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Introduction: Subclinical mastitis in dairy cows carries substantial economic, 
animal welfare, and biosecurity implications. The identification of subclinical 
forms of the disease is routinely performed through the measurement of 
somatic cell count (SCC) and microbiological tests. However, their accurate 
identification can be  challenging, thereby limiting the opportunities for early 
interventions. In this study, an enhanced neural backpropagation (BP) network 
model for predicting somatic cell count is introduced. The model is based on 
TBESO (Multi-strategy Boosted Snake Optimizer) and utilizes monthly Dairy 
Herd Improvement (DHI) data to forecast the status of subclinical mastitis in 
cows.

Materials and methods: The Monthly Dairy Herd Improvement (DHI) data 
spanning from January 2022 to July 2022 (full dataset) was partitioned into both 
the training and testing datasets. TBESO addresses the challenge associated with 
erratic initial weights and thresholds in the BP neural network, impacting training 
outcomes. The algorithm employs three strategies to rectify issues related 
to insufficient population diversity, susceptibility to local optimization, and 
reduced accuracy in snake optimization. Additionally, six alternative regression 
prediction models for subclinical mastitis in dairy cows are developed within this 
study. The primary objective is to discern models by exhibiting higher predictive 
accuracy and lower error values.

Results: The evaluation of the TBESO-BP model in the test phase reveals a 
coefficient of determination R2 = 0.94, a Mean Absolute Error (MAE) of 2.07, 
and a Root Mean Square Error (RMSE) of 5.33. In comparison to six alternative 
models, the TBESO-BP model demonstrates superior accuracy and lower error 
values.

Discussion: The TBESO-BP model emerges as a precise tool for predicting 
subclinical mastitis in dairy cows. The TBESO algorithm notably enhances the 
efficacy of the BP neural network in regression prediction, ensuring elevated 
computational efficiency and practicality post-improvement.
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1 Introduction

Mastitis stands out as the most costly and prevalent ailment 
affecting dairy cows, leading to a substantial decline in milk yield and 
impacting lactation function. The consequence often involves the 
culling of affected cows, resulting in a significant financial setback for 
dairy farms (1). Research indicates that mastitis in dairy cows accounts 
for approximately 38% of the total direct expenditure associated with 
common production diseases on dairy farms (2). Notably, subclinical 
mastitis, being 40 times more prevalent than clinical mastitis and 
challenging to detect, accentuates its pronounced economic impact 
(3). Consequently, the imperative lies in the development and 
utilization of efficient models for the prediction and diagnosis of 
subclinical mastitis. Presently, the primary methods employed for 
detecting subclinical mastitis on farms include somatic cell count 
(SCC) (4), the California mastitis test (5), milk pH testing (6), milk 
conductivity testing (7), milk enzyme analysis (5) and pathogen 
diagnosis (8). Despite offering reasonable accuracy in indicating 
subclinical mastitis, these methods are often associated with a 
substantial workload and extended intervals between tests. Due to 
their inherent limitations, these methods are unlikely to meet the 
farm’s demand for accurate prediction of subclinical mastitis (9).

Due to its widespread adoption and scientific nature, Dairy Herd 
Improvement (DHI) data has emerged as the primary method and 
tool for scientifically managing cattle herds in various developed 
dairy-producing countries, including Canada, the United States, the 
Netherlands, Sweden, Japan, and others (10). When the SCCs exceeds 
100,000 cells/mL, it can serve as a warning indicator for subclinical 
mastitis (11). To augment the robustness and early prediction 
capability of subclinical mastitis diagnosis, this study proposes the 
incorporation of predictive factors unrelated to SCC, such as milk 
quality parameters, along with the integration of longitudinal 
monitoring of SCC (12). This methodology not only enhances the 
diagnostic capabilities but also serves as an optimal data input channel 
for machine learning systems. Specifically, it contributes to the 
creation of models focused on the timely identification of 
subclinical mastitis.

In recent years, the agricultural landscape has witnessed a rapid 
evolution in information technology, leading to the mainstream 
adoption of big data on farms. Numerous studies have explored 
diverse methods and applications aimed at developing predictive and 
prescriptive decision support tools. Researcher Nazira Mammadova 
and colleagues (13) proposed a classification prediction method for 
somatic cell count (SCC) in dairy cows based on Support Vector 
Machines. Baştan A et  al. (14) conducted a study involving 439 
pregnant cows, employing multivariate linear regression analysis and 
a backward stepwise method to predict the incidence of mastitis. Zhou 
X et al. (15) utilized eight machine learning algorithms to forecast 
mastitis in dairy cows, based on 14-dimensional data obtained from 
automatic monitoring systems and milking systems. They validated 
the consistency of these variables as predictors of cow diseases within 
automatic system monitoring. However, these methods may only 
forecast using data from the few days preceding the disease’s onset, 
and there is no significant disparity in precision and predictive worth 
among various models (8). Additionally, certain methods require 
distinct chemical identification, posing challenges for implementation 
on most dairy farms and limiting their potential as universally 
applicable predictive models.

Hence, the primary objective of this study is to develop a precise 
regression prediction model using neural networks, grounded in 
monthly Dairy Herd Improvement (DHI) data. However, given the 
nonlinear gradient optimization nature inherent in neural network 
regression prediction, challenges such as encountering local minima 
and the influence of randomness in initial weights and thresholds 
during training may surface. To address these issues, intelligent 
optimization algorithms have demonstrated commendable 
efficacy (16).

The Snake Optimization Algorithm (SO), introduced by Hashim 
F A et  al., is a recent advancement in the domain of intelligent 
optimization (17). Inspired by the foraging behavior of snakes, this 
algorithm simulates the path selection and movement strategies of 
snakes. It has been applied to optimization problems such as 
predicting non-stationary channels (18), ship radiation denoising 
(19), and multidimensional microgrid energy management (20). The 
Snake Optimization Algorithm exhibits excellent efficacy in managing 
continuous nonlinear problems, offering an innovative approach to 
tackling the nonlinear gradient optimization issues in neural 
networks. Nevertheless, obstacles remain, such as disparities in the 
ability to explore and exploit, as well as limitations like sluggish 
convergence rate and mediocre optimization precision (18).

Based on the research findings mentioned above, this study 
proposes a novel regression prediction model, called TBESO-BP, for 
estimating SCC in dairy cows. TBESO-BP model based on TBESO 
(Multi-strategy Boosted Snake Optimizer) optimized BP neural 
network to offer a more efficient prognostic instrument for the 
prevention and management of subclinical mastitis in dairy cows. 
Furthermore, this study aspires to be a valuable reference and source 
of inspiration for addressing regression prediction challenges in 
diverse fields.

2 Materials and methods

In tackling the prediction and diagnosis challenges associated 
with mastitis in dairy cows, this study implemented a systematic 
approach to data collection and analysis. The subsequent sections 
outline the data sources, data processing methods, and approaches 
employed in establishing predictive models. Through the utilization 
of these data and methods, the objective is to furnish a more effective 
and accurate tool for predicting mastitis in dairy cows.

2.1 Data source

The experimental data utilized in this study originated from a 
dairy farm in Gansu Province, China, encompassing all lactating cows 
on the farm. The dairy farm is equipped with modern agricultural data 
collection facilities, ensuring comprehensive and meticulously 
maintained data. These facilities provide optimal conditions for 
conducting numerical analysis of Dairy Herd Improvement (DHI).

The experiment spans from January 2022 to July 2022, with a 
sampling frequency of once per month. The dataset comprises 25,155 
DHI measurement records from 4,015 lactating cows on the farm. 
This judicious sampling frequency ensures accuracy while avoiding 
the complexity of frequent sampling, thereby preserving predictive 
accuracy (21).
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2.2 Data processing

Initially, data cleaning was conducted on the original 25,155 Dairy 
Herd Improvement (DHI) records spanning from January to July 
2022. Adhering to the criteria defined in the Chinese Holstein cattle 
production performance determination technical specification 
(NY/T. 1450–2007) for abnormal data, entries were removed based on 
criteria such as fat percentage > 7% or < 2%, protein percentage > 5% 
or < 2%, 305-day milk yield <2,000 kg, lactation days <5 days, 
lactation days >405 days, and data without records of calving. 
Subsequently, preliminary feature selection involved eliminating 
redundant columns like ‘subtotal’ and ‘average with total,’ addressing 
missing values, and removing redundant feature columns and empty 
rows, including ‘calving date,’ ‘calving interval (days),’ ‘group number,’ 
‘birth date,’ and ‘sampling date,’ while ensuring data integrity 
through backup.

Following the initial data selection, 24,835 valid records were 
obtained. These records include time-related indicators such as “Month” 
and other features like “Parity (calves),” “Lactation days (days),” and 
“Milk yield (Kg).” A correlation analysis was performed using a 
correlation heatmap, leading to the removal of features with high 
correlations (correlation coefficient > 0.66) (22), such as “305 milk yield 
(Kg),” “WHI,” and “Total fat (%).” All accessible data and code used for 
data analysis have been uploaded in the GitHub repository.

2.3 Predictor features and target variable

With the data now prepared, a model was constructed to explore the 
relationships between these selected features and the target variable. This 
model aims to quantify the predictive impact of each feature, 
incorporating temporal aspects to capture potential temporal effects. The 
target variable is the SCC of the current month. During model training 
and evaluation, the predicted values for the month will be compared with 
the actual values to validate the model parameters and its performance. 
The following sections detail the methodology for model evaluation and 
criteria for assessing prediction accuracy. The finalized selection of 
features and the target variable for prediction are outlined in Table 1. The 
dataset contains 19,591 remaining valid records.

2.4 BP neural network for regression 
prediction

For accurate regression predictions in subclinical mastitis 
diagnosis, a robust modeling approach is essential. This study explores 
the use of a Backpropagation (BP) neural network, a nonlinear 
regression model capable of capturing complex relationships between 
variables. The BP neural network model consists of an input layer, a 
hidden layer, and an output layer. For each layer in the neural network, 
the input is first weighted, a bias is added, and then passed through an 
activation function to obtain the output. The detailed explanation and 
mathematical formulations are provided in the Supplementary  
materials.

When the input data X is an n × m matrix, where n is the number 
of data samples and m is the number of features for each sample, the 
network computes a predicted output [ ]1 2, , ,ˆ ˆ ˆ , ˆ,i nY y y y y= … … . Choose 
a 1 2, , , , , , 1,2, ,j mx x x x x j m = … … = …  , to calculate its predicted 
output ˆiy  as Equation 1:

 1 1
· , 1,2,ˆ ,

s m
i ki jk j k i

k j
y g w f w x b b k s

= =

  
  = + + = …
  

  
∑ ∑

 
(1)

Where ˆiy  is predicted output for i-th sample, jx  is the j-th features 
for i-th sample, kiw  is the weight between the k -th hidden neuron and 
the i-th output neuron, jkw  is the weight between the j-th feature and 
the k -th hidden neuron, kb  is the bias term for the k -th hidden 
neuron, ib  is the bias term for the i-th output layer neuron, s represents 
the number of hidden neurons and ( )·g , ( )·f  are the non-linear 
activation function, see details in the Supplementary Equations 1–4.

To minimize the prediction error, the BP adjusts the weights 
during training based on a loss function, the study chooses the Mean 
Squared Error (MSE) as the loss function as Equation 2:

 
( ) ( )2

1
ˆ ˆ1,

n
i i i i

i
Loss y y MSE y y

n =
= = −∑

 
(2)

where ˆi iy y−  represents the difference between the true value and 
the predicted value on the test set for a specific data sample.

TABLE 1 The selected temporal features, predictor features and target variable.

Temporal features1 Predictor features Target variable

Month Parity (Litter) Current SCC (10^4/mL)4

Precursor SCC (10^4/mL)2 Lactation days (days)

Precursor SCS3 Milk yield (kg)

Butterfat percentage (%)

Protein content (%)

Urea nitrogen (mg/dL)

Endurance

Peak day (days)

Lactose

1Temporal features are predictive features related to time series in regression prediction.
2Precursor SCC represents the SCC from the previous month.
3Precursor SCS represents the somatic cell score from the previous month. Somatic Cell Score (SCS) is a logarithmic transformation of the somatic cell count (SCC). Higher SCS values 
indicate poorer udder health and potential mastitis.
4Current SCC (10^4/mL) is the target variable representing the somatic cell count. The model compares predicted and actual SCC values for each month.
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The gradient descent method is commonly used by updating 
network parameters based on the gradient information of the error 
function, gradually reducing the error. But gradient descent can 
converge slowly if the rate is too small or overshoot if it’s too large. In 
this study, to better adapt and fit Dairy Herd Improvement (DHI) data 
and to improve the accuracy of the prediction model, an enhanced 
optimization algorithm is utilized to replace the gradient descent 
method of selecting the weights and bias of the BP neural network. In 
other words, transforming the issue of selecting the neural network’s 
weights and thresholds into an optimization problem. That means the 
higher the fitness value obtained by the optimization algorithm, the 
smaller the corresponding loss function value, resulting in a better 
prediction as Equation 3:

 ( ) ( ),ˆi i ifitness X Loss y y= −  (3)

2.5 Model evaluation criteria

The prediction model is evaluated in terms of both accuracy and 
error to assess its performance. The standard evaluation criteria are 
outlined in Table 2, as follows:

The initial four indicators serve to quantify prediction errors. 
Mean Absolute Error (MAE) represents the average of absolute errors, 
Root Mean Squared Error (RMSE) assesses the deviation between 
observed and true values and Mean Absolute Percentage Error 
(MAPE) measures the expected value of relative error loss. R2 evaluates 
the percentage of variability in the target variable explained by the 
model’s explanatory variables, with a higher value indicating better 
performance, approaching 1.

3 Proposed TBESO-BP model

To ensure the scientific validity of the experimental results, the 
final outcomes were averaged over 10 independent runs. The 
experiments were conducted in a Windows 11 environment with an 

Intel(R) Core (TM) i9-14900K CPU running at 3.20GHz, 64.0GB of 
memory, and all model codes were implemented using MATLAB 
R2024a, and the following model comparison chart corresponds to 
this configuration.

3.1 Comparing optimization algorithms in 
BP

For this study, comparative experiments were conducted to 
evaluate the following three BP model variations: the classic BP model 
(23), AHL-BP (Improved BP with Auto Hiding Learning) (24), PSO-BP 
(Particle Swarm Optimization-based BP model) (25), and the SO-BP 
(Snake Optimizer Generalized Regression Neural Network model) (17).

In the comparative experiments, the population size N  was set to 
100, and the maximum number of iterations was set to 50 for both 
PSO-BP and SO-BP, as these are population-based swarm intelligence 
optimization algorithms. The population size N  represents the total 
number of individuals in the population, which plays a key role in 
balancing exploration and exploitation. Therefore, 100N =  was 
chosen to balance computational efficiency with maintaining sufficient 
diversity to avoid local optima, based on experimentation and the 
complexity of the problem. The lower boundary LB and upper 
boundary UB were set to −1 and 1, respectively.

The radar chart below compares the performance of these four 
models on the training and testing datasets using RMSE, MAPE, 
MAE, and R2 metrics in Figure  1. Here, lower values for RMSE, 
MAPE, and MAE indicate better model accuracy, while higher R2 
values signify better fit quality. In this radar chart, each axis represents 
a different evaluation metric, with larger areas indicating superior 
overall performance.

As shown in Figure 1, the SO-BP model has the largest area, thus 
outperforming the other models, which is why the snake optimization 
algorithm (SO) was selected as the primary improvement approach.

SO effectively tackles single-objective optimization by adjusting its 
global exploration and local exploitation phases based on the iteration 
count (17), but its initial exploration focus can lower convergence rates, 
and later exploitation may risk local optima trapping.

3.2 Improved strategies within the TBESO

To address these limitations, The Multi-strategy Boosted Snake 
Optimizer (TBESO) for enhanced prediction accuracy of subclinical 
mastitis in cows incorporates Tent Chaotic Mapping (TCM), 
Bidirectional Search (BDS), and Elite Reverse Learning (EOBL), 
enhancing SO’s adaptability for complex optimization challenges.

The TBESO algorithm enhances performance in four stages 
(3.2.1–3.2.4). Firstly, in the initialization stage (3.2.1), Tent chaotic 
mapping (TCM) is introduced to generate the initial population, 
increasing population diversity. In the exploration stage (3.2.2), 
Bidirectional Search (BDS) is employed to update foraging positions, 
accelerating the convergence of TBESO. In the exploitation stage 
(3.2.3), the snake population updates individual positions through 
fighting and mating. Finally, in the population updating stage (3.2.4), 
the Elite reverse learning (EOBL) mechanism is introduced to further 
optimize the population, expanding the search range of TBESO and 
preventing it from getting trapped in local optima.

TABLE 2 The standard evaluation criteria and their formulas.

Evaluation criteria Formula

Root Mean Squared Error (RMSE)
( )1 ˆ 2

1
y y

n

n
i i

i
−

=
∑

Mean Absolute Error (MAE)
1 ˆ

1
y y

n

n
i i

i
−

=
∑

Mean Absolute Percentage Error (MAPE)
1 ˆ

1

y y
n y

n i i
ii

−

=
∑

R-squared ( 2R )

( )

( )

ˆ

1

2

1

2

1

−

−

−

=

=

∑

∑

y y

y y

n
i i

i
n

i i
i

y ŷi i−  represents the difference between the true value and the predicted value on the test 
set for a specific data sample.
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3.2.1 Population initialization (introducing Tent 
chaotic mapping)

TBESO uses a chaotic mapping approach (26) in this step, unlike 
the original Snake Optimization algorithm. This random and 
convenient technique preserves population diversity. It helps Snake 
Optimization avoid local traps and explore globally. Random snakes 
are dispersed uniformly.

The definition of the Tent chaotic mapping algorithm is as 
Equation 4:

 
( ) ( )( ) ( )

( )( )
, 0.5

1
1 , 0.5

i
i i

i

X t if x
X t f X t

X t if x
α

α
 <+ = =  − >  

(4)

Here, iX  represents the position of the i-th snake at iteration t , 
( )1iX t +  is the updated position of the i-th snake at the next iteration, α  

represents a threshold parameter ( )0 2α≤ ≤  that divides the function 
into two conditional segments, here takes a value of 1.999, and t  is the 
iteration step, representing the number of updates applied to the position.

The Tent chaotic mapping generates a uniformly distributed 
population, with a population size of N . After generating the initial 
population, the population is divided into male and female groups, 
with mN  representing the number of males and fN  representing the 
number of females as Figure 2b.

To demonstrate the evolution of candidate solutions over the 
iterations, the study visualizes the population distribution in 
Supplementary materials. The population distribution of the TBESO 

is examined after 25 iterations in a two-dimensional space. The 
population size (N) is set to 400, with the upper boundary (UB) and 
lower boundary (LB) defined as 1 and −1, respectively and the 
following population distribution chart corresponds to this 
configuration. Additionally, an ablation experiment using the CEC 
2017 benchmark suite is conducted to assess the effectiveness of the 
TBESO algorithm under various conditions. Specific details of this 
ablation experiment can be found in the Supplementary materials.

In Figure 2a, which depicts the initial population generated by 
Tent chaotic mapping, the blue points are farther from the origin. 
Figure 2b distinguishes male and female populations using red and 
blue points.

3.2.2 Exploration stage (introducing bidirectional 
search)

The food quality Q determines whether the snake population 
enters the foraging stage (exploration stage) or the mating and 
reproduction mode (exploitation stage). Additionally, Snake behavior 
is also affected by temperature when food is abundant.

Defining Food quantity Q can be obtained using the Equation 5:

 
1 exp t TQ c

T
− = ∗  

  
(5)

Where t  refers to the current iteration and T  refers to the 
maximum number iterations. The constant 1c  is set to a specific value, 
in this case, 1 0.5c = .

FIGURE 1

Radar charts of performance comparison (a) Training set; (b) Testing set.
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If Q Threshold<  (Threshold = 0.25), indicating insufficient food, 
the snake population will update its positions through two methods. 
One is random updating, which is similar to the original Snake 
Optimization algorithm. The other is adopting a bidirectional search 
strategy. The position update will choose the method that produces a 
higher fitness value between the two.

3.2.2.1 Random updating
Random updating as Equations 6, 7:

 ( ) ( ) ( )( )21m m
i mrandX t X t c A ub lb rand lb+ = ± × × − × +  (6)

 ( ) ( ) ( )( )21f f
fi randX t X t c A ub lb rand lb+ = ± × × − × +  (7)

In the provided context, m
iX  and f

iX  denote the randomly 
chosen positions of male and female individuals, respectively, where 
rand  is a random scalar generated from a uniform distribution in the 
range (0,1). The constant 2c  is a constant and equals 0.05, and ub, lb 
are the lower and upper bounds of the problem, respectively. The ± 
symbol represents the flag direction operator (diversity factor), 
which randomly chooses between increasing or decreasing the 
solution’s position, enabling more effective exploration of the 
solution space. Additionally, mA  and fA  represent the ability of males 
and females to search for food, and they can be  calculated as 
Equations 8, 9:

 

( )( )
( )( )

t
exp

m
rand

m m
i

fitness X
A

fitness X t

 
 = −  
  

(8)

 

( )( )
( )( )

exp
f

rand
f f

i

fitness X t
A

fitness X t

 
 = −  
  

(9)

Where ( )( )m
randfitness X t  and ( )( )f

randfitness X t  are the fitness 
of m

randX  and f
randX  of rand -th individuals at iteration t  in male and 

female group, respectively.

3.2.2.2 Bidirectional search strategy
The bidirectional search algorithm simultaneously initiates two 

independent searches, with one progressing forward from the start 
and the other moving backward from the target. The principle of 
Bidirectional search is to guide individuals iteratively, moving them 
away from the worst individual while simultaneously approaching the 
best individual (Figure 3).

In this context, deep blue individuals represent the worst 
individual ( worstd ), deep red individuals represent the best individual 
( bestd ), black arrows represent the vector ( )worstF



 moving away from 
the worst individual, with the Equations 10, 11:

 

( ) ( ) ( )( )
( )( )

1

2

1m m m m
i i ibest

m m
worst i

X t X t rand X X t

rand X X t

+ = + × − −

× −
 

(10)

 

( ) ( ) ( )( )
( )( )

1

2

1f f f f
i i ibest

f f
worst i

X t X t rand X X t

rand X X t

+ = + × − −

× −
 

(11)

Where f
bestX  and f

worstX  represent the best and worst female 
individuals, and m

bestX  and m
worstX  represent the best and worst male 

individuals. 1rand  and 2rand  are two randomly generated random 
numbers from uniform distribution in the interval (0, 1).

3.2.3 Exploitation stage
If Q Threshold>  (Threshold = 0.25) represents sufficient food. In 

the presence of abundant food, the behaviors of the snake population 
are influenced by temperature. When the temperature is high and 
food is plentiful, the snake population will move toward food and 
consume the existing resources. However, only when the temperature 

FIGURE 2

Initialization of 2D population by Tent chaotic mapping. (a) 2D initialization population; (b) Initial population differentiated by gender.
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is low and there is sufficient food will be  mating, and 
reproduction occur.

The Temperature Temp  can be defined using the Equation 12:

 
exp tTemp

T
− =  

  
(12)

 1. When 0.6Temp > , indicating high temperature, the snake 
population will move to the food only as Equation 13:

 ( ) ( )( )31i best best iX t X c Temp rand X X t+ = ± × × × −  (13)

Where iX  is the position of individual (male or female), bestX  is 
the position of the best individuals among m

bestX  and m
bestX , which is 

also the best one in the whole population, and guides the entire 
population during the optimization process, and 3 2c = .

 2 When 0.6Temp < , in low temperature, the snake will be in 
the fight mode or mating mode randomly. The probability of 
choosing fighting mode is when 0.6rand > , while mating 
mode is selected when 0.6rand ≤ . Here, rand  is a random 
number drawn from a uniform distribution in the 
range (0, 1).

In the fighting mode, each male will fight to get the best female, 
and each female will try to select the best male as Equations 14, 15:

 ( ) ( ) ( )( )31 fm m m
i i ibestX t X t c FM rand Q X X t+ = + × × × × −

 
(14)

 ( ) ( ) ( )( )31f f fm
i i ibestX t X t c FF rand Q X X t+ = + × × × × −

 
(15)

Where , fm
i iX X  refers to i-th male position, ,f m

best bestX X  refers to 
the positions of the best individual in female group, and ,FM FF  are 

the fighting ability of male, female agents, respectively. FM  and FF  
can be calculated from the Equations 16, 17:

 

( )
( )( )

exp
f

best
m
i

fitness X
FM

fitness X t

 
 = −  
  

(16)

 

( )
( )( )

exp
m
best
f

i

fitness X
FF

fitness X t

 
 = −  
  

(17)

In the mating mode, the mating occurs between each pair related 
to the availability of food quantity Equations 18, 19:

 

( ) ( )
( ) ( )( )

31m m
i i

f m
ii

X t X t c MM rand

Q X t X t

+ = + × × ×

× −
 

(18)

( ) ( ) ( ) ( )( )31f f fm
ii i iX t X t c MF rand Q X t X t+ = + × × × × −

 
(19)

Where , fm
i iX X  are the position of i-th agent in male and female 

group and ,MM MF  refers to the mating ability of male and female, 
respectively, and they can be calculated as Equations 20, 21:

 

( )( )
( )( )

exp
f

i
m
i

fitness X t
MM

fitness X t

 
 = −  
  

(20)

 

( )( )
( )( )

exp
m
i

f
i

fitness X t
MF

fitness X t

 
 = −  
  

(21)

During the mating process in the search space, a female snake 
may lay eggs. The egg (in the pseudocode) represents a randomly 
selected value of either 1 or −1 and simulates the process of laying 

FIGURE 3

(a) Presents the principal diagram of BDS; (b) the population after moving by BDS.
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eggs (generating new solutions) and hatching (replacing poor 
solutions with potentially better ones), thereby promoting exploration 
of the search space. If egg equals 1, select worst male and female and 
replace them as Equations 22, 23:

 ( )m
worstX lb rand ub lb= + × −  (22)

 ( )f
worstX lb rand ub lb= + × −  (23)

Where , fm
worst worstX X  are the worst individuals in male and 

female group. Here, ub, lb are the lower and upper bounds of the 
problem, respectively.

3.2.4 Population update (introduction of Elite 
Reverse Learning)

After the exploitation stage, to address the issue of poor local 
development capability in the Snake Optimization algorithm, TBESO 

introduces the Elite Reverse Learning strategy (27). This strategy 
leverages the characteristic that elite individuals contain more effective 
information than general individuals. It creates a reverse population 
using elite individuals to increase population diversity. The best 
individual from the new population is then selected for the next 
generation iteration, utilizing the neighborhood space of elite 
individuals and enhancing local development capability, as Figure 4.

The elite solution is the best solution in the current population 
based on their fitness values, depicted as the colored square in the 
Figures 4a,c. Its definition as { }, , , ,, , ,e e e e

p j p j p j p dX X X X=  , where 
p  represents the index of each elite solution within the group of 
elites, and 1,2, ,p s= … . s is the total number of elite solutions. The 
study determined it as 0.1 ,s N= ×  which N  is the number of 
populations. d  represents the specific dimension within an elite 
solution vector, indexed by 1,2, ,j d= … , where d  is the total 
number of dimensions.

Given a current solution current  represents the i-th individual in 
Figure 4d, where jα  and jβ  denote the dynamic boundaries in the elite 

FIGURE 4

(a) The population before moving by EOBL; (b) the population before moving by EOBL; (c) presents how the dynamic boundary of elite solution is 
determined; (d) presents how the reverse solution is determined; The sequence is (a), (c), (d), (b), along the red arrow.
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group, representing the maximum and minimum values in dimension 
j , expressed as ( ),min e

j p jXα = , ( ),max e
j p jXβ = . The elite reverse 

solution of the i-th individual ,i jX  is :new  { },1 ,2 ,, , ,i i i i jOP OP OP OP=   
in Figure 4d, as Equation 24:

 ( ), ,·i j j j i jOP rand Xα β= + −  (24)

where rand  is a random scalar generated from a uniform 
distribution in the range (0,1).

Dynamic boundaries overcome the drawback of fixed boundaries 
in preserving search experience, enabling the reverse solution of elites 
to be in a narrow and dynamic search space, facilitating algorithm 
convergence. If the dynamic boundary operation causes ,

e
i jOP  to cross 

the boundary and become an infeasible solution, it can be reset using 
a randomly generated method, as Equation 25:

 ( ), , ,· ,i j j j j i j j i j jOP rand if OP lb OP ubα β β= − + < >
 (25)

where rand  is a random scalar generated from a uniform 
distribution in the range (0,1), jlb  and jub  represents lower boundary 
upper boundary for j  dimension, respectively.

The calculation updates the current  solution within a 
symmetric range around the elite individual, introducing 

randomness in both the x-axis and y-axis directions 
( x ySymm and Symm ). This promotes diversity in search, helping to 
explore multiple regions of space and avoid local optima. If the 
new solution is better, it will replace the current one, ensuring 
continuous improvement and refinement of the best solutions over 
iterations. Figure 4b shows the population distribution after being 
updated by the EOBL.

3.3 The proceeding of TBESO

Combining the Tent chaotic mapping, bidirectional search 
strategy, and elite reverse learning strategy mentioned above, the 
pseudocode for the TBESO algorithm is as follows. Here, N represents 
the population size, pos is the initial population generated by the Tent 
chaotic mapping algorithm, T  represents the maximum number of 
iterations, LB and UB are the lower and upper bounds of the 
optimization problem, dim is the dimension of the problem, Q 
represents food quality, Temp  represents the current temperature, 
rand  is a random number drawn from a uniform distribution in the 
range (0, 1), egg represents a randomly selected value of either 1 or −1 
(Algorithm 1).

The pseudocode is as follows:

ALGORITHM 1

Procedure of the proposed TBESO algorithm.
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3.4 TBESO-BP

Upon acquiring TBESO, the procedure selects neural network 
initial weights ( iw ) and thresholds ( ib ). The model compares the total 
sum of the discrepancies between the anticipated values generated by 
the neural network and the actual values. This loss represents the 
TBESO iterative optimization fitness function.

Once TBESO reaches the defined objective conditions, the related 
weights and thresholds are regarded as the starting optimal values for 
the backpropagation (BP) neural network. This method reduces 
absolute disparities to improve model performance and forecast 
accuracy. Figure 5 shows that iteratively selecting BP neural network 
initial weights and thresholds improves model performance.

4 Model evaluation and results

To evaluate the SO-BP, BEESO-BP [Improved BP based on Multi-
strategy Boosted Snake-Inspired Optimizer (27), which proposed by 
researchers Gang Hu and Rui Yang], and the TBESO-BP were 
compared for predicting the number of cow somatic cells, 
we conducted comparative experiments using the same environment 
and parameters as previously described. Each model was tested with 
a population size of 100 and 50 maximum iterations, and results were 
averaged over 10 independent runs.

4.1 Model performance comparison

These radar charts were used in Figure 6 to compare each model’s 
results across four performance metrics: R2, MAE, RMSE, and 
MAPE. The radar chart provides an intuitive visualization of model 
strengths and weaknesses across these axes, highlighting which 
models performed best in specific areas. A larger area within the radar 
chart indicates a superior overall performance of the model, as it 
reflects higher predictive accuracy (R2) and lower error metrics (MAE, 
RMSE, and MAPE).

4.2 The results of comparison

Figure 6a shows that in the training set, the TBESO-BP model 
achieves an R-squared of 96.60%, with MAE, RMSE, and MAPE 
values of 2.09, 5.63, and 32.05%, respectively slightly outperforming 
both the SO-BP and BEESO-BP models.

Similarly, Figure  6b illustrates the TBESO-BP model’s 
performance on the testing set, achieving an R-squared of 93.97% and 
error metrics of 2.07 (MAE), 5.04 (RMSE), and 31.36% (MAPE), again 
surpassing the SO-BP and BEESO-BP models.

5 Analysis and discussion

To analyze and compare the predictive performance and efficiency 
of each model, including BP, PSO-BP, AHL-BP, SO-BP, BEESO-BP, 
and the proposed TBESO-BP, we evaluate performance metrics such 
as MAE, RMSE, MAPE and R2, as shown in Figures 1, 6. These figures 
allow for an easy comparison of model efficiency and accuracy. 

Smaller values for MAE, RMSE, and MAPE indicate better 
performance, while a higher R2 suggests improved fitting accuracy. 
Each of these metrics directly correlates with practical performance, 
highlighting the strengths and weaknesses of the models 
in applications.

5.1 Models comparison analysis

The comparison results entail the six regression prediction 
models, with the evaluation of error quantification standards such as 
MAE, RMSE, MAPE, and the assessment of correctness quantification 
using R2. The predicted performances of the six models differ and are 
studied as follows:

5.1.1 Accuracy analysis
Upon evaluating R2 for accuracy in Figures 1, 6, all six models 

show R2 values exceeding 76.57% on both training and test sets, 
indicating generally robust predictive performance. However, the 
TBESO-BP model stands out with a test R2 of 93.97%, outperforming 
other models by 22.72, 48.60, 12.86, 3.09, and 10.96% compared to BP, 
AHL-BP, PSO-BP, SO-BP, and BEESO-BP, respectively. This highlights 
that the TBESO-BP model demonstrates exceptional accuracy in 
predicting somatic cell count.

5.1.2 Error analysis
Upon evaluating error quantification standards MAE, RMSE, and 

MAPE in Figures 1, 6, the TBESO-BP model outperforms the other 
models, with smaller errors across both the training and test sets. On the 
test set, TBESO-BP achieves reductions of 56.60% in MAE, 56.46% in 
RMSE, and 40.29% in MAPE compared to the BP model. Additionally, 
compared to other models such as AHL-BP, PSO-BP, SO-BP, and 
BEESO-BP, TBESO-BP demonstrates improvements across all metrics, 
reducing MAE by 33.23, 40.00, 18.82, and 14.49%, respectively.

Lower MAE in TBESO-BP model indicates that its predictions are 
closer to actual values, which is crucial for predicting SCC, a key 
indicator for subclinical mastitis. Accurate predictions of SCC are 
essential for effective farm management and timely intervention 
decisions. Furthermore, the smaller MAPE of TBESO-BP highlights 
its ability to maintain accurate predictions, even in situations with 
large variations in data ranges. The smaller RMSE highlights the 
model’s ability to remain consistent and less influenced by a few 
extreme data samples.

5.2 Different models for various 
applications

When selecting an appropriate prediction model, it is essential 
to consider not only error metrics like MAE, RMSE, R2, and MAPE 
but also the model’s runtime. In practical applications, the runtime 
can significantly impact tasks with high real-time demands. 
Therefore, by analyzing the runtime of each model, we gain further 
insights into their suitability for different use cases. Figure  7 
presents the comparison of the mean duration of the six models 
as follows:

Figure  7 reveals that the classic BP, AHL-BP, and PSO-BP 
models have durations all below 33 s, with RMSE  values exceeding 
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8. The lowest R-squared is for BP at 76.57% according to Figures 1b, 
6b, while the highest is for AHL-BP at 85.74%. In contrast, the 
SO-BP, BEESO-BP, and TBESO-BP models have durations 
exceeding 85 s, with error values all below 100. The TBESO-BP 
model has the lowest error value at only 30.67 and all three models 
have R-squared above 84.68%, with TBESO-BP being the highest 
at 93.97%. This indicates that overall prediction duration increases 
with improved prediction performance. In practical applications, 
the choice of the prediction model should be based on the specific 
usage scenario.

In summary, among the six comparative prediction models, the 
AHL-BP is better suited for scenarios with lower accuracy 
requirements and higher real-time demands. For example, in disease 
warning software, it can provide real-time fuzzy warnings for potential 
subclinical mastitis in cows when cow information is updated, 
allowing for timely preventive measures. On the other hand, the 
TBESO-BP model is better suited for scenarios with higher accuracy 
requirements and lower real-time demands. For instance, after 

entering cow information, it can accurately predict SCCs for 
subclinical mastitis in cows, facilitating a more precise assessment of 
the severity of the condition.

5.3 Disease prediction

To analyze the models’ predictive accuracy in the context of 
subclinical mastitis in dairy cows, Figure 8 illustrates the real versus 
predicted values of somatic cell counts (SCCs) for each of the six 
models across 30 test samples. The x-axis represents the sample 
sequence, and the y-axis shows SCC values in units of 104/ml. The 
TBESO-BP model’s predictions are shown as a blue line, and the true 
SCC values are marked in red line. Other models’ predictions are 
represented by scatter plots for comparison.

In this chart, the colored background conveys health status based 
on SCC thresholds: green represents the healthy range (SCC ≤ 50,000/
ml), yellow indicates a cautionary range, and red marks the subclinical 

FIGURE 5

The process of TBESO-BP model.
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mastitis diagnostic threshold (SCC > 100,000/ml) (28). The chart 
effectively highlights the TBESO-BP model’s capability to predict SCC 
values, crucial for accurate early detection and intervention.

Figure 8 demonstrates that the TBESO-BP model’s predictions 
align more closely with the actual SCC values than those of the other 
models, highlighting its superior accuracy. Notably, in this sample set, 
SCC values for samples 9, 12, 14, 17, 21 and 23 fall within the red 
background area, indicating probably are subclinical mastitis. Samples 
2, 6, 19, and 29 are situated in the yellow caution zone, while the 
remaining samples are within the green, healthy range.

The capabilities of these models enable them to accurately predict 
SCCs and growth trends in cows, providing real-time health 

information for breeders and farm managers, which is crucial for 
subclinical mastitis warning. This holds significant implications:

1. Early Detection and Prevention: Through regression 
prediction models, potential diseased cows can be identified in 
the early stages of disease development, allowing for timely 
intervention, improving treatment success rates, and avoiding 
vaccine wastage.

2. Precision Warning System: Utilizing regression prediction 
models, we can construct a more precise warning system with 
abundant data. This enables breeders to make more accurate 
decisions based on individual characteristics and health status of 
each cow, effectively reducing the incidence and impact of 
subclinical mastitis.

3. Resource Optimization: Regression prediction models 
assist farm owners or breeders in more efficiently allocating 
resources. Targeted interventions can prevent unnecessary 
treatment and additional expenses, optimizing resource 
utilization while enhancing cow health.

4. Data-Driven Decision-Making: By employing regression 
prediction models, historical and real-time data can better support 
decision-making in livestock management. This contributes to the 
scientific and predictable management of livestock, making the industry 
more stable and sustainable.

5. Scientific Research and Innovation: Regression prediction 
models provide researchers with a high-quality data source for 
in-depth studies on pathogenesis, influencing factors, and 
preventive measures of subclinical mastitis in dairy cows. This 
data-driven approach fosters innovation and development in 
relevant fields.

FIGURE 6

Radar charts of performance comparison. (a) Training set; (b) Testing set.

FIGURE 7

Mean duration comparison plot of 6 models.
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In conclusion, this study not only validates the effectiveness 
of the six prediction models for SCC prediction but also 
introduces a new and more accurate regression prediction model, 
TBESO-BP, for health management in dairy farming. This will 
contribute to improving breeding efficiency, optimizing resource 
utilization, and enhancing the production and welfare of 
dairy cows.

6 Conclusion

In addressing the challenges of accuracy and quantitative 
prediction in traditional methods for predicting subclinical mastitis 
in dairy cows, this study proposes a Body SCC Prediction Model 
based on Improved Snake Optimization Algorithm and 
Backpropagation (TBESO-BP). The model incorporates tent chaotic 
mapping, elite reverse learning, and bidirectional search strategies to 
enhance the population diversity, convergence speed, and local 
development capability of the snake optimization algorithm. Using 
TBESO, the initial weights and thresholds of the BP neural network 
are optimized, and the predictions of six models are objectively 
evaluated using five evaluation indicators.

The results demonstrate that the TBESO-BP model proposed in 
this paper exhibits high accuracy and stability in predicting subclinical 
mastitis in dairy cows. The optimized TBESO algorithm partially 
addresses issues such as lack of population diversity and susceptibility 
to local optima in the original algorithm, making it applicable to 
other problems.

Furthermore, in practical applications, the choice of a suitable 
prediction model should align with the specific prediction goals. 
The six comparative models in this study all demonstrate good 
prediction accuracy. The BP neural network with adaptive hidden 
layers is more suitable for real-time fuzzy warnings with lower 

precision requirements but higher immediacy. On the other 
hand, the TBESO-BP model, which provides accurate predictions 
of SCCs, is beneficial for assessing the specific condition of 
subclinical mastitis in dairy cows, particularly in scenarios where 
higher accuracy is needed without overly prioritizing immediacy. 
These research findings not only offer new reference points for 
the prevention and treatment of subclinical mastitis in dairy cows 
but also provide an accurate and reliable predictive tool.
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True & predicted SCC value comparison in 30 test samples.
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