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Deoxynivalenol (DON) is the most common mycotoxin that frequently contaminates 
human food and animal feed, resulting in intestinal diseases and systemic 
immunosuppression. Lithocholic acid (LCA) exhibits various pharmacological 
activities. RNA-seq and ChIP-qPCR analysis were used in the current study to 
investigate the protective mechanism of LCA for DON-induced inflammatory 
Responses via Epigenetic Regulation of DUSP5 and TRAF5 in porcine ileal epithelial 
cell lines (IPI-2I) cells. The IPI-2I cells were treated with the vehicle group, 250 ng/
mL DON, 20 μmol/L LCA, 250 ng/mL DON+ 20 μmol/L LCA for 24 h could induce 
inflammatory Responses via Epigenetic Regulation of DUSP5 and TRAF5 in IPI-
2I cells. By analyzing the transcriptional profiles of DON and LCA-treated IPI-2I, 
we observed significant transcriptional changes in IPI-2I cells. Further analysis of 
up-and down-regulated differential genes revealed the enrichment of pathways 
closely related to inflammation and apoptosis, such as the MAPK signaling pathway, 
IL17 signaling pathway, and Wnt signaling pathway. An upregulated (p < 0.05) 
relative mRNA expression level of RAP1B, GDNF, FGF2, IL1R1, RAPGEF2, DUSP5, 
TGFB3, CACNA1G, TEK and RPS6KA2 were noted in IPI-2I exposed to DON. DON-
exposed IPI-2I cells dramatically enhanced (p < 0.05) histone marks associated 
with transcriptional activation, H3K9ac, H3K18ac, H3K27ac, H3K4me1, H3K9bhb, 
H3K18bhb Pol-II and Ser5 Pol-II at the enhancers of DUSP5 and TRAF5. Overall, our 
findings provide a theoretical basis for understanding the mechanism of action of 
LCA in attenuating DON-induced intestinal injury and for better understanding the 
potential of LCA as a treatment or prevention of mycotoxin-associated intestinal 
diseases in swine production.
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1 Introduction

One of the most prevalent mycotoxins is deoxynivalenol (DON), also known as vomitoxin. 
Fusarium graminearum and Fusarium culmorum are the primary producers of DON, which 
contaminates human and animal food (1). It is a low molecular weight secondary metabolite 
produced by Fusarium (2). One of the most common mycotoxins in crops such as corn and 
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wheat, DON is chemically stable (3). It poses a serious risk to the 
ecosystem due to its wide dispersion and chemical persistence, and 
through the food chain, it may ultimately affect human and animal 
health (4). According to recent research, DON’s average global 
detection rate is as high as 59%, with the highest detection rates in 
Europe and Asia (5). Vomiting, loss of appetite, growth retardation, 
intestinal bleeding, disorders of the immune system, diarrhea, 
abdominal discomfort and even death can result from the ingestion 
of DON (6). Besides, DON can seriously affect gut health (4), 
inhibiting the synthesis of tight junction proteins in intestinal 
epithelial cells and reducing intestinal resistance to harmful microbes 
(7). Furthermore, chronic intestinal exposure to DON can affect 
intestinal barrier function (8). On the one hand, DON can prevent 
intestinal epithelial cells from synthesizing proteins, break down tight 
junction protein structures, disrupt the intestinal barrier, increase 
intestinal epithelium permeability, reduce nutrient absorption and 
transport efficiency, and induce nuclear factor-κB (NF-κB) and 
mitogen-activated protein kinase (MAPK) signaling pathways in 
intestinal cells. This results in overexpression of immune and 
inflammatory factors, release of chemokines, and ultimately apoptosis 
(2, 9, 10). A previous study in a swine jejunal epithelial cell line found 
elevated proinflammatory cytokine mRNA levels in response to 
physiologically relevant doses of DON (11). Determining the adverse 
effects of the mechanism of DON is essential to developing new 
approaches to prevent and treat diseases caused by DON (12). DON 
activates caspase-12, which reduces intestinal barrier integrity in 
weaned pigs (13). Studies conducted in vitro have demonstrated that 
at the cellular level, it downregulates the tight junction protein 
claudin-4 expression in intestinal epithelial cells, induces 
inflammatory responses, and induces apoptosis (14). Therefore, 
maintaining intestinal barrier integrity, immune balance, and gut 
microbial homeostasis could be  an attractive way to reduce 
DON-induced toxicity in pigs (15).

Bile acids have diverse roles in physiological responses, including 
regulating cholesterol metabolism, the bile acid cycle, and absorption 
of fat-soluble nutrients (16, 17). Transport proteins in the membranes 
of hepatocytes and ileal epithelium allow bile acids to enter the cells 
(18); these proteins regulate the physiological signaling of nuclear 
receptors (NRs) and are essential for the immune system, 
inflammation, and oxidative stress (19). Lithocholic acid (LCA), 
commonly referred to as 3α-hydroxy-5β-solan-24-oic acid, is a 
monohydroxy bile acid produced by intestinal bacteria from 
chenodeoxycholic acid or ursodeoxycholic acid (20, 21). Although 
LCA is thought to be harmful to hepatocytes, it acts as a detergent to 
absorb fat in the intestine (22). In particular, LCA is associated with 
carcinogens. High levels of LCA (50 mg) can cause oxidative stress, 
damage DNA, and accelerate tumor growth by preventing DNA repair 
enzymes from working and promoting cell division (23, 24). Recent 
studies have shown that LCA may play a role in managing liver and 
intestinal inflammation (25, 26), as well as exhibiting anti-aging and 
anti-tumor properties (27), as well as antibacterial effects (28). 
Previous investigations have demonstrated that LCA and its derivatives 
exhibit anti-inflammatory and tumor-suppressing properties (29). For 
instance, hepatocellular carcinoma cells are selectively induced to 
undergo cell death upon exposure to galactosylated poly(ethylene 
glycol)-lithocholic acid, while normal hepatocytes remain healthy 
(30). In addition to maintaining the intestinal flora and lowering the 
risk of intestinal illnesses, it functions as a vitamin D receptor ligand 

to help shield the gut from outside damage (31, 32). Our previous 
research has shown that LCA could protect lipid metabolism to reduce 
DON-induced IPI-2I cytotoxic apoptosis (33). PPARγ-mediated 
epigenetic transcriptional reprogramming, involving histone 
acetylation and emulsification, has been shown to protect intestinal 
epithelial cells against DON-induced oxidative stress and 
inflammatory damage (3). Several PPARγ and other nuclear receptor 
coactivators and corepressors are known to possess inherent histone-
modifying properties (10). The basic building block of chromatin 
structure, a nucleosome is made up of DNA wrapped around the 
octameric core and two of each of the core histones, H2A, H2B, H3, 
and H4. With their N-terminal tails extending from the nucleosome, 
the H3 and H4 histones are especially vulnerable to post-translational 
changes by certain enzymes. Histone acetylation, methylation, and 
phosphorylation are examples of chromatin modifications that 
constitute significant epigenetic regulatory mechanisms (34).

In a multicellular eukaryotic organism, the entire genome is usually 
housed in the nucleus of each cell and organized into a highly complex 
structure called chromatin. The nucleosome comprises eight core 
histones (H2A, H2B, H3, and H4) around which DNA coils in almost 
two turns, and it is the basic unit of chromatin. Highly conserved 
peptide components of histones called histone tails are generally 
unstructured and extend from the central nucleosome body; they 
undergo various post-translational modifications. Histone acetylation 
is a common histone post-translational modification. This modification, 
associated with permissive, transcriptionally active chromatin, occurs 
mainly in the epsilon amino groups of lysine residues in the N-terminal 
tails of histones H3 and H4 (35). Histone lysine methylations are post-
translational modifications that have been well studied, but the 
functional context is more complex than that of acetylation. For 
example, trimethylation of histone H3 at lysine 4 (H3K4me3 and me1) 
is strongly linked to active genes (36). Without altering the DNA 
sequence, the epigenetic process can produce heritable phenotypic 
changes by activating or inhibiting gene expression, which ultimately 
results in disease. In multicellular organisms, epigenetic markers 
formed during development can be passed on to offspring, meaning 
that the same genotype can result in distinct phenotypes (37). Because 
epigenetic mechanisms have the power to control gene expression, they 
are important for the stability and function of the genome (38). Dual-
specificity phosphatase 5 (DUSP5), also known as VH1-like 
phosphatase-3 (VH3), is a MAPK pathway (39). It has been 
demonstrated that mRNA and DNA methylation may alter the DUSP5 
gene. Regarding mRNA modification, silencing YTHDF1, which is 
highly expressed in the m6A family, suppresses the expression of the 
DUSP5 gene, which reduces drug resistance and increases the efficacy 
of cancer therapy (40). In contrast, DUSP5 gene expression was 
negatively correlated with the level of DNA methylation (40, 41). 
Further investigation found that DUSP5 gene knockdown inhibited the 
production and secretion of pro-inflammatory factors such as TNF-α, 
IL-6, and IL-1β. Meanwhile, reduced DUSP5 gene expression 
suppressed BCG-mediated inflammatory responses in macrophages by 
inhibiting NF-κB pathway phosphorylation (42). Tumor necrosis factor 
receptor 5 (TRAF5) proteins remain part of a family of proteins 
involved in signal transduction from receptors of the tumor necrosis 
factor receptor superfamily and Toll-like receptor (TLR)/interleukin-1 
(IL-1) receptor superfamily, but also by unconventional receptors for 
cytokines including IL-6 (43). TRAF5 was identified as a possible 
signaling regulator for CD40 (43) and the lymphotoxin-β receptor (44). 
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TRAF5 is widely expressed in resting B- and T- lymphocytes (45) and 
is significantly expressed in spleen, thymus, and lung (46). The 
polymorphic TRAF5 gene regulates TRAF5 production and the release 
of downstream inflammatory cytokines, including TNF-α and IL-6 
(47). It has been demonstrated that TRAF5 deficiency causes 
DDS-induced colitis; through RUNX1, TRAF5 regulates the immune 
response and controls the differentiation of Th1 and Th17 cells, 
contributing to the pathophysiology of colitis (48). TRAF5 and DUSP5 
are the most promising genes to target in the resulting inflammatory 
diseases. Target genes can be induced to express rhythmically through 
dynamic histone modifications, which can alter the chromatin structure 
of genes and affect access to clock regulators and/or RNA polymerase 
II (Pol-II) (49).

This study aims to develop a viable IPI-2I cell model to study the 
MAPK and IL-17 signaling pathways. Furthermore, it seeks to 
demonstrate the impact of DON on both paths and histone 
modifications in the DUSP5 and TRAF5 genes.

2 Materials and methods

2.1 DON production and analysis

Fusarium graminearum strain W3008 was provided by the College 
of Animal Science and Technology, Yangzhou University, China. The 
strain was grown on potato dextrose agar at 28°C for seven days to 
obtain mature spores. Three hundred grams of maize, fifty grams of rice, 
and 140 mL of sterilized distilled water were added to a 1-liter conical 
flask and then autoclaved at 121°C for 20 min. Each flask was inoculated 
with F. graminearum at 1 × 106 spores/g and incubated at 28°C and 85% 
humidity for 28 days. Finally, the mold-contaminated sample in each 
flask was dried in an air oven at 65°C overnight, mixed, and sampled to 
determine the DON content. The resulting coated product was 
confirmed to contain approximately 300 mg/kg DON. DON content 
was determined using the Agra Quant® DON ELISA test kit following 
the manufacturer’s protocol (Romer Labs, Singapore).

2.2 Cell culture

Porcine intestinal epithelial cells, IPI-2I, were cultured in RPMI-
1640 (Hyclone, UT) and supplemented with 10% fetal bovine serum 
(Hyclone, UT), 100 U/mL penicillin (Solarbio, Beijing, China), and 
100 μg/mL streptomycin (Solarbio, Beijing, China). The cells were 
maintained in a 5% CO2, 37°C incubator. When the cells reached 90% 
confluency, they were digested with trypsin for 2 min and transferred 
to a 6-well plate after centrifugation at 1000 rpm for 5 min. When the 
cells reached 50% confluency, LCA (10 and 20 μmol/L) (Shanghai 
yuanye, Shanghai, China) stock solution dissolved in dimethyl 
sulfoxide (DMSO) was added to the cells and pretreated for 24 h, 
followed by the addition of DON (250 ng/mL) (J&K Scientific, Beijing, 
China) for 48 h of treatment. Finally, the cells were harvested.

2.3 Treatments

When the confluence of cells reached 80–90%, cells were seeded 
into 6 well plates and cultured for 24 h before different treatments. 

Based on the previous research in our laboratory (3, 33), we divided 
into four groups, respectively. We named it as follows: Vehicle group, 
DON (250 ng/mL) group, LCA (20 μmol/L) group, and DON + LCA 
(250 ng/mL+ 20 μmol/L) group. Different doses of LCA (Shanghai 
Yuanye, Shanghai, China) were added to the indicated wells for 24 h. 
Then, DON (J&K Scientific, Beijing, China) or DMSO was added for 
another 48 h.

2.4 RNA extraction

IPI-2I cells (5 × 105 cells/well) were seeded in 6 well plates and 
cultured for 24 h. Following four treatments (vehicle group, 250 ng/
mL DON, 20 μmol/L LCA, 250 ng/mL DON+ 20 μmol/L LCA) for 
24 h, the cells were washed twice with PBS and then harvested. Total 
RNA was isolated using Trizol (Invitrogen, Waltham, MA, USA) 
according to the manufacturer’s instructions and stored at −80°C. The 
quantity and purity of the extracted RNA were assessed via a protein-
nucleic acid analysis instrument (ND-2000UV, Thermo Fisher, 
Waltham, USA) and confirmed through 1% agarose gel 
electrophoresis. Subsequently, the RNA was converted into cDNA 
using the transcript All-in-One First-Strand cDNA Synthesis Super 
MIX for qPCR (QIAGEN, Frankfurt, Germany). The reverse 
transcription mixture consisted of 0.5 μg of total RNA, 5 μL of 
5 × TransScript All-in-one SuperMix for qPCR, 0.5 μL of gDNA 
Remover, and nuclease-free H2O was adjusted to a total volume of 
10 μL. The reverse transcription was carried out at 42°C for 15 min, 
followed by 85°C for 5 s. Post-transcription, 90 μL of nuclease-free 
H2O was added to the mixture, then stored at −20°C. Real-time PCR 
was performed using a LightCycler® 480 IIReal-time PCR Instrument 
(Roche, Basel, Switzerland) with a PCR efficiency ranging from 94 to 
105%. The PCR reaction mixture (10 μL) included 1 μL of cDNA, 5 μL 
of 2 × PerfectStartTM Green qPCR SuperMix, 0.2 μL of forward 
primer, 0.2 μL of reverse primer, and 3.6 μL of nuclease-free water. The 
reactions were conducted in 384-well optical plates (Roche, Basel, 
Switzerland) with an initial denaturation at 94°C for 30 s, followed by 
45 cycles of 94°C for 5 s and 60°C for 30 s. A melting curve analysis 
was performed post-PCR to ensure the specificity of the PCR product. 
Each sample was analyzed in triplicate. Additionally, qRT-PCR was 
conducted using an ABI StepOne Plus Real-Time PCR System 
(Applied Biosystems, CA, USA) with AceQ® qPCR SYBR Green 
Master Mix (Vazyme, Nanjing, China). The mRNA expression levels 
were normalized to glyceraldehyde-3-phosphate dehydrogenase 
(GAPDH) and quantified using the 2−ΔΔCt method.

2.5 Data analysis of RNA sequencing

Raw reads were quality assessed and cleaned by trimming the 3′ 
adapter sequence using CutAdapt (50). Raw reads with an average 
sequencing accuracy of less than 99.9% were removed. Clean reads 
were aligned to porcine genome assembly Sus scrofa 11.1 using 
HISAT2 with default parameters (51). Mapping results of different 
genomic regions were evaluated. Read counts were calculated for each 
gene using HTSeq with the union strategy (52). To exclude the effects 
of sequencing coverage and genome length, read counts were 
normalized to fragments per kilobase of exon sample per million 
mapped fragments (FPKM), which were used as input for the 
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following analysis. The Pearson correlation coefficient was calculated 
using the expression values of all genes detected between different 
samples. Furthermore, principal component (PC) analysis was 
performed among all samples using all detected genes. Differential 
expression analysis was performed in DESeq2 (Bioconductor version 
1.6.2), and genes in the two groups with an absolute value of p < 0.05 
and log2 (fold change) > 1 were considered differentially expressed 
genes (DEGs).

2.6 GO functional annotation and KEGG 
pathway enrichment analysis

The gene set enrichment analysis (GSEA 4.1.0) software was used 
to identify the enriched pathway profiles. In addition, statistically 
enriched biological processes or pathways in differentially expressed 
genes (DEGs) of the GO and KEGG pathways were ranked and 
categorized through the Metascape database1 and DAVID.2 GSEA 
enrichment analysis plots, KEGG enrichment bubble plots, volcano 
plots, and GO-pathway enrichment result circle plots were plotted 
through the online platform for data analysis and visualization.3 Gene 
set enrichment analysis (GSEA) was conducted to analyze the data in 
fragments per kilobase million (fpm), and the differential gene 
expression between the MLT and Vehicle groups was analyzed using 
the R programming language. Additionally, correlation analysis was 
conducted using the online protein interaction network platform 
(STRING)4 to examine gene interaction networks.

2.7 Venn diagram

Total RNA was extracted from IPI-2I cells treated with vehicle, 
20 μmol/L LCA, DON (250 ng/mL), and DON (250 ng/mL) plus LCA 
(10, 20 μmol/L), respectively. Visualizations such as Venn diagrams 
and other types were performed on the online platform (see text 
footnote 3) and TBtools-II v2.011.

2.8 Real-time quantitative PCR

IPI-2I cells (5 × 105 cells/well) were seeded in 6 well plates and 
culture for 48 h. Following four treatments (vehicle group, 250 ng/
mL, DON, 20 μmol/L LCA, 250 ng/mL+ 20 μmol/L DON + LCA) 
for 6 h, the cells were washed twice with PBS and then harvested. 
Total RNA was isolated using Trizol (Invitrogen, Waltham, MA, 
USA) according to the manufacturer’s instructions and stored at 
−80°C. Subsequently, the RNA was reverse-transcribed into cDNA 
according to the instructions (Vazyme, Nanjing, China). The mRNA 
expression was determined according to the instructions (Vazyme, 
Nanjing, China), and its relative expression was calculated using the 
2−ΔΔCT method.

1 http://metascape.org/

2 https://david.ncifcrf.gov/

3 http://www.bioinformatics.com.cn

4 https://cn.string-db.org/

2.9 ChIP-qPCR analysis

IPI-2I cells were treated with a 1% formaldehyde solution and 
incubated on a shaker for 12 min, followed by incubation with glycine 
for 10 min. After the supernatant was discarded, the cells were washed 
twice with PBS. Next, 3 mL of PBS was added to the culture dish, and 
the cells on the dish were scraped off using a cell brush. The cell 
suspension was then centrifuged at 2000 rpm for 5 min at 4°C. After 
the supernatant was discarded, the cells were resuspended in lysis 
buffer (1 mmol/L ethylenediaminetetraacetic acid (EDTA), 50 mmol/
LN-(2-hydroxyethyl)piperazine-N′-ethanesulfonic acid (HEPES) pH 
8.0, 0.5% Nonidet P-40, 140 mmol/L NaCl, 0.25% Triton X-100, 10% 
glycerol). The supernatant was discarded after another round of 
centrifugation at 2000 rpm for 5 min at 4°C. Then the cells were 
resuspended in wash buffer (1 mmol/L EDTA, 0.5 mmol/L ethylene 
glycol-bis (β-aminoethyl ether)-N, N, N′, N′-tetraacetic acid (EGTA), 
10 mmol/L Tris pH 8.0, 200 mmol/L NaCl) and then again centrifuged 
at 2000 rpm for 5 min at 4°C. The supernatant was discarded, and the 
cells were resuspended in a shearing buffer (0.1% sodium dodecyl 
sulfate (SDS), 10 mmol/L Tris HCl pH 8.0, 1 mmol/L EDTA pH 8.0). 
Then, the cells were sonicated and centrifuged at 12,000 rpm for 
10 min. The supernatant was incubated with magnetic beads, which 
were coupled with H3K9ac, H3K18ac, H3K27ac, H3K4me1 and me3, 
H3K9bhb, H3K18bhb, RNAPII, and RNAPII-S5P antibodies. The 
immune complexes were washed with LiCl wash buffer (500 mmol/L 
LiCl, 1% Nonidet P-40, 0.5% sodium deoxycholate, 100 mmol/L Tris 
pH 7.5). Proteinase K and RNase A were added for DNA extraction 
for the ChIP-qPCR assays.

2.10 Statistical analysis

GraphPad Prism 9 was used to analyze all data and mean ± SD 
was used to show results. At least three times in each experiment. It 
was considered statistically significant when p < 0.05.

3 Results

3.1 Analysis of pathway enrichment

To identify key transcriptional pathways regulated by 
LCA + DON, transcriptome analysis was performed using IPI-2I cells 
from the LCA, DON, LCA + DON, and vehicle groups. We calculated 
the fold change of FPKM, excluded zero or nonsensical values, and 
then enriched the remaining dataset for enrichment analysis using 
GSEA version 4.1.0. The genes in the vehicle/LCA, DON, LCA + DON 
group were highly enriched in the inflammatory response pathway, 
mitotic spindle, TNF-α signaling via NF-κB and xenobiotic 
metabolism (Figure 1A). Among them, the “inflammatory response 
pathway” had the lowest p value and the highest enrichment factor. 
The data suggest that long-term intake of LCA can help reduce the 
body’s inflammatory response (50). The up-regulated differentially 
expressed genes in the DON-treated group compared to the vehicle 
group were enriched in KEGG, and the enrichment was mainly 
concentrated in the MAPK signaling pathway, ubiquitin-mediated 
proteolysis, AMPK signaling pathway, RNA degradation, IL-17 
signaling pathway, p53 signaling pathway, cholesterol metabolism, 
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ferroptosis, and steroid biosynthesis (Figure 1B). Cnetplot illustrated 
the specific genes associated with these pathways (Figure 2A). Down-
regulated differentially expressed genes are centrally enriched in 
KEGG, including MAPK signaling pathway, Wnt signaling pathway, 
protein processing endoplasmic reticulum, AMPK signaling pathway, 
apoptosis, endocrine resistance, biosynthesis of amino acids, PPAR 
signaling pathway, fatty acid metabolism, amino sugar and nucleotide 
sugar metabolism (Figure  1C). Cnetplot shows specific genes 
associated with these pathways (Figure  2B). Further function 
annotations of transcripts are shown in (Figure 1F). The GO and 
KEGG pathway enrichment analysis of DEGs reveals that genes are 
the most enriched (p < 0.05) MAPK and IL-17 signaling pathways. As 
shown in the Venn diagram (Figure 1D), there were (DON vs. vehicle) 
upregulation genes, but DON vs. DON + LCA; there were DON vs. 
DON + LCA downregulated genes. In addition, (DON vs. vehicle) 
downregulation genes, but DON vs. DON + LCA; there are 269 (DON 
vs. DON + LCA) upregulated genes (Figure 1E). The relationship 
diagram between genes given by STRING showed that MAPK3, TP53, 

AKT3, and other genes are closely related. This suggests that these 
genes in IPI-2I cells may interact with each other under DON 
treatment, leading to responses such as inflammation and apoptosis 
(Figure 2C).

3.2 DON exposure up-regulates 
inflammatory pathway genes DUSP5 and 
TRAF5

As shown in Figures 3A,B, the RNA-seq data set analysis reveals 
that the genes involved in IL-17 and MAPK signaling pathways are 
upregulated during DON exposure. DON exposure significantly 
upregulated (p < 0.05) the relative mRNA expression level of MAPK8 
and TRAF5 (Figure 3C). An upregulated (p < 0.05) relative mRNA 
expression level of RAP1B, GDNF, FGF2, IL1R1, RAPGEF2, DUSP5, 
TGFB3, CACNA1G, TEK and RPS6KA2 were noted in IPI-2I exposed 
to DON (Figure 3D).

FIGURE 1

The collection of visualization graphs was obtained after comparing the sequencing results of different treatment groups. (A) GSEA results revealed 
several significant pathways enriched by DEGs between the DON group and the Vehicle group. (B,C) Based on the enrichment analysis of the KEGG 
database, the various pathways enriched by the up-regulated or down-regulated DEGs between the DON group and the vehicle group are shown 
separately. (D) By taking the intersection of genes that are significantly upregulated in the DON group compared to the vehicle group, genes that are 
significantly downregulated in the DON + LCA (20 μmol/L) group compared to the DON group, and genes that are significantly downregulated in the 
DON + LCA group compared to the DON group, to illustrate the impact of different LCA dosages on gene transcription under DON exposure. (E) The 
commonly enriched pathways by the DEGs in both the DON + LCA (20 μmol/L) group and the DON + LCA group (compared to the DON group). 
(F) Differences in activity scores of indicated pathway gene expressions using gene ontology analysis between the DON + groups and the DON + LCA 
(20 μmol/L) treated IPI cells. The p-value was the result of the DON + LCA (20 μmol/L) group.
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FIGURE 2

The gene transcription in the enriched pathway was specifically studied, and the relationship between genes was analyzed briefly. (A) Based on the 
up-regulated DEGs in the DON group compared to the Vehicle group, the overlapping genes between the MAPK signaling pathway and the IL-17 
signaling pathway are revealed. (B) Based on the down-regulated DEGs in the DON group compared to the vehicle group, the overlapping genes 
among the MAPK signaling pathway, wnt signaling pathway, and apoptosis are revealed. (C) The interaction between key genes involved in the 
inflammatory response, MAPK signaling pathway, IL17 signaling pathway, WNT signaling pathway, and apoptosis was analyzed by STRING.

FIGURE 3

By the KEGG database, the expression levels of genes enriched in IL-17 (A) and MAPK (B) signaling pathways across various treatment groups were 
analyzed and compared. Genes with significant changes (Log2 transformed) in expression were identified to generate the heatmaps. qRT-PCR detects 
the gene expression of key enzymes in IL-17 (C) and MAPK (D) signaling pathways, the relative expression levels were evaluated by qRT-PCR. *p < 0.05 
and ***p < 0.001 compared with the uninfected sample.
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3.3 Histone modifications are involved in 
the regulation of LCA-rescued DUSP5 and 
TRAF5

Since modulations of IL-17 and MAPK signaling pathways are 
associated with epigenetic regulations, we used ChIP-qPCR to detect 
histone mark enrichments in DUSP5 and TRAF5 genes. 
DON-exposed IPI-2I cells dramatically enhanced (p < 0.05) histone 
marks associated with transcriptional activation, H3K9ac, H3K18ac, 
H3K27ac, H3K4me1, H3K9bhb, and H3K18bhb at the enhancers of 
DUSP5 and TRAF5, respectively (Figures 4A–G). However, H3K4me3 
is not significantly increased. DON-exposed IPI-2I cells significantly 
increase (p < 0.05) the recruitment of the active cofactor RNA 
polymerase II (Pol-II) and RNA polymerase II serine 5 phosphorylated 
(Ser5 Pol-II) to target enhancers of DUSP5 and TRAF5 (Figures 4H,I). 
These findings demonstrate the important roles of cofactors and 
histone modifications in regulating DUSP5 and TRAF5  in ileum 
epithelial cells exposed to DON.

4 Discussion

The most common mycotoxin is DON, which is widely distributed 
and commonly found in human food and animal feed. It causes 
gastrointestinal disorders, systemic immunity, and other diseases (3). 
Pigs are more sensitive to DON than other animal species. DON can 
cause immune system problems, diarrhea, vomiting, poor nutrient 
growth and absorption, and financial loss (51). Exposure to DON 

causes apoptosis, oxidative stress, cytotoxicity, and intestinal barrier 
disruption (52). Additionally, it is a ribotoxic mycotoxin that causes 
inflammation and oxidative stress (53). The gastrointestinal tract is the 
first line of defense against infections and toxins from the outside 
world and is essential for cellular and systemic immune responses 
(54). Several in vitro and in vivo investigations have shown that DON 
compromises intestinal barrier integrity and regulates cell proliferation 
and function, affecting IEC function (55, 56). Ingestion of grains 
stained with DON can affect animal or human health differently. 
Despite the extensive literature on the cytotoxic effects of DON, less 
research has been conducted to mitigate its toxicity. To reduce the 
harm caused by DON and to improve the intestinal health of animals, 
it is necessary to develop efficient nutritional and prevention methods. 
Although LCA is frequently used to promote growth and development 
in animals due to its anti-inflammatory and liver-protective properties, 
reports on the protective benefits of LCA in reducing DON-induced 
intestinal inflammation, apoptosis, and its active mechanism are rare. 
Therefore, using RNA-seq analysis and molecular biochemical 
techniques, this study revealed the potential mechanism of LCA for 
histone modifications in DUSP5 and TRAF5 genes in DON-induced 
IPI-2I cells. This supports using LCA as a feed additive to reduce DON 
cytotoxicity in feeding animals.

To investigate the differential gene expression profiles of the 
different treatment groups in this work, RNA-seq was used to elucidate 
the induction mechanisms of LCA further to alleviate cell damage 
caused by DON. The result demonstrated that the level of DEGs was 
different when comparing two groups. GO and KEGG enrichment 
analyses of DEGs were performed to examine the role of genes. 

FIGURE 4

DON exposure modifies histone modification at the locus of DUSP5 and TRAF5. The relative enrichment of histone marks’ (A) H3K9ac. (B) H3K18ac. 
(C) H3K27ac. (D) H3K4me1. (E) H3K4me3. (F) H3K9bhb. (G) H3K18bhb occupancy was analyzed by ChIP–qPCR. (G,H) The relative enrichment of co-
activator (H) RNA polymerase II. (I) RNA polymerase II Ser 5 at the locus of DUSP5 and TRAF5. *p < 0.05 and ***p < 0.001 compared with the 
uninfected sample. The circles represent the distribution of results for different samples.
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Immune and inflammatory responses were found to be important 
factors affecting DEGs. IL-17 and MAPK signaling pathways are 
critical for the inflammatory response. The intestinal epithelial barrier 
can be disrupted by directly promoting or inhibiting intestinal cell 
growth, permeability, and death via IL-17 and MAPK signaling 
pathways (57, 58). Besides pro-inflammatory variables, DON can 
increase several IL-17 and MAPK pathways. The current study 
identified the differentially expressed IL-17 and MAPK signaling 
pathways, such as IL1RAP, MAPK14, STK3, DUSP16, DUSP5, and 
TRAF5  in the DON vs. vehicle. DUSP5 and TRAF5 are key 
proinflammatory factors such as TNF-α, IL-6, and IL-1β (40, 44); it is 
formed by various cell types such as platelets, fibroblasts, epithelial 
cells, and CD4+ T lymphocytes (45). DON can activate the NF-κB 
signaling pathway, activating MAPK signaling pathways. These 
signaling pathways are important for regulating inflammation by 
facilitating the synthesis of inflammatory proteins (59). Recent 
research comparing transcriptomes in IPI-2I cells with and without 
DON administration showed that activation of the p38 MAPK and 
Erk1/2 pathway results in inflammation (3). Although this study 
found enrichment in the same MAPK, TNF, NF-κB signaling 
pathways, and cytokine-cytokine receptor interaction, there were not 
many common DEGs between the two studies when using the same 
DEG detection threshold. Common DEGs were detected including 
MAP3K5, CXCL8, IL1A, IL-6, FOS and IL1. Of these, only eight 
genes, including FOS and IL1A, exhibited variable expression levels, 
confirming the validity of the findings in both investigations. These 
results demonstrate the involvement of chemokines, TNF, MAPK, and 
NF-κB signaling pathways in the inflammatory and immune response 
of DON-stimulated IPI-2I cells.

In the present study, we observed that DON exposure significantly 
upregulated the IL-17 signaling pathways of gene MAPK8 and TRAF5 
and MAPK signaling pathways of gene RAP1B, GDNF, FGF2, IL1R1, 
RAPGEF2, DUSP5, TGFB3, CACNA1G, TEK and RPS6KA2 in the 
IPI-2I. TRAF5 helps activate the NF-κB pathway, an essential 
mechanism for the transcription of genes linked to immune responses 
and inflammation (60). TRAF5 may activate the MAPK pathway that 
regulates gene expression, cell division, and proliferation (61). 
Furthermore, DUSP5 over-expression results in long-term 
inflammation through NF-κB activation in irradiated human arteries 
(62). The ability of DUSP5 to bind and inactivate ERK1 and ERK2 
in vivo is highly specific (63). Previous studies have demonstrated that 
DUSP5 is localized in the nucleus and regulates nuclear ERK 
activation (64). As obesity develops, DUSP5 mRNA expression rises 
with an increase in TNFα expression (42). It was demonstrated that 
MAPK-specific DUSPs act as essential downstream regulators of 
MAPK activation and inflammation (65).

It is well known that LCA, a secondary bile acid, can affect gene 
expression by modifying histones and other epigenetic modifications. 
The participation of LCA in histone modifications in DUSP5 and 
TRAF5 genes in ileum epithelial cells reveals a complex regulatory 
mechanism in the context of DON exposure, a mycotoxin affecting 
intestinal cells (3, 66). NF-κB and MAPK signaling pathways, which 
play important roles in inflammatory responses, are activated by 
TRAF5-mediated signal transduction from TNF receptors. Expression 
levels of TRAF5 may be  affected by LCA-induced histone 
modifications, which may further alter immune responses and 
inflammation (66, 67). Transcription factors, meanwhile, bring 
enzymes into DNA; these enzymes typically act by acetylation and 

acetylation histone tails (68). We  observed that DON-exposure 
significantly increased H3K9ac, H3K18ac, H3K27ac, H3K4me1, 
H3K9bhb, and H3K18bhb enrichments on DUSP5 and TRAF5 in 
IPI-2I cell as well as RNA Pol-II and Ser5 Pol-II. If LCA-induced 
histone modifications decrease the expression of DUSP5 and TRAF5, 
it may upregulate the MAPK pathway, which may reduce 
inflammatory signals such as NF-κB and provide protection against 
damage caused by DON.

In IPI-2I cells, DON exposure causes inflammation and apoptosis; 
these effects can be  reduced by adding LCA. MAPK and IL-17 
signaling pathways are key players in DON-induced inflammation 
and apoptosis. However, by upregulating these and other inflammatory 
and immune-related gene expressions, LCA exerts a mitigating effect 
via the MAPK and IL-17 signaling pathway (Figure 3). In summary, 
this study reveals that an increase in histone modification is involved 
in DON-induced IPI-2I cells by modulating the transcriptional 
inhibition of the DUSP5 and TRAF5 genes. LCA could act against 
DON-induced IPI-2I cell damage, thereby alleviating histopathological 
lesions by rescuing the histone modification-dependent transcriptional 
activation of the DUSP5 and TRAF5 genes. This work provides new 
insights into the epigenetic mechanism of LCA in porcine intestinal 
epithelial cells against damage caused by mycotoxin exposure. This 
establishes a theoretical basis for developing and using LCA as a feed 
additive to mitigate DON-induced cytotoxicity and improve animal 
health and productivity.
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