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Haemophilus parasuis (HPS) is the causative agent of porcine Glässer’s disease, 
which has become prevalent in China in recent years. It is characterized by fibrinous 
polyserositis, arthritis, and meningitis, but often shows mixed infection with other 
upper respiratory tract pathogens, causing heavy economic losses to the pig industry. 
Vaccination is an important means to prevent and control HPS infection, and the 
currently available vaccines are mainly the inactivated type or subunit vaccines 
containing immunogenic HPS proteins. This study reviews recent advances in 
HPS vaccines, analyzes the relative effectiveness of the components of subunit 
vaccines and discusses the advantages and disadvantages of each vaccine type. 
The goal is to provide insights for the development of more effective vaccines 
against Haemophilus parasuis infections in pigs.
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1 Introduction

Haemophilus parasuis (HPS) is an opportunistic Gram-negative bacterium in the 
Pasteurella family that causes upper respiratory tract infections of pigs (1). It is motile and 
diverse (2, 3) and requires factor V (nicotinamide adenine dinucleotide, NAD) for its growth 
(4). There are 15 serotypes defined so far with significant differences in pathogenicity: strains 
of serotypes 1, 5 and 12 are highly virulent, while those of serotypes 6 and 9 are of low 
pathogenicity (5–7). The strains circulating in China are mainly serotypes 4, 5, 12, 13 and 14 
(8). HPS affects both piglets and adult pigs and is generally transmitted via the respiratory 
system. This bacterium is commonly found in the upper respiratory tract of healthy pigs, but 
under certain conditions, such as stress, overcrowding, or poor ventilation, it can cause a 
systemic infection known as Glässer’s disease, with high morbidity and mortality (9). The main 
manifestations of the disease are fibrinous polyserositis, arthritis, and meningitis (3, 10). The 
disease is widespread in the swine industry in China and around the world, causing huge 
economic losses to hog farmers.

HPS is a typical opportunistic pathogen which can cause infection in piglets when their 
immune system is compromised by infection with other pathogens or environmental stress. 
Usually, the maternal antibodies and innate immunity are sufficient to prevent severe HPS 
infection, but the pathogenic factors of HPS are not well understood. Common antibiotics 
are the usual first line of treatment for Glässer’s disease, but antibiotic resistance has been 
reported in clinical HPS isolates (11, 12), and prevention by vaccination is preferred. Tests 
have been done on inactivated vaccines, attenuated vaccines, subunit vaccines, genetically 
engineered vaccines, and DNA vaccines, and they have all been reported to combat HPS 
infection to some degree. The major problem with HPS vaccines is low cross-protection 
against the multiple heterologous serotypes that can have significant differences in virulence. 
The number of approved and commercially available vaccines are also limited and there have 
been cases of vaccination failure (13). Immunization of sows with HPS vaccine could affect 
the nasal microbiota of offspring piglets during the first 15 days of life, by reducing the 
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relative abundance of Haemophilus parasuis and modifying the 
composition of the microbiota to promote species with anti-
pathogenic activity (14). No information is available about the effects 
of the various types of HPS vaccines on the nasal microbiota of 
piglets. In this article, we review the current literature on advances in 
Haemophilus parasuis vaccines with an assessment of the pros and 
cons of each vaccine type to provide insights for the development of 
novel HPS vaccines that are more effective and offer broader coverage 
of multiple serotypes.

2 Pathogenesis of Haemophilus 
parasuis

The pathogenic mechanism of HPS is relatively complex with 
many virulence factors involving colonization, invasion, and evasion 
of the host immune defense system. Upon colonizing the lower 
respiratory tract, HPS effectively evades the host’s immunoglobulin A 
(IgA)-mediated mucosal defenses by producing IgA proteases (15). In 
the early stages of infection in pigs, some virulent strains can block 
phagocytosis by alveolar macrophages and evade antibody-dependent 
complement-mediated killing (16), causing systemic infection and 
widespread seroresistance. Some progress has been made in the role 
of bacterial surface components, toxin proteins and virulence-related 
transcriptional regulators of HPS, such as lipo-oligosaccharides 
(LOS), capsular compounds, outer membrane proteins, and virulence-
related transcriptional regulatory molecules. LOS have been shown to 
play an important role in HPS adsorption and invasion of host cells, 
in addition to inducing inflammatory factors (17, 18). Eberle et al. 
constructed an HPS capsular mutant strain that lacked CapD, a key 
gene for the synthesis of capsular polysaccharides, and confirmed that 
the mutant strain elicited only a weak immune response (19). Zhang 
et  al. found that an outer membrane protein (OMP P2) deletion 
mutant of the HPS SC096 strain exhibited increased sensitivity to 
serum due to activation of the classical complement pathway and 
increased serum IgG content (20, 21), and that OMP P2 was associated 
with adhesion of porcine alveolar macrophage cell lines, thereby 
reducing the adhesion of HPS to epithelial and endothelial cell lines 
and the capacity for in vitro invasion (22). Tang et al. revealed that the 
extracellular serine protease EspP2 promoted adhesion of HPS to the 
host through the Rap1 signaling pathway (23).

Melniow et  al. used gene chip technology to determine 
transcriptional profiles in response to simulated conditions of the 
physiological environment of HPS-infected hosts in vitro, such as 
acidity, temperature, pressure and iron limitation (24). They found 75 
genes that were involved in regulating HPS protein expression, and 
most of these genes were involved in synthesis of iron and glucose 
metabolite transporters, metabolic enzymes, and DNA metabolism-
related proteins. Because of the limited availability of free iron ions in 
the host, HPS takes up iron directly through hemoglobin, transferrin 
and lactoferrin (25). Álvarez-Estrada mimicked iron restriction in a 
host naturally infected with serotype 5 HPS and found that the 
expression of six iron restriction genes (tbpA, tbpB, hxuA, hxuB, hxuC, 
and fhuA) was upregulated (26). These included porcine transferrin 
binding proteins, hemophores, and the transporter and receptor of the 
heme/hemopexin-binding protein (hxu) operon, a receptor for 
siderophores (27). However, in Melniow’s study, the fhuA gene was 
not upregulated during infection. This discrepancy might be due to 

upregulation of the fhuA gene that requires two or more factors 
acting together.

HPS infection stimulates host cells to produce signaling molecules 
through a set of virulence factors, which bind to cognate receptors to 
activate downstream signaling pathways and promote host production 
of multiple proinflammatory factors. Earlier studies indicated that the 
OMP P2 protein of HPS played a key role in pathogenesis by 
increasing expression of IL-1α, IL-1β, IL-6, and IL-8 mRNAs in 
porcine alveolar macrophages (PAMs) and inducing cytokine release 
in host cells (28–32). Huang et  al. reported that excessive and 
persistent production of proinflammatory cytokines was responsible 
for severe pulmonary injury in the HPS-infected hosts (33). In the 
study by Zhou (34), OMP P2 was shown to upregulate mRNA 
expression of the cytokines IL-17 and IL-23 as well as the chemokines 
CCL-4 and CCL-5. IL-17. This can lead to excessive inflammation and 
significant tissue damage due to binding of IL-23 to IL-1, thus 
maintaining the expansion of Th17 with subsequent release of IL-6, 
IL-17, IL-22 and TNF-α (35–37). In addition, it was further 
demonstrated that both the surface-exposed Loop7 and Loop8 
structures of OMP P2 could induce the transcription and expression 
of pro-inflammatory cytokines and chemokines such as IL-1α, IL-1β, 
IL-6, IL-8 and TNF-α in PAM and PK-15 by activating the NF-κB and 
MAPK signaling pathways (38). The diagram in Figure 1, shows that 
HPS OMP-P2 binds to Toll-like receptors (TLRs) 1, 2, 4 and 6, 
recruiting linker molecules, MyD88 and TRIF, and linking key 
proteins TRIF, IRAK4, IRAK1, TRAF6, TAK1 and TAB1, which then 
activate the NF-κB pathway, inducing the pro-inflammatory factors, 
IL-8 and CCL4, and activating the p38 and JNK MAPK pathways.

3 Vaccines against Haemophilus 
parasuis infection

At present, inactivated vaccines are the most widely used type for 
Haemophilus parasuis prevention, but there are a few subunit vaccines. 
Highly virulent strains are employed for inactivated vaccines, and 
these can be monovalent, bivalent, or trivalent, covering single or 
multiple serotypes. However, inactivated vaccines only show good 
efficacy against infections of the same serotype, while their protective 
effect against infections of different serotypes is poor or ineffective. 
Thus, developing a vaccine with high cross-protection against multiple 
serotypes is a challenge that needs to be met. Table 1 lists the relevant 
vaccines currently available.

In addition, there are two multivalent vaccines applying for 
clinical trials, namely the porcine circovirus type 2, swine streptococcal 
disease, Haemophilus parasuis triple subunit vaccine filed by Wuhan 
Keqian Biological Co. Ltd., China; and the swine pseudorabies-
Haemophilus parasuis dual inactivated vaccine against TY-ΔgE, type 
4 BJ02, type 5 GS04, and type 13 HN02 strains filed by Beijing 
Shengtaier Technology Co. Ltd., Beijing Huaxia Xingyang 
Biotechnology Co. Ltd., and Huaxia Xingyang (Jiangsu) Biotechnology 
Co., Ltd., all based in China. Although there are many vaccines 
available on the market, the disease is still widespread. The reason for 
this could be that most of the existing vaccines are the inactivated type 
against serotypes 4, 5 and 12, which do not have good protective 
efficiency against other serotypes. Haemophilus parasuis has less 
impact than other diseases such as Mycoplasma pneumoniae, porcine 
circovirus disease, and African swine fever, and the swine industry 
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gives priority to vaccination against diseases with greater impact in 
order to save costs and avoid the need for multiple vaccinations. 
Therefore, vaccination against Haemophilus parasuis is not considered 
a priority. Thus, it is particularly important to design a vaccine that 
offers good protection efficiency against the most prevalent serotypes, 
and the simultaneous immunization against Haemophilus parasuis 
and other diseases will provide the missing incentive for vaccination 
against lower priority diseases.

3.1 Inactivated vaccines

Inactivated vaccines are currently the most widely used against 
Haemophilus parasuis, and these are mainly based on the combination 
of bivalent or multivalent vaccines of highly virulent serotypes such as 
type 1, 4, 5, 12 and 13, or multiple vaccines together with porcine 
circovirus disease, swine streptococcal disease and other porcine 
epidemic diseases. The results showed that high levels of neutralizing 
antibodies were produced about three weeks after vaccination with 
inactivated strains (39, 40), and that piglets born from sows after two 
inoculations had higher levels of maternal antibodies, which could 
produce early immune protection (7, 41, 42). In 2001, Takahashi (43) 
developed an inactivated vaccine against serotypes 2 and 5 and 
evaluated its safety and efficacy in laboratory and field experiments, 
where it showed high immune protection against infection by 
serotypes 2 and 5 along with significant reduction of clinical symptoms 
in response to challenge infection. Martin (44) prepared an inactivated 

vaccine in Spain against serotypes 2, 4 and 5 that provided 100% 
protection in piglets and induced higher levels of cytokines in vivo 
than those of the subunit vaccine group containing outer membrane 
protein and transferrin-binding protein. Inactivated vaccines against 
HPS serotypes 4 and 5 have been reported to reduce mortality and 
clinical symptoms in piglets after challenge with strains of serotypes 
4, 5, 13 and 14; however, it did not protect piglets from serotype 12 
infection (45, 46). Zhao et al. (47) assessed the efficacy of the trivalent 
inactivated vaccine for HPS serotypes 4, 5 and 12 in piglets, and the 
results showed that the protection was 100%.

Although inactivated vaccines still dominate the market, they do 
have some limitations. Inactivated vaccines cannot contain all disease-
causing serotypes at the same time, and the cross-protection efficiency 
is low. According to one study (48), it is possible to provide 
heterologous protection against different serotypes if differences in 
antibody specificity and ability to induce antibody fixation of 
complement are taken into consideration. Cross-protection against 
different strains can also be achieved by choosing the proper target 
proteins as components of subunit vaccines.

3.2 Genetically engineered subunit 
vaccines

Compared with traditional vaccines, subunit vaccines only 
contain part of the antigenic components of pathogenic bacteria 
or viruses, eliminating the possible side effects caused by 

FIGURE 1

OMP P2 induces IL-8 and CCL4 expression through the NF-κB and MAPK pathways (100), respectively.
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irrelevant components and greatly improving the safety of 
vaccines (49). At present, two subunit vaccines of Haemophilus 
parasuis have been approved for marketing, namely Streptococcus 

suis-Haemophilus parasuis Dual Subunit Vaccine jointly 
developed by Wuhan Keqian Biological Co. Ltd., China and other 
units, and Porcine Circovirus type 2-Haemophilus parasuis 

TABLE 1 Commercial inactivated vaccines against Haemophilus parasuis.

Number Product description Manufacturer Efficacy

1

Trivalent inactivated vaccine against the 

type 4 H4L1, type 5 H5L3, and type 12 

H12L3 strains.

Tianjin Ruipu Biotechnology Co. Ltd., 

China
Protection against serotypes 4, 5 and 12

2

Trivalent inactivated vaccine against the 

type 4 SH, type 5 GD, and type 12 JS 

strains.

Spirit Jinyu Biological Pharmaceutical 

Co. Ltd., China
Protection against serotypes 4, 5 and 12

3
Streptococcal disease-Haemophilus 

parasuis dual subunit vaccine

Wuhan Keqian Biological Co., Ltd.; 

Tianjin Ruipu Biotechnology Co. Ltd., 

et al., China

Partial protection against HPS serotypes

4
Porcine circovirus type 2-Haemophilus 

parasuis dual subunit vaccine

Wuhan Keqian Biological Co. Ltd., 

China
Protection against most serotypes

5

Porcine circovirus type 2-Haemophilus 

parasuis dual inactivated vaccine against 

the SH, type 4 JS, and the type 5 ZJ 

strains.

Pleco Bioengineering Co. Ltd., China Protection against serotypes 4 and 5

6

Trivalent inactivated vaccine against 

Haemophilus parasuis type 4 H25, type 5 

H45, and type 12 H31 strains.

Guangdong Yongshun 

Biopharmaceutical Co., Ltd., China 

Zhaofenghua Biotechnology (Fuzhou) 

Co. Ltd., China

Protection against serotypes 4, 5 and 12

7

Trivalent inactivated vaccine against 

Haemophilus parasuis type 4 BJ02, type 5 

GS04, and type 13 HN02 strains.

Beijing Huaxia Xingyang Biotechnology 

Co. Ltd. Sinopharm Animal Health Co. 

Ltd., China

Protection against serotypes 4, 5 and 13

8

Haemophilus parasuis tetravalent 

propolis inactivated vaccine against type 

4 SD02, type 5 HN02, type 12 GZ01, and 

type 13 JX03 strains.

Shandong Huahong Biological 

Engineering Co. Ltd., China

Protection against serotypes 4, 5, 12 and 

13

9

Dual inactivated vaccine for swine 

streptococcal disease and Haemophilus 

parasuis LT, MD0322, and SH0165 

strains.

Wuhan Keqian Biological Co. Ltd., 

China
Protection against serotypes 4 and 5

10

Bivalent inactivated vaccine against 

Haemophilus parasuis type 4 JS and type 

5 ZJ strains.

Pleco Bioengineering Co. Ltd., China; 

Luoyang Huizhong Biotechnology Co. 

Ltd., China

Protection against serotypes 4 and 5

11

Bivalent inactivated vaccine against 

Haemophilus parasuis type 1 LC and 

type 5 LZ strains.

Shandong Binzhou Wohua 

Bioengineering Co. Ltd., China
Protection against serotypes 1 and 5

12
Inactivated vaccine against Haemophilus 

parasuis MD0322 and SH0165 strains.

Wuhan Keqian Biological Co. Ltd., 

China and Zhongmu Industrial Co. Ltd., 

China

Protection against serotypes 4 and 5

13

Trivalent inactivated vaccine against 

Haemophilus parasuis type 4 H4L1, type 

5 H5L3, and type 12 H12L3 strains.

Hunan Zhong’an Biopharmaceutical Co. 

Ltd., China
Protection against serotypes 4, 5, and 12

14
Inactivated vaccine against Haemophilus 

parasuis type 12 Z-1517 strain.

Boehringer Ingelheim Animal Health 

Co. Ltd., USA
Protection against serotype 12

15

Inactivated vaccine against Haemophilus 

parasuis type 1 SV-1 and type 6 SV-6 

strains.

Hibole Biopharmaceuticals Factory, 

Spain
Protection against serotypes 1 and 6
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Double Subunit Vaccines. The main antigenic HPS component in 
these two vaccines is the PalA protein, and the latter also contains 
HPS 06257 protein. These two antigenic proteins are the outer 
membrane proteins of Haemophilus parasuis, and the other outer 
membrane proteins, such as D15, OmpP2, OppA, HPS-0675 and 
GAPDH, have been confirmed as potential candidate antigens 
with good immunogenicity (49). Related studies have shown that 
HPS 06257 and PalA proteins are well-conserved in different HPS 
serotypes. These two proteins can induce high-level specific 
antibodies in vivo and provide good immune protection in the 
piglet challenge models. Importantly, the PalA protein is highly 
similar to the P6 protein of Haemophilus parasuis, and D15 is 
highly similar to D15 of Haemophilus parasuis and OMA87 of 
Pasteurella multocida (50, 51) as revealed by the proteomes of 
diverse microorganisms (52). The P6 protein is involved in the 
immune response during Haemophilus influenzae infection (53, 
54). These characteristics provide strong support for these two 
proteins as effective target antigens for an HPS subunit  
vaccine.

In addition to the subunit vaccines that have been successfully 
approved for marketing, a number of other recombinant proteins 
associated with HPS immunogenicity are being studied for 
potential use in vaccines. Recombinant PilA (rPilA) binds to PK-15 
cells, porcine tracheal epithelial cells, and the extracellular matrix 
components, laminin and fibronectin. The rPilA can react with 
convalescent and ultra-immune serum of Glässer’s disease patients 
(55). Purified rPilA elicited a robust immune response and 
produced strong immune protection against HPS serotype 5 
challenge in a murine model. Transferrin-binding protein B 
(TbpB) also showed outstanding performance in a series of animal 
immunogenicity challenge and evaluation experiments, and was 
considered the most promising antigen for the formulation of a 
subunit vaccine with broad-spectrum protection against HPS (56–
58). Jia et al. (59) screened the isolates of serotype 13, cloned the 
lpxC- and gmhA-related genes, and these proteins induced high 
levels of IgG antibodies and an immune response with secretion of 
IL-4, IL-10, and IFN-γ in mice. They found that immunization with 
GmhA and LpxC together could stimulate the production of both 
Th1 and Th2 immune responses, while recombinant LpxC and 
inactivated bacteria could only produce a Th2 immune response. 
In terms of protection from HPS challenge in mice, immunization 
with recombinant LpxC or GmhA individually resulted in 50% 
protection, while the combination, LpxC + GmhA, provided 60% 
protection against infection with a lethal dose of HPS. Dai et al. 
(60) tested the immunoprotective effect of vaccination with the 
recombinant polyamine transporter, PotD, in mice and showed 
that this protein could effectively stimulate both humoral and 
cellular immune responses. PotD immunization enhanced 
lymphocyte proliferation, and triggered a Th1-type immune 
response, protecting the mice from a lethal HPS infection and 
possibly conferring resistance to HPS colonization. Álvaro et al. 
(61) evaluated the protective effect of a vaccine containing the 
three recombinant proteins, rOmpP2, rOmpP5 and rOmpD15, 
against infection by the HPS Nagasaki strain in piglets lacking 
colostrum. All three recombinant proteins were recognized and 
induced specific antibodies in pig serum, but they were not 
sufficient to protect pigs from HPS challenge under 
experimental conditions.

With the development of next-generation sequencing 
technology, availability of a host of complete genomes has made it 
possible to use the strategy of reverse vaccinology for development 
of subunit vaccines on a large scale. The basic strategy of reverse 
vaccinology begins with the bioinformatics analysis of genome-
wide genetic information of the target pathogens, and the 
prediction of potential antigens. The main steps include screening 
and analysis of genomic information (62), identification of open 
reading frames with unknown functions (63, 64), homology 
alignment, subcellular localization of unknown functional 
ORF-encoded proteins, and functional annotation to identify 
surface proteins and toxin proteins (65). Comparative genomics 
and pan-genomics (66, 67) can help researchers respond more 
efficiently to genetic mutations and immune evasion due to 
differences between pathogen strains. The precursor LolA protein 
which comprises the HPS outer membrane lipoprotein carrier 
protein, and the two HPS outer membrane proteins, RlpB and VacJ 
(68, 69), were identified by bioinformatics methods as candidates 
for immunoprotective studies of Haemophilus parasuis. The results 
showed that mice could produce high levels of IgG antibodies in 
response to immunization with recombinant LolA, resulting in 
50% protection against challenge with the virulent strain HPS01, 
serotype 13. LolA was found to induce Th1 and Th2 immune 
responses in mice as shown by the level of cytokines of IL-4, IL-10 
and interferon-γ. The recombinant proteins RlpB and VacJ induced 
strong antibody responses and high IFN-γ levels in the immune 
sera of inoculated animals, but they did not afford sufficient 
protection of the pigs in the challenge test. Li et al. (49) identified 
three outer membrane proteins TolC, LppC and HAPS_0926 by 
bioinformatics methods. Mice immunized with these three outer 
membrane proteins produced humoral and host cell-mediated 
responses with significantly increased antigen-specific IgG level 
and lymphoproliferative responses. CD4+ and CD8+ T cells as well 
as three cytokines (IL-2, IL-4, and IFN-γ) were significantly 
increased in immunized mice. Antisera against the candidate 
antigens were effective in preventing HPS from surviving in a 
whole-blood survival assay. It is generally perceived that multi-
component subunit vaccines induce a more pronounced immune 
responses than single-component vaccines.

In addition to the above-mentioned candidate antigens for 
subunit vaccines, the antigenic proteins listed in Table 2 have also 
been shown to provide partial protection in HPS challenge 
experiments. It should be noted, however, that in the majority of 
these trials, the immunized animals were challenged with highly 
virulent strains, requiring the highest degree of protection.

Among the candidate antigens, the OmpA family of OMPs 
function as adhesins and invasins in the respiratory system that 
bind to airway epithelial cells, which constitute the principle 
defensive barrier in the lung. Their detection of pathogens like HPS 
through Toll-like receptors results in the activation of signaling 
pathways and release of antimicrobial and pro-inflammatory 
molecules. VtaA was selected as a candidate antigen for its 
passenger domains with an extensive mosaic structure and serum 
cross-reactivity among VtaA from different strains. Most of the 
remaining candidate antigens that have high immunogenicity were 
identified through bioinformatics screening.

Subunit vaccines are being widely studied, because they have 
the advantage over live vaccines of avoiding the risk of HPS 
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dissemination and potential side effects from viral components. 
Candidate proteins play vital roles in nutrient uptake and virulence, 
so blocking them can repress HPS infection (70), but there are also 
problems such as poor immunogenicity and cross-protection 
against heterologous serotypes. Although the subunit vaccines 
tested so far have shown promising protective effects in mouse and 
piglet models, there are other potential protective antigens that 
remain unexplored. Future development of multi-component 
subunit vaccines should look for common antigens in different 
serotypes for cross-protection. Extensive research is still needed, 
and the choice of proper adjuvant (s) to improve the 
immunogenicity of subunit antigens is equally important.

3.3 Bacterial ghost vaccines

Bacterial ‘ghosts’ (BGs) are empty bacterial particles obtained by 
the evacuation of cytoplasm and nucleic acids by gentle biological or 
chemical perforation (71). BGs are a new type of inactivated bacterial 
vaccine, which maintains antigenicity but is safer because of the 
absence of cytoplasm and nucleic acids (72). BG vaccines can retain a 
host of antigens and protein epitopes with adjuvant and drug delivery 
properties (73), and can induce a stronger immune response because 
of the native conformation of the epitopes on the BG surface. Hu et al. 
(74) constructed a BG vaccine from the HPS serotype 5 strain using 
phage bacteriolytic technology which produced stronger antibody 
responses in immunized piglets, higher levels of IFN-γ and IL-4, and 
more CD4+ T lymphocytes than the inactivated vaccine. However, the 
researchers did not conduct an in-depth investigation of cross-
protection. There are few studies on BG vaccines of Haemophilus 
parasuis due to the difficulty of their production and relatively high 
cost, although the stronger protective effect could greatly reduce 
livestock losses to pig farmers from Glässer’s disease.

3.4 Live attenuated vaccines

Live attenuated vaccines are primarily based on manipulation 
of the main virulence factors by live-passaging or genetic deletion, 
which make them less- or non-pathogenic, but still immunogenic. 
Compared with inactivated vaccines, stable live attenuated 
vaccines can induce longer-lasting immune responses in the body 
and are important vaccine candidates for Haemophilus parasuis 

(75). In 2020, Eberle (19) demonstrated that the HPS HS069 
mutant with deletion of the cap gene (polysaccharide biosynthetic 
protein and glycosyltransferase protein) had enhanced biofilm 
formation ability compared with the wildtype, could effectively 
adhere to 3D4/21 cells, and had reduced resistance to macrophage 
phagocytosis. This study not only confirmed the important role 
of capsular polysaccharides in HPS infection in piglets but also 
demonstrated how a genetic deletion could be used to generate an 
attenuated vaccine. Cytolethal distending toxin (CDT) is an 
important virulence determinant of many bacterial pathogens that 
acts by blocking the cell cycle. Zhang et al. (21) constructed an 
attenuated strain of HPS SC096 by deleting the CDT gene and 
found that the mutant exhibited reduced adherence to and 
invasion of porcine umbilical vein endothelial cells (PUVEC) and 
a porcine renal epithelial cell line (PK-15). Deletion of the rfaE 
gene, a core biosynthetic enzyme gene in LOS, an important 
virulence factor of HPS, reduced adhesion to PUVECs and PK-15 
cells by 10-fold and 12-fold, respectively (76). In the study of Lin 
et  al. (77), piglets infected with the wild-type JS0135 strain 
exhibited more significant tissue damage and pathological changes 
compared to piglets infected with a ΔCDT mutant. In addition, 
Lin et al. demonstrated that loss of the CDT gene cluster in JS0135 
led to increased susceptibility to phagocytosis by porcine alveolar 
macrophages (3D4/2) than that of the wild-type strain. The 
two-component system senses the density modulator QseBC, 
which plays an important role in the virulence of the 
Enterobacteriaceae and Pasteurella families (78). Yan et al. (79) 
constructed a ΔQseBC mutant of HPS SC1401 and infected 
porcine alveolar macrophages and mouse alveolar epithelial cells 
(MLE-12) with this mutant. They found that the ability of the 
mutant to adhere to and invade PAM and MLE-12 was 
significantly reduced. In the mouse challenge model, the mortality 
rate of mice inoculated with HPS SC1401 was 87.5%, while that of 
mice inoculated with ΔQseBC was only 50%. Pathological and 
histological examination of spleen and lungs showed that the 
pathological effects of ΔQseBC were milder than those of the 
wild-type group, indicating that the deletion mutant weakened the 
virulence of HPS in mice. In addition, deletion mutants of capD, 
cheY, hfq, wza, and lgtF genes have all been reported to have 
reduced pathogenicity.

Compared with inactivated vaccines, live attenuated vaccines 
have the advantage of reducing the risk that inactivated vaccines 
are not completely inactivated and still partially infective. They 

TABLE 2 Antigenic HPS proteins that provide partial protection.

Antigenic components (ref) Species Protective Effect

Outer membrane proteins P2 and P5 (101) Mice Partial protection

Trimeric autotransporters (VtaA) (102) Piglet Partial protection

Transferrin-binding protein A (TbpA) (45) Piglet Partial protection

Secreted proteins (PflA, Gcp, Ndk, HsdS, RnfC, HAPS_0017) (103) Mice Partial protection

GAPDH, OmpA and HPS-0675 (104) Piglet Partial protection

HbpA (105), OppA, HPS-04307 and AfuA (106) Piglet Partial protection

Extracellular serine protease (Esp P2) (107) Guinea pigs Partial protection

High-temperature requirement A (HtrA)-like protease (108) Mice Partial protection

Glutathione-binding protein A (GbpA) (109) Mice Partial protection
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can distinguish between infected and vaccinated animals, and 
have a relatively long immune protection period. The primary 
limitation of live attenuated vaccines is that the main virulence 
factors and associated pathways of HPS are still not fully 
understood. With continued in-depth research, live attenuated 
vaccines are expected to become more widely accepted as a 
highly effective vaccination strategy against Haemophilus  
parasuis.

3.5 DNA vaccine

Compared to subunit vaccines and live attenuated vaccines, 
DNA vaccines are safer, more stable, and easier to prepare. Fu 
et al. (80) constructed a novel DNA vaccine (pCgap) encoding 
GAPDH and explored its immunoprotective efficacy in mice. 
They showed that the DNA vaccine was highly expressed in 
mammalian cells and could induce significant humoral immunity 
as well as adaptive Th1 and Th2 responses in mice. In the mouse 
model the pCgap DNA vaccine provided 83.3 and 50% protection 
against challenge with HPS MD0322 and SH0165 strains, 
respectively. Since the pCgap gene is quite conserved in HPS and 
is widely present in 15 serotypes, the vaccine has the potential to 
be protective against all serotypes and is expected to be a vaccine 
candidate with high cross-protection efficacy. But it also has 
certain limitations: DNA vaccines may not elicit robust immune 
responses, requiring additional measures to enhance their 
effectiveness (81, 82).

3.6 Other vaccines

With the development of reverse vaccinology and 
immunoinformatics, different types of vaccines have become 
more available. In addition to conventional inactivated vaccines 
and attenuated vaccines, multi-epitope vaccines are also 
developing rapidly. A methodology called pan-genomics analysis 
is used to identify the core genome of a pathogen and predict the 
B cell and T cell epitopes of the outer membrane proteins encoded 
by the core genome (83). With this approach, the genes encoding 
a multi-epitope vaccine could be identified, the antigenicity and 
physicochemical properties of the proteins could be predicted, 
and the three-dimensional structure, molecular docking, and 
molecular dynamics could be simulated (84, 85). Pang et al. (86) 

retrieved the complete genomes of 105 HPS strains and extracted 
8 core genes and their protein sequences using the Roary (87) 
program for pan-genomic analysis. Next, they designed a multi-
epitope vaccine with high scores through linker ligation 
according to the predicted signal peptide (4), subcellular 
localization (88, 89), T cell epitope prediction (90, 91), the 
immunogenicity and physicochemical properties of the antigen 
(92), and its secondary and tertiary structure (93–95). HPS 
strains of different serotypes or unclassifiable HPS could 
be  combined to produce polyclonal antibodies in mice after 
immunization, and the serum levels of IgM + IgG and 
IgG1 + IgG2 in mice were significantly increased after the second 
and third immunization, and high levels of B cell populations, 
cytotoxicity, and T helper lymphocytes were observed, indicating 
that a cell-mediated immune response was activated. Preliminary 
evidence suggests that the protein is a promising 
vaccine candidate.

Multi-epitope vaccines are composed of epitopes of several 
antigens with high immunogenicity, which solves the problem of 
low immunogenicity caused by a single antigen and is predicted 
by computer simulation. Multi-epitope vaccines have been widely 
used in various animal and human vaccine research, and 
compared with traditional vaccines, the cost is low. In addition to 
low production cost and high safety, they can also be composed 
of a variety of immunogenic peptides of different pathogens to 
generate protective immune responses to these pathogens as well. 
However, there are certain limitations. Epitope prediction analysis 
is typically based on linear sequences and does not consider the 
influence of the spatial conformation of proteins. With the 
advancing capability for AI-assisted in-depth interdisciplinary 
approaches of bioinformatics and multi-omics, the application of 
multi-epitope vaccines for preventing Glässer’s disease has great 
prospects (96).

4 Conclusions and perspectives

In summary, this review provides a general overview of six types 
of Haemophilus parasuis vaccines. Table 3 summarizes the advantages 
and disadvantages of each type, showing a clearer and more intuitive 
comparison of their differences.

Haemophilus parasuis is an opportunistic pathogen in the 
upper respiratory tract of pigs that usually have co-infections 
with a variety of viruses, bacteria and mycoplasmas, resulting in 

TABLE 3 Advantages and disadvantages of different types of vaccines.

Number Vaccine type Advantages Disadvantages

1 Inactivated
Mature technology and wide range of 

applications
Low cross-protection

2 Subunit Safe and no side effects Poor immunogenicity

3 Bacterial ghost Good immunogenicity Process is difficult and costly

4 Live attenuated Long-term protection Virulence factors poorly characterized

5 DNA High cross-protection effect Poor immunogenicity

6 Multi-epitope Low cost and safe The structures of many antigens remain unknown
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severe respiratory diseases. Such co-infections render diagnosis 
and treatment of the diseases more difficult and bring serious 
economic losses to the swine industry (97). The approach to 
effectively prevent and control HPS infection relies on accurate 
diagnosis, biosafety measures and good vaccines (98, 99). 
Although the research results obtained so far show good 
protective efficacy of inactivated and subunit vaccines, the 
problem of low cross-protection still exists because HPS has 
multiple serotypes. Therefore, by multicomponent vaccines 
derived from different serotypes to enhance the cross-protection 
capability of a vaccines and inclusion of effective adjuvants to 
boost immunogenicity should be  major goals in developing 
vaccines against HPS infection.
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