trained immunity into vaccine design requires a 
strategic approach across multiple dimensions. Here, we propose three 
key strategies that can significantly advance vaccine development by 
leveraging the mechanisms of trained immunity. Figure 2 presents a 
systematic roadmap for vaccine optimization based on trained 
immunity, integrating the key strategic approaches of inducer 
selection, adjuvant system design, and immune response enhancement 
into a coherent framework for future vaccine development.

3.1 Selection strategy for trained immunity 
inducers

Traditional inducers like BCG have provided a valuable 
foundation for the development of trained immunity-based vaccines. 
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Netea et al. (7) noted that BCG can trigger long-lasting protection 
against a range of heterologous infections by reprogramming the 
epigenetic landscape of innate immune cells. Further research by 
Darrah et al. (24) demonstrated that intravenous administration of 
BCG offers significantly better protection against Mycobacterium 
tuberculosis (Mtb) in non-human primates compared to subcutaneous 
injection, underscoring the critical role of administration routes in the 
induction of trained immunity. This finding suggests that the optimal 
delivery method should be carefully considered in the development of 
new trained immunity-based vaccines to maximize the immune 
potential of inducers.

In addition, emerging molecular inducers, particularly β-glucan, 
show great promise as alternative candidates for the next generation 
of trained immunity vaccines. Domínguez-Andrés et al. (25) found 
that β-glucan induces trained immunity through a Dectin-1/Raf1-
dependent pathway, offering a more defined molecular mechanism 
and greater control over immune responses. This inducer not only 
strengthens innate immune responses via metabolic and epigenetic 
reprogramming but also enhances adaptive immunity, achieving 
broader protection. Further research by Li et al. (26) highlighted that 
synthetic β-glucan variants can be designed for improved stability and 
targeted delivery, offering better safety and fewer side effects compared 
to traditional live-attenuated vaccines.

3.2 Innovative adjuvant systems design

The development of adjuvants oriented toward trained immunity 
represents a paradigm shift in vaccine design. Traditional adjuvants 
primarily focus on enhancing adaptive immune responses, while new 

designs should aim to optimize both innate and adaptive immunity 
(27). Recent advances in understanding the mechanisms of trained 
immunity have identified potential targets for adjuvant development, 
including mTOR pathway regulators and epigenetic modifiers (19).

For the delivery of trained immunity inducers, novel nanoparticle 
platforms have shown significant advantages. Li et al. (28) proposed 
that non-viral nanoparticle platforms can precisely control the 
temporal and spatial distribution of immune stimulants, effectively 
enhancing the stability and potency of trained immunity induction 
while minimizing systemic side effects. Further, Priem et  al. (29) 
validated a bone marrow-targeting nanobiology platform that 
specifically induces trained immunity in myeloid progenitor cells 
within the bone marrow, demonstrating sustained trained immunity 
and significant antitumor effects in a mouse melanoma model. This 
MTP10-HDL nanotherapy reprograms multipotent progenitor cells 
epigenetically, promoting myeloid cell generation and overcoming 
immune suppression within the tumor microenvironment, thereby 
enhancing the efficacy of checkpoint inhibition therapy.

3.3 Synergistic enhancement of multiple 
immune responses

Combining innate and adaptive immunity has become a crucial 
direction for enhancing vaccine efficacy. While traditional vaccines 
primarily focus on adaptive immunity, growing evidence suggests 
that trained immunity can bolster both arms of the immune system. 
O’Neill and Netea (30) noted that the BCG vaccine not only 
enhances innate immune responses but may also reduce 
susceptibility to SARS-CoV-2 infection during the COVID-19 

FIGURE 2

Roadmap for vaccine optimization based on trained immunity.
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pandemic, demonstrating the non-specific protective potential and 
synergistic effects of trained immunity.

The timing of vaccination plays an important role in determining 
the strength and duration of the immune response. The timing of 
trained immunity induction relative to pathogen exposure or 
subsequent vaccinations can significantly impact protective efficacy. 
Yao et al. (31) showed that early induction of trained immunity can 
enhance the anti-infective response upon later exposure, supporting 
a prime-boost strategy that incorporates trained immunity inducers 
to provide prolonged protection.

Spatial targeting has emerged as an effective strategy for 
controlling the distribution of trained immunity effects. Chavakis 
et al. (32) highlighted that trained immunity can be concentrated in 
specific tissues, such as tissue-resident macrophages, through targeted 
delivery systems, thereby avoiding systemic side effects. Localized 
trained immunity is particularly valuable for tissue-specific protection; 
for instance, in lung infection control, tissue-resident immune cells 
can maintain the trained immunity phenotype independently of 
circulating cells, offering new opportunities for tissue-specific vaccine 
strategies. Divangahi et  al. (6) further clarified the relationship 
between trained immunity and other immune processes, providing a 
theoretical basis for establishing rational standards for tissue-specific 
vaccine development.

4 Implementation challenges and 
solutions

While trained immunity-based animal vaccine strategies show 
great promise, several key challenges remain in their implementation. 
Understanding and overcoming these challenges is essential for 
translating theoretical advances into practical animal vaccines.

The primary challenge is the significant variability in trained 
immunity responses among individual animals. Cirovic et al. (33) 
demonstrated that BCG vaccine-induced trained immunity leads to 
sustained transcriptional program changes at the level of 
hematopoietic stem and progenitor cells, but this response varies 
markedly between individuals. Such heterogeneity may 
be  influenced by HNF1 gene polymorphisms, age, sex, and 
environmental factors. Additionally, baseline cytokine production 
capacity and chromatin accessibility of immune-related genes prior 
to vaccination can predict trained responses (34). In livestock and 
poultry, trained immunity has demonstrated variability not only 
between individuals but also across species and breeds (35). For 
instance, β-glucan supplementation in chickens has been shown to 
enhance immune response differentially between broiler and layer 
breeds, with varying impacts on nitric oxide production and CD40 
expression (36). Similarly, in cattle, aerosolized BCG vaccination 
induces a robust trained immunity phenotype in monocytes, 
enhancing cytokine production and resistance to subsequent 
challenges (37). Such findings underscore the importance of 
developing predictive models tailored to specific breeds or species. 
By assessing baseline immune markers and genetic predispositions, 
vaccination strategies can be  optimized to account for breed-
specific responses. Additionally, the customization of formulations 
for different animal populations promises to improve the efficiency 
of trained immunity induction and its application in disease 
management across diverse agricultural systems.

Secondly, the safety assessment framework for animal vaccines 
must account for the unique aspects of trained immunity. Given that 
trained immunity involves epigenetic modifications and metabolic 
reprogramming, a long-term safety monitoring system is essential. 
This framework should include immediate inflammatory response 
monitoring, tracking of long-term epigenetic changes, and safety 
evaluations under different physiological conditions (e.g., pregnancy, 
growth stages). For production animals, it is also necessary to assess 
the potential impacts of trained immunity on growth performance 
and product quality.

In terms of production, integrating trained immunity inducers 
into existing animal vaccine manufacturing processes presents 
technical challenges. Key issues include maintaining the stability of 
active components, ensuring batch consistency, and establishing 
standardized processes suitable for large-scale production. When 
developing novel delivery systems, special consideration should 
be  given to the ease and cost-effectiveness of administration in 
animals. A modular production strategy is recommended, where 
formulation design and process parameters are optimized to ensure 
the stability and activity of trained immunity inducers.

Finally, current animal vaccine evaluation standards need to 
be expanded to comprehensively assess the protective effects of trained 
immunity-based vaccines. This requires establishing a 
multidimensional evaluation framework that not only develops 
reliable quantitative metrics for assessing the induction of trained 
immunity but also devises scientific methods to evaluate cross-
protection against heterologous pathogens. The evaluation framework 
should assess protective effects at the population level, focusing on the 
vaccine’s effectiveness in real-world production environments. 
Additionally, due to differences in immune characteristics across 
animal species, the evaluation system should establish long-term 
monitoring schemes for immune memory persistence tailored to 
different species, ensuring durable protection across various animal 
types. This comprehensive evaluation framework will provide a more 
reliable scientific basis for the development of trained immunity-
based animal vaccines.

5 Discussion

Integrating trained immunity into the design of veterinary 
vaccines represents a significant innovation in veterinary vaccinology. 
This strategy not only provides broad-spectrum pathogen protection 
but also offers new approaches to address key challenges faced by 
current animal vaccines. Traditional animal vaccines typically rely on 
specific immune responses, whereas the incorporation of trained 
immunity opens a pathway to enhance innate immunity, offering a 
novel strategy to improve overall vaccine efficacy.

Integrating trained immunity into veterinary vaccines represents 
a transformative strategy to enhance efficacy and address challenges 
associated with zoonotic diseases. The success of the BCG vaccine, 
which induces broad protection through metabolic and epigenetic 
reprogramming, provides a critical reference point. Studies have 
demonstrated BCG’s trained immunity effects against Mycobacterium 
tuberculosis (24) and potential cross-protection against SARS-CoV-2 
(30), as well as its effectiveness against influenza viruses (9), suggesting 
its application for controlling diseases like avian influenza in poultry. 
These insights highlight how trained immunity principles can enhance 
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innate immune responses, providing cross-protection and durable 
immune memory. By leveraging such strategies, veterinary 
vaccinology can better address rapidly mutating pathogens and 
zoonotic risks, contributing to animal health and advancing the One 
Health initiative.

Trained immunity-based animal vaccine design holds multiple 
implications. Firstly, by leveraging mechanisms of metabolic 
reprogramming and epigenetic regulation, trained immunity can 
activate and strengthen the innate immune system, thereby increasing 
cross-protection against emerging and mutated viruses. Dagenais et al. 
(38) noted that trained immunity provides effective defense against 
various pathogens through non-specific immune memory, which is 
particularly valuable in animal vaccine development as it aids in 
broader infectious disease control. Secondly, the synergy between 
trained and adaptive immunity could lead to longer-lasting protection 
and reduce the risk of immune evasion. This dual protection 
mechanism offers significant advantages in combating sudden animal 
outbreaks and providing comprehensive immune defense.

Future research should focus on the molecular mechanisms of 
trained immunity across different animal species. Ferreira et al. (39) 
highlighted that metabolic reprogramming and epigenetic 
modifications play pivotal roles in trained immunity, and interspecies 
differences in these areas may impact vaccine efficacy. Understanding 
these species-specific variations in trained immunity mechanisms will 
provide a theoretical basis for optimizing vaccine design. Additionally, 
developing safe, cost-effective, and scalable trained immunity inducers 
remains a critical task for the future. As Sánchez-Ramón et al. (27) 
described, trained immunity-based vaccines (TIbVs) activate broad-
spectrum immune responses by recognizing microbial structures 
through pattern recognition receptors (PRRs), potentially offering 
broad protection against multiple pathogens.

Optimizing delivery methods and enhancing delivery efficiency 
are critical for ensuring that trained immunity inducers effectively 
reach target tissues and provide sustained effects. Nanocarrier systems, 
such as polylactic-co-glycolic acid (PLGA)-based nanoparticles and 
liposome-based platforms, offer promising solutions in veterinary 
vaccines. PLGA nanoparticles enable slow antigen release, promoting 
humoral immune memory and CD8+ T-cell responses (40), while 
liposomal vaccines have successfully delivered antigens against 
pathogens like Salmonella enteritidis (41). Priority should be given to 
developing trained immunity-enhanced vaccines for economically 
significant animal diseases, with demonstration projects providing 
models for broader applications. Collaborative efforts among research 
institutions, vaccine manufacturers, and regulatory agencies are 
essential to establish evaluation standards and streamline approval 
processes for these novel vaccines. With advancements in 

nanotechnology and production scalability, nanocarrier-based 
vaccines are poised to revolutionize veterinary vaccinology and 
significantly enhance disease control efforts.
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