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Previously, we systematically reviewed more than 20 years of influenza vaccine 
challenge trial research in pigs to answer the question, “does vaccinating sows protect 
offspring?” Overall, most studies were well designed but clinical heterogeneity made 
between-study comparisons challenging. Studies varied by samples, outcomes, 
and assays selected for measurement. Additionally, data essential for inclusion 
of findings in meta-analyses were often insufficiently reported and as a result, 
summary effect measures were either not derived or were not meaningful. Clinical 
heterogeneity and reporting issues complicate and limit what can be  learned 
cumulatively from research and both represent two types of avoidable research 
waste. Here, we illustrate each concern using data collected tangentially during 
the systematic review and propose two corrective strategies, both of which 
have broad applicability across veterinary intervention research; (i) develop a 
Core Outcome Set (COS) to reduce unnecessary clinical heterogeneity in future 
research and (ii) encourage funders and journal editors to require submitted 
research protocols and manuscripts adhere to established reporting guidelines. As 
a reporting corollary, we developed a supplemental checklist specific to influenza 
vaccine challenge trial research in swine and propose that it is completed by 
researchers and included with all study protocol and manuscript submissions. 
The checklist serves two purposes: as a reminder of details essential to report 
for inclusion of findings in meta-analyses and sub-group meta-analyses (e.g., 
antigenic or genomic descriptions of influenza vaccine and challenge viruses), 
and as an aid to help synthesis researchers fully characterize and comprehensively 
include studies in reviews.
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1 Introduction—avoidable research waste and 
corrective strategies

In 2014, evidence-based medicine (EBM) methodologists authored a series of seminal 
articles in the journal, The Lancet, describing five areas of avoidable waste in biomedical 
research and offered corrective strategies for each (1–5). Multiple stakeholders use research 
for decision making but recognizing outcomes most relevant to users were not consistently 
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selected, measured, or reported in research, methodologists also 
focused on standardization of endpoints (6, 7). Products of this 
effort include:

2010 – development of the COSMIN checklist (Consensus-based 
Standards for the selection of health status Measurement INstruments) 
as an aid for evaluating the methodological quality of studies 
investigating measurement properties (8, 9).

 • 2014 – formation of COMET, the Core Outcome Measures in 
Effectiveness Trials initiative (9).

 • 2016 – establishing COS-STAR, Core Outcome Set-STAndards 
for Reporting as reporting guidelines for COS development 
studies (10, 11).

 • 2017 – establishing COS-STAD, Core Outcome Set-STAndards 
for Development to outline minimum standards for the design 
of COS development studies (12).

 • 2019 – providing COS-STAP, Core Outcome Set-STAndardized 
Protocol Items, a checklist of 13 items considered essential 
documentation in protocols for COS development studies (13).

Core outcome sets (COS) are adopted to harmonize inclusion of 
essential elements of study design in clinical research (2, 11). A COS 
is “an agreed minimum set of outcomes that should be measured 
and reported in all clinical trials of a specific disease or trial 
population”; it is disease or population specific but it is not trial 
specific, meaning it is a recommendation of what should 
be minimally measured and reported in all clinical trials, but not 
how (9, 14, 15). Establishment of core outcome sets (COS) address 
issues of research waste associated with avoidable differences from 
one study to the next in the elements of study design (i.e., clinical 
heterogeneity) (2, 12).

Adoption of a COS approach reduces waste and improves the 
value of research to users in three ways; (1) it ensures outcomes most 
relevant to stakeholders are included in research, (2) it reduces 
outcome reporting bias (i.e., prevents selective reporting of only a 
sub-set of measured outcomes), and (3) it ensures all trials contribute 
usable information in meta-analyses (14). Inclusion of each study’s 
data in meta-analyses means that resources invested in primary 
research may be  further leveraged through synthesis (16–18). 
Hundreds of core outcome sets (COS) have been developed in human 
healthcare (19) but we  are aware of only two COS initiatives in 
veterinary care; COSCAD’18 for atopic dermatitis in dogs (20) and 
development of a COS for feline chronic kidney disease treatment 
trials (21). However, awareness is growing and recently, Sargeant et al. 
(22) described how a COS approach maximizes the utility of 
intervention research trials conducted in swine populations.

Within the context of The Lancet series (2, 5), we  revisit our 
systematic review and meta-analysis of 20 years of influenza challenge 
trial research in swine (published between 1990 and May 2021) (23) 
to explore and illustrate two types of avoidable waste found in that 
body of evidence. Our perspective for this work was gained through 
prior investigation of the barriers that slow translation of influenza 
research into useful knowledge for swine practitioners (23–25). 
We use data collected tangentially during the systematic review to 
identify clinical heterogeneity and reporting insufficiencies and based 
on this, propose two corrective strategies; development of a COS 
using standard and established Delphi consensus building processes 
(12), and, in addition to promoting use of established reporting 

guidelines, propose adoption of a novel supplemental reporting 
checklist specific to influenza vaccine challenge trial research 
in swine.

2 Clinical heterogeneity and reporting 
insufficiency in swine MDI challenge 
trial research

The systematic review was conducted to answer the question of 
whether the common industry practice of vaccinating sows against 
influenza conferred protection (via maternally derived immunity 
(MDI)) to their offspring (23). Data on six different outcomes were 
characterized and extracted for meta-analyses. Outcomes included 
three direct measures of infection, a gold standard immune correlate 
of protection (CoP), and two clinical signs. Measures of effect (also 
known as treatment measures or effect sizes) were impacted by the 
match between vaccine antigens and corresponding challenge 
virus(es), but overall, challenge trial evidence neither supported nor 
refuted vaccination of sows to protect piglets (23).

Post hoc, we  found the strength of the systematic review and 
specifically, confidence in summary effect measures, was reduced due 
clinical heterogeneity, and due to incomplete reporting of trial 
information and data. Reporting was not necessarily incomplete from 
the standpoint of communicating finding of individual studies, but 
rather, details were frequently omitted that were essential for inclusion 
in meta-analyses (i.e., measures of centrality, measures of dispersion, 
group sizes) and for inclusion in sub-group meta-analyses (i.e., 
antigenic characterization of vaccine and challenge viruses) (23). 
Table 1 is a summary of the number of studies that included one or 
more of the six outcomes versus the number of studies that were 
included in the meta-analysis (MA) of each outcome. Proportionately, 
few eligible studies were included in meta-analyses.

2.1 Clinical heterogeneity and elements of 
study design

To illustrate clinical heterogeneity we looked at three elements of 
study design; (i) outcomes measured, (ii) samples collected, and (iii) 
assays employed, then further characterized elements into 
sub-elements and identified use of each across all studies. Overall, the 
body of research was complex applying different combinations of 
samples collected, assays used, and outcomes measured, both within 
and across studies.

2.2 Clinical heterogeneity and network 
analysis

We used methods of network analyses to generate displays 
showing the scope and relatedness of each of the three elements as 
applied across all studies (N = 16). Figure  1 and Supplementary  
Figures S1, S2, display the number of studies jointly including the 
same sub-elements of outcomes measured, samples collected, and 
assays used across all studies. The Delphi method for reaching 
consensus is a preferred approach for developing a COS and this type 
of visual can, at the onset of the process, help Delphi study participants 
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to understand the extent of existing clinical heterogeneity (9, 12, 
21, 26).

2.2.1 Network analysis of outcomes measured
Outcomes were categorized into 9 sub-elements. Figure 1 shows 

the connectivity of each across all 16 studies. Nodes (red circles) 

represent the sub-element, and the edges (connecting lines) equal the 
number of studies jointly measuring both sub-elements. Virus 
detection and antibody titres were measured in all studies; each was 
most frequently paired with clinical signs (n = 12) and virus 
quantification (n = 12). Other frequent pairings included lung 
pathology with each of virus detection (n = 9), virus quantification 

TABLE 1 Number of studies by reported outcomes versus studies reporting sufficient data for inclusion in meta-analysis (N = 15a influenza challenge 
studies in piglets with vaccine-derived MDI published between 1990 and 2021, and reporting at least 1 of 6 eligible outcomes).

Outcome No. of studies measuring outcome No. included in MA MA effect measure

Direct measuresb:

Virus detection 14 5 RR

Starting to shed virus over study period 13 4 HR

Ceasing to shed virus over study period 13 4 HR

Time to start shedding virus 13 4 MD

Duration of virus shedding (time to stop) 13 4 MD

Virus quantity 12 7 SMD

Indirect measures:

HAI 13 2 MD

ADG 3 2 MD

Coughing 5 1 RR

aSixteen studies were eligible for characterization in the systematic review. Fifteen reported outcomes eligible for inclusion in meta-analysis. Data was collected tangentially during the 
systematic review of IAV-S influenza challenge trials in piglets with maternally derived immunity (MDI) from vaccinated sows (N = 16). MDI, maternally derived immunity; MA, meta-
analysis; effect measures (a.k.a. treatment effect/effect size) were either extracted as reported in primary research or were calculated from reported data.
bDerived from nasal swab samples only (i.e., excludes data from lung and nasal wash samples); RR, relative risk; HR, hazard ratio; SMD, standardized mean difference; MD, mean difference; 
ADG, average daily gain; HAI, hemagglutination inhibition assay.

FIGURE 1

Network analysis of outcomes measured across 16 influenza challenge trials in piglets with vaccine-derived maternal immunity. Data was collected 
tangentially during the systematic review of IAV-S influenza challenge trials in piglets with maternally derived immunity (MDI) from vaccinated sows 
(N = 16) (23); Red circles (nodes), outcome measured; numbers assigned each grey line (edge), number of studies jointly reporting both outcomes 
(thickness of line increases with increased frequency of joint reporting); CMI, all non-immunoglobulin immune responses including cell mediated 
immunity; vaerd, vaccine associated enhanced respiratory disease; Virus_quant, virus titres extrapolated from PCR measurements or from virus 
isolation methods; lung_path, observed macro or microscopic evaluation of lung lesions; transmissn, virus transmission from an infected pig to an 
uninfected pig; virus_detect, virus detection via RT-PCR or virus isolation; clin_sign, clinical signs; antibody, immunoglobulin titres; other, microtracheal 
lesions.
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(n = 9), and antibody measures (n = 9). Virus quantification and 
clinical signs were jointly measured across more than half of all studies 
(n = 9).

2.2.2 Network analysis of samples collected
Samples were categorized into 17 sub-elements (see 

Supplementary Figure S1). Multiple sub-elements were collected in 
each study and the most frequent pairing of samples across studies 
was nasal swabs with serum (n = 14), both of which were also 
paired frequently with dyspnea (n = 10). Next most frequent 
pairings were fever with each of serum (n = 12), nasal swabs 
(n = 11), or dyspnea (n = 10). Half of all studies (n = 8) included 
both collection of serum and bronchioalveolar lavage fluids 
(collected post mortem).

2.2.3 Network analysis of assays used
Assays were categorized into 15 sub-elements (see Supplementary  

Figure S2); most frequent pairings were ELISA assays (ELISA_2) with 
cell culture (for virus isolation) (n = 13), followed by ELISAs with 
measure of hemagglutination inhibition titres (HAI) (n = 12), and 
HAI with cell culture (n = 10). Half of all studies included measures 
of macroscopic lung lesions (L_macro) with each of lung histological 
lesions (L_micro) (n = 8), HAI (n = 9), immunoglobulins (ELISA_2) 
(n = 8), or cell culture (n = 8). All microscopic reporting of lung 
lesions (L_micro) was paired with (HAI) (n = 8).

2.3 Summary of the clinical elements of 
study design across all studies (N = 16)

All studies included as outcomes measures of immunoglobulin 
responses and of virus detection; inclusion of other outcomes was 
variable (see Table  1). Samples collected and assays employed to 
measure each of the six outcomes varied across all 16 studies and are 
summarized in Supplementary Figures S3, S4, respectively.

Nasal swabs were used to collect samples for virus detection in 
14/16 studies (Supplementary Figure S3). Three approaches were 
taken to demonstrate direct evidence of virus in piglets post 
challenge (Supplementary Figure S4); (1) culture of live virus 
(n = 13), (2) detection of viral RNA nucleic acids using polymerase 
chain reaction (PCR) methods (n = 6), and (3) histological 
identification in situ of viral antigen in sectioned tissues 
[immunohistochemistry (IHC)] (n = 5). Virus was quantified using 
cell culture methods (n = 10) and RT-qPCR methods (n = 4).

Serum immunoglobulin titres were measured in all but 1 study 
using enzyme linked immunosorbent assays (ELISA) (n = 15) 
(Supplementary Figure S4). ELISAs also varied with respect to the 
type of immunoglobulins measured; as IgG and /or IgA isotypes or as 
immunoglobulins specifically against conserved viral proteins NP 
(nucleoprotein) or M (matrix protein). The HAI assay, which is the 
gold standard correlate of protection, was used in most studies 
(n = 13) to identify sub-type and strain specific immunologic 
responses to influenza A viruses of swine.

Although few studies included outcomes measuring cell mediated 
immune responses (CMI), the assays used were varied; multiparameter 
flow cytometry (n = 6) was used to assess T-cell proliferation (staining 
for detection of CD4+, CD8+, CD3+, γδ TCR+ peripheral blood 
mononuclear (PBMN) cell populations) and T-cell priming (staining 

for CD25, IFN-gamma, and IL-10) (Supplementary Figure S4). ELISA 
based assays including the enzyme-linked immunospot (ELISpot) 
assay (n = 1), used for detection of IFN-gamma secreting cells, and a 
multiplex ELISA (n = 2) used to detect cytokine production. Clinical 
signs were measured as a stand-alone measure or as part of a 
composite score in 12 of 16 studies and are summarized in 
Supplementary Figure S5. Fever was the most consistently measured 
and reported clinical sign.

2.4 Supplemental reporting of influenza 
vaccine challenge trials in swine

Incomplete reporting of study methods and results hinders 
assessment for internal and external validity (27, 28), and in veterinary 
medicine is a cause of frequent exclusion of primary research studies 
from systematic reviews and meta-analyses (18, 29–34). In our review, 
studies were excluded from sub-group meta-analyses if hemagglutinin 
and neuraminidase antigens in vaccines were poorly characterized 
(23). This further diminished the value of inferences derived through 
synthesis. Therefore, we encourage funders and journal editors require 
research protocols and manuscripts adhere to established reporting 
guidelines such as REFLECT (available on the Meridian Network at 
https://meridian-network.org/).

Additionally, we  developed a reporting checklist specific to 
influenza vaccine challenge trails in swine (see Supplementary  
Tables S1, S2) and encourage researchers to complete and include the 
checklist as a supplemental document with all manuscript submissions. 
The checklist itemizes sub-elements of study design important for 
overall contextual understanding of influenza vaccine research (i.e., 
outcomes, samples and assays). The intent is that it serves as a reminder 
to researchers of essential items to report (35), and as an aid for 
synthesis researchers when identifying studies and extracting data for 
inclusion in systematic reviews and meta-analyses (31, 36). Consistent 
reporting of outcome, assay and sample sub-elements may also help to 
improve researcher, reviewer, and reader awareness of the full extent 
of avoidable clinical heterogeneity (8, 9).

3 Discussion

3.1 Objectives, endpoints, and definitions 
of influenza vaccine protection

Vaccine protection is a non-specific term and context is important 
for interpretation; protection from infection must be distinguished 
from protection against an undesired clinical endpoint (37) and no 
single outcome conveys protection against infection or disease (38). 
From a societal perspective, desired endpoints are conditioned on 
stakeholders’ need to inform decisions on implementation of vaccines 
in the field. For researchers involved in vaccine development work, 
desired endpoints are a function of the phase of research for which 
they are engaged (39, 40). Examples of researcher objectives, societal 
perspectives, and corresponding vaccine research endpoints and 
measures of protection against in influenza A viruses in swine (IAV-S) 
are listed in Supplementary Table S3.

In human influenza vaccine research, researchers’ objectives 
differ by each distinct phase of research (see Supplementary Table S3; 
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Supplementary Figure S6) (38, 41–43). Phase “0″ is the proof-of-
concept phase for candidate vaccines. In Phase I  to III clinical 
trials, convenient methods and assays to measure efficacy are 
validated, safety, dosages, and schedules are established, and 
approval for market use is established. In Phase IV clinical trials, 
post marketing evaluation of field effectiveness is established. 
Compared to human vaccines, approval of veterinary vaccines is 
expedited due to:

 i. Fewer restrictions governing conduct of same species challenge 
trials (44–46).

 ii. Veterinary vaccines are commonly approved based on Phase II 
challenge trial evidence (44).

 iii. Post-marketing evaluation of vaccine performance is not 
required (44).

 iv. A regulatory framework exists for restricted market use of 
non-licensed autogenous vaccines without proof of efficacy (46).

Desired endpoints overlap in early phase and late phases of 
vaccine research (Supplementary Table S3) (38). Validating correlates 
of protection (CoP), specifically immune CoPs, is often done using 
challenge trials in animal models, where same-species challenge 
models are optimal (47–49). Historically, hemagglutination inhibition 
(HAI) serologic assays have been the gold standard CoP for evaluating 
efficacy of inactivated vaccines against influenza A virus (IAV) (50), 
however because understanding of immune responses to influenza is 
incomplete, multiple outcomes must be assessed to accurately predict 
vaccine performance (37, 51). Additionally, use of live vaccines and 
newer vaccine technologies means both cell-mediated CoPs and direct 
measures of virus infection are needed to assess protection (50, 52–54).

There are gaps in understanding of how a host’s immune responses 
are coordinated to eliminate virus following primary infections, and 
of the impact of prior or original virus exposure on immunologic 
responses to secondary strain-homologous and to strain-heterologous 
IAV exposures (55). Universal vaccines and novel vaccine platforms 
typically elicit immunologic responses to non-dominate epitopes (i.e., 
the dominant HA receptor binding sites are not targeted) and as 
emphasis shifts to the design of such vaccines, so too will study of 
unintended adverse outcomes such as vaccine enhanced acute 
respiratory disease (VEARD) (56–61).

3.2 The role of challenge trials and swine 
influenza research in vaccine development

Although rare in human medicine (45, 62), challenge trials were 
the most frequently reported study design in IAV-S vaccine research 
in swine published since 1990 (25). For each of the 16 MDI challenge 
studies, the author’s stated objective(s) and study endpoints are 
summarized in Supplementary Table S4, indicating also where 
objectives correspond to one or more of the five critical R&D 
immunologic issues outlined in The Influenza Vaccine Research and 
Development (R&D) Roadmap (51).

Within a One Health context., IAV-S vaccine challenge 
research in swine contributes to the larger influenza research 
community of practice, and in this light, development of a COS 
for IAV-S research in swine (using a Delphi process) may serve as 

a template for development of COS for influenza vaccine research 
in other animal species (63, 64). Similarly, adoption of the 
proposed checklist may also serve as a multi-species template for 
consistent reporting of essential elements important for research 
synthesis and ultimately for the interpretation of vaccine challenge 
trial studies in animals.

4 Conclusion

Within the context of avoidable research waste, we illustrated how 
clinical heterogeneity and reporting insufficiencies led to substantive 
exclusion of IAV-S MDI challenge trials in swine from subsequent 
qualitative and quantitative synthesis of the body of research evidence. 
We advanced two corrective actions; development of a core outcome 
set (COS) using Delphi consensus building methods, and in addition 
to encouraging adherence to established reporting guidelines, use of 
a novel supplemental reporting checklist specific to influenza 
challenge trials in swine. We  suggested a completed checklist 
accompanies all primary research manuscripts as an aid to funders, 
editorial reviewers, readers, and synthesis researchers, for improving 
contextual understanding, and to facilitate charting and extracting 
IAV-S specific details during synthesis.
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