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Introduction: Different regions of the small ruminant lung exhibit variable susceptibility 
to specific lung pathologies. Such susceptibility may be reflected in regional lung 
radiomic features extracted from computed tomography (CT) images. In this study, 
we investigated whether region-specific variation in radiomic features exists in ovine 
lungs and whether these features remain stable over time.

Methods: Thoracic CT image datasets from 30 young adult sheep were subject to 
an image segmentation protocol directed at partitioning the lung into individual 
lobar and sub-lobar segments for radiomic feature analysis. After identifying and 
removing unstable, non-reproducible, and highly correlated features, 22 features 
remained and were used as input for principal component (PC) analysis.

Results: The significance of segment-related influence on PC scores was 
determined and visualised. For six sheep, successive CT images were acquired 
at monthly intervals for a period of 9 months in order to assess time-dependent 
variation in radiomic features. The results indicated that there was a significant 
difference in radiomic features derived from different lung segments. Visualisation 
of PC scores highlighted differences between caudodorsal and cranioventral 
lung, between lobar and sub-lobar segments, and suggested a bias towards one 
lung or the other. Significant changes in PC scores occurred over time. With few 
exceptions, largely similar changes occurred across all segments in this regard.

Discussion: Overall, our results indicate that although sheep lung radiomic features 
are influenced by the lung segment of origin, their variation over time is largely 
consistent throughout the lung. Such influence should be borne in mind when 
interpreting radiomic features and their changes over time.
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1 Introduction

Respiratory disease in cattle and sheep is usually caused by a variety of pathogens, both 
viral (bovine respiratory syncytial virus (BRSV), parainfluenza 3 (PI3), adenovirus, bovine 
viral diarrhoea virus (BVDV), and infectious bovine rhinotracheitis (IBR)) and bacterial 
(Pasteurella multocida, Mannheimia haemolytica, Histophilus somni, and Mycoplasma bovis). 
Bovine respiratory disease is estimated to cost the UK £60–80 million annually (1, 2) and the 
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EU €576 million (3), with losses related to mortality, treatment costs, 
and reduced performance both during and after the period of illness. 
In North America, bovine respiratory disease is the most prevalent 
and economically devastating health concern of the cattle industry 
with the overall cost to the industry estimated, in 1997, at over $750 
million per year (4). Global losses are estimated to be >$3 billion/
year (5).

Ruminants display a characteristic regional susceptibility to 
lung pathology. Indeed, the disease associated with Pasteurella 
multocida and Mannheimia haemolytica infection typically 
displays a cranioventral distribution with often a sharp line of 
demarcation between the affected tissue and grossly normal tissue 
located caudodorsally. Whilst gravitational influence on inhaled 
bioaerosols has been speculated to contribute to this distribution 
(6), a similar distribution of cranioventral lung lesions is seen 
following intravenous inoculation of calves with Pasteurella 
haemolytica (7). Furthermore, intravenous endotoxin 
administration in supine sheep results in atelectasis of dependent 
lung regions and an associated increase in cellular pulmonary 
metabolism (8, 9). This effect is assumed to be reflective of an 
influx and activation of inflammatory and immune cells. 
Therefore, in small ruminants, the cranioventral lung regions 
appear particularly susceptible to infection, whether from blood 
or airborne sources. Understanding the basis of such regional 
susceptibility would be a key factor in preventing or mitigating the 
impact of respiratory disease.

In contrast to the radiologic interpretation of lung disease, which is 
primarily based on a qualitative assessment of first-order features 
reflecting the extent of attenuation and recognising the morphological 
patterns that are often associated with signs, symbols, or naturalistic 
images (10), radiomic feature analysis extracts measures of the spatial 
relationships between pixel intensities. In particular, radiomic feature 
analysis offers the facility to quantify aspects of largely ‘subvisual’ image 
texture. Such measurements can potentially provide insight into the 
histology and biology of the associated tissue (11, 12). Radiomics is a 
rapidly evolving field, particularly in the area of characterisation and 
monitoring of lung cancer (13, 14), where measurements are of notable 
value in the context of predicting the malignant and metastatic potential 
of lung tumour nodules and the response to treatment (15–17).

Whilst associations between global measures of lung function 
and ‘lung-wide’ radiomic feature characteristics have been described 
(18), it is only more recently that the potential of radiomic feature 
analysis to quantify subregional pulmonary function has been 
explored (19). The latter study found that certain radiomic features 
(GLRLM run length non-uniformity and GLCM sum average) were 
highly correlated with functional imaging of regional ventilation. 
Subregions within the lung could also be  described as habitats, 
acknowledging that variations in form and function do exist 
throughout the whole organ.

With the long-term goal of better understanding the factors 
underlying regional susceptibility to lung disease processes in small 
ruminants, we initially sought to address the primary hypothesis 
that radiomic features are spatially encoded in the healthy ovine 
lung. To this end, we developed an image characterisation workflow 
protocol to facilitate radiomic feature extraction. We used this to 
demonstrate region-specific variation in radiomic features and 
further demonstrated the stability of such features over time in 
growing sheep.

2 Materials and methods

2.1 Animals

Studies were performed under a UK Home Office Project Licence 
in agreement with the Animals (Scientific Procedures) Act 1986 and 
with consent from the University of Edinburgh Animal Welfare and 
Ethical Review Body. The recommendations for the welfare and use of 
animals in research were adhered to.

Details of the animals used, together with the overarching 
experimental design, are elaborated in a previous publication (20). 
Briefly, in addition to baseline computer tomography (CT) data 
obtained from 30 animals in order to verify lung health, data from 
CT scans repeated on a monthly basis over a period of 9 months 
were also obtained from six control animals from that cohort. 
Thirty young adult sheep (~4mo Texel cross mule; 39.2 ± 4.8 kg 
(mean ± SD) of mixed sex (17 female and 13 male neutered) were 
commercially sourced. Sheep were housed on straw bedding 
under standard management conditions appropriate to a research 
setting. All imaging procedures were conducted under general 
anaesthesia, managed by veterinary specialist anaesthetists. 
Pre-anaesthetic medication, analgesics, induction, and 
maintenance of anaesthesia were performed as previously 
reported (20).

2.2 CT acquisition

A multislice SOMATOM Definition AS 64 slice helical CT 
machine was used to obtain thoracic CT scans (Siemens Healthcare 
Ltd., Erlangen, Germany) from each prone-positioned sheep. For six 
sheep, a further eight thoracic CT scans were acquired at monthly 
intervals to assess the nature and extent of time-dependent variation 
in radiomic features. An incremental continuous positive airway 
pressure (CPAP) protocol was applied to induce apnoea and 
standardise lung volume for CT.

2.3 Image processing

DICOM images were imported for segmentation in 3D Slicer 
software version 4.11.2.1 Lungs were segmented by visual assessment 
using typical window threshold levels between −1,024 and − 240 
HU, with subsequent island selection and trimming as appropriate. 
Following airway segmentation (typical threshold levels between 
−1,024 and − 900 HU), new segmentations were created and 
named according to the bronchial anatomy as described by Hare 
(21). The 3D paint facility was used to paint spheres centred on the 
relevant bronchi, and the ‘grow from seeds’ effect within the 
segment editor used the fast grow-cut method to simultaneously 
grow the spheres to neighbour boundaries within the lung 
segmentation. The radiomics module was applied to measure the 
radiomic features of the lung segments, selecting all features 
(resampled voxel size = 2,2,2, bin width = 64, enforced symmetrical 

1  www.slicer.org
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GLCM) and saving the results to a file. Features used in subsequent 
analysis are indicated in Table  1. Radiomic feature maps were 
prepared using the graphical user interface developed by Kim 
et al. (22).

2.4 Assessment of reproducibility and 
stability

Reproducibility, defined by Tunali et al. (23) as the “consistency of 
a feature across image acquisition parameters such as patient position 
and respiration phase,” was assessed using paired thoracic CT image 
datasets acquired from one sheep before and after minor repositioning. 
Stability, defined as the “consistency of a feature across different 
segmentations,” was assessed by comparing feature measurements 
derived from separate segmentations applied to the same DICOM 
image series, from one sheep, and implemented by the same operator 
(DC) on two separate occasions. Features failing to demonstrate 
significant association between datasets were excluded from 
further analysis.

2.5 Removal of redundant features

In order to facilitate steps to reduce the dimensionality of the 
dataset, blocks of highly correlated variables (correlation 
coefficient > 0.95) were identified and redundant features were 
removed from each block to leave only one feature with the highest 
variance. The R corrplot package (24) was used for the 
correlation analysis.

2.6 Statistical analysis

Statistical analysis was conducted using Minitab (Minitab 20, www.
minitab.com). Principal component analysis (PCA) was applied as an 
initial exploratory tool to determine the features contributing the most 
to respective principal components (PCs) and to assess whether 
anatomical disposition had a bearing on PC scores. PCA was applied to 
the z-score normalised radiomic features derived from each initial CT 
scan, and the PCs explaining the majority of the variance retained. 
ANOVA (mixed-effects model with sheep as a random factor and 

TABLE 1  Radiomic features extracted using the radiomics module in Slicer.

Feature Class Features

First order 10th percentile, 90th percentile, energy, entropy, interquartile range, kurtosis, 

maximum, mean absolute deviation, mean, median, minimum, range, robust mean 

absolute deviation, root mean squared, skewness, total energy, uniformity, variance

GLCM—Grey-level co-occurrence matrix Autocorrelation, cluster prominence, cluster shade, cluster tendency, contrast, 

correlation, difference average, difference entropy, difference variance, inverse 

difference (Id), inverse difference moment (idm), inverse difference moment 

normalised (IDMN), inverse difference normalised (Idn), informational measure of 

correlation (IMC) 1, informational measure of correlation (IMC) 2, inverse variance, 

joint average, joint energy, joint entropy, maximal correlation coefficient (MCC), 

maximum probability, sum average, sum entropy, sum of squares

GLDM—Grey-level dependence matrix Dependence entropy, dependence non-uniformity, dependence non-uniformity 

normalised, dependence variance, grey-level non-uniformity, grey-level variance, 

high grey-level emphasis, large dependence emphasis, large dependence high grey-

level emphasis, large dependence low grey-level emphasis, low grey-level emphasis, 

small dependence emphasis, small dependence high grey-level emphasis, small 

dependence low grey-level emphasis

GLRLM—Grey-level run length matrix Grey-level non-uniformity, grey-level non-uniformity normalised, grey-level 

variance, high grey-level run emphasis, long run emphasis, long run high grey-level 

emphasis, long run low grey-level emphasis, low grey-level run emphasis, run 

entropy, run length non-uniformity, run length non-uniformity normalised, run 

percentage, run variance, short-run emphasis, short-run high grey-level emphasis, 

short-run low grey-level emphasis

GLSZM—Grey-level size zone matrix Grey-level non-uniformity, grey-level non-uniformity normalised, grey-level 

variance, high grey-level zone emphasis, large area emphasis, large area high grey-

level emphasis, large area low grey-level emphasis, low grey-level zone emphasis, size 

zone non-uniformity, size zone non-uniformity normalised, small area emphasis, 

small area high grey-level emphasis, small area low grey-level emphasis, zone 

entropy, zone percentage, zone variance

NGTDM—Neighbouring grey tone difference matrix Busyness, coarseness, complexity, contrast, strength

First-order statistics describe the distribution of voxel intensities, grey-level co-occurrence matrix (GLCM) features quantify image texture by calculating how often pairs of pixels with specific 
values and in a specified spatial relationship to each other occur, grey-level dependence matrix (GLDM) features quantify grey-level dependencies defined by the number of connected voxels 
within a given distance that are dependent on the centre voxel, grey-level run length matrix (GLRLM) features quantify the occurrence of grey-level runs of consecutive pixels having the same 
value in a particular direction, grey-level size zone matrix (GLSZM) features quantify grey-level zones defined as the number of connected voxels that share the same grey-level intensity, and 
neighbouring grey tone difference matrix (NGTDM) features quantify the difference between a grey value and the average grey value of its neighbours within a certain distance.
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segment as a fixed factor) was applied to the first PC to determine 
whether the segment explained a significant proportion of variance (25). 
Manual colour selection of Microsoft Excel conditional formatted PC 
score values and application to lung segmentations in Slicer facilitated 
the visualisation of PC score lung segmental distribution. In addition, 
segmentations representing caudodorsal to cranioventral lung slices 
were prepared and used to mask and crop lung volumes. These cropped 
volumes, exported in DICOM format, were used as input into the 
graphical user interface developed by Kim et al. (22), with a voxel region 
of interest of 3 × 3 × 3, and radiomic feature classes selected as 
appropriate. In order to assess the time-dependent variation in PC 
scores for six sheep over the course of 9 months, the eigenvectors derived 
above were applied to the relevant z-score normalised radiomic features 
from the repeated data. One-way ANOVA was used to determine 
whether a significant change occurred over time for individual lung 
segments, and the correlation between PC scores derived from different 
lung segments was visualised through correlograms.

3 Results

3.1 Lung segmentation protocol

Visual appraisal of the results of the lung segmentation protocol 
is shown in Figure 1, where the pleural margins of the various lung 
segments can be discerned. The various segmental dispositions are 
largely consistent with the authors’ experience in relation to segmental 
bronchoalveolar lavage procedures applied to ovine lungs post-
mortem, where the expansion of those individual segments can 
be visualised (DC, personal communication).

3.2 Reproducibility and stability

The radiomic features as listed in Table 1 proved consistent across 
different segmentations, with a median correlation of 0.94, and all 
features demonstrate a significant correlation (p < 0.05). Reproducibility 
of the features on two separate scans following minor repositioning 
proved less consistent (r2 0.88) and 12 features failed to demonstrate a 
statistical association between repeat measurements on CT retake. 
Following their removal and the subsequent removal of features within 
the dataset that were highly correlated, a total of 22 features remained.

3.3 Principal component analysis

PCA applied to the 22 features using a correlation matrix indicated 
that 90% of the variance was explained by the first five components 
(PC1: 50%, PC2: 17%, PC3: 11%, PC4: 8%, and PC5: 4%). Examination 
of the PC1 vs. PC2 score plot suggested clustering on the first 
component axis according to whether segments were positioned 
dorsally (LDD, LVD3, LVD4, RDD, RVD3, and RVD4) or centrally 
(LCant, LVD1, LVD2, RI, RVD1, and RVD2) in the chest (Figure 2; 
abbreviations are as listed in the legend).

The loading plot for the first- and second-order components 
indicated that the first-order features—90th percentile and median, 
GLCM—contrast, correlation, and difference variance, GLSZM—zone 
entropy, and GLRLM—grey-level variance—shared strong positive 

associations. In contrast, the first-order feature—kurtosis, and the 
texture features GLCM—Idnm, GLSZM—size zone non-uniformity 
normalised, large-area high grey-level emphasis and grey-level 
non-uniformity normalised, and GLDM—large-dependence low 
grey-level emphasis, and dependence variance—shared strong 
negative associations with the first component (Figure  3). The 
eigenvectors for the PCs are provided in Table 1.

3.4 Spatial encoding of radiomic features

The results of ANOVA applied to the first PC determined that at 
least one segment was different from the others (p < 0.0001), and the 
r2(adj) value indicated that the ANOVA model explained 77% of the 
variation in PC1 (Table 2).

FIGURE 1

Representation of the pleural surface of sheep lung segments. A 
manual segmentation protocol based on the disposition of 
segmental and sub-segmental bronchi was applied. The lung 
segment nomenclature is based on the bronchial anatomy as 
described by Hare (21). (A) Right lateral view, (B) ventral view, and 
(C) left lateral view. RAcr—Cranial segmental bronchus of the right 
apical lobe; RAcdv—ventral branch of caudal segmental bronchus of 
the right apical lobe; RAcdd—dorsal branch of caudal segmental 
bronchus of the right apical lobe; RC—right cardiac lobar bronchus; 
RI—right intermediate lobar bronchus; RVD1/2/3/4—1st, 2nd, 3rd, 
and 4th ventral basal segmental bronchus of the right diaphragmatic 
lobe; RDD—right dorsal diaphragmatic; LCant—apical segmental 
bronchus of the left apico-cardiac lobe; LC—left cardiac lobar 
bronchus; LVD1/2/3/4—1st, 2nd, 3rd, and 4th ventral basal segmental 
bronchus of the left diaphragmatic lobe; LDD—left dorsal 
diaphragmatic.
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Feature standardisation of the PC score data, sorting based on 
the scores, and applying conditional formatting to indicate the 
range and distribution of PC scores served to illustrate the 
influence of the segment on PC score values (Figure  4). The 

anatomical disposition of these segmental PC scores is shown in 
Figure 5.

For the first PC, a gradient of increasingly positive values was 
apparent going from caudodorsal to cranioventral, with the most 

FIGURE 2

Score plot for the first and second principal components illustrating clustering according to the spatial disposition of lung segments within the chest. 
Markers are coloured according to segment position within the chest (  Central: LCant, LVD1, LVD2, RI, RVD1, and RVD2;  Dorsal: LDD, LVD3, LVD4, 
RDD, RVD3, and RVD4;  Ventral: LC & RC;  RA). Dorsal segments are clustered to the left of the origin of the first component axis.

FIGURE 3

PCA loading plot reflecting feature contributions to the first and second principal components. The first-order features—90th percentile and median, 
and GLCM—contrast, correlation, and difference variance, GLSZM—zone entropy, and GLRLM—grey-level variance—share strong positive associations, 
whereas the first-order feature—kurtosis, and the texture features GLCM—Idnm, GLSZM—size zone non-uniformity normalised, large-area high grey-
level emphasis and grey-level non-uniformity normalised, and GLDM—large-dependence low grey-level emphasis and dependence variance share 
strong negative associations with the first component. The majority of features share a positive association with the second principal component, with 
the first-order feature—median, the most negatively associated with PC2.

https://doi.org/10.3389/fvets.2025.1495278
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Collie et al.� 10.3389/fvets.2025.1495278

Frontiers in Veterinary Science 06 frontiersin.org

positive values present in RI, and some suggestion of a left-sided lung 
bias towards more positive PC score values. For PC2, cranial and 
craniodorsal positivity was noted, with markedly negative values in 
RC and LC. For PC3, strong positivity in RI was apparent, with 
marked dorsal (LDD and RDD) and craniodorsal (LCant) negativity. 
PC4 featured strong positivity in RAcr and positivity in RC, RDD, and 
LDD. For PC5, an increasingly positive value gradient was apparent 
going from caudodorsal to cranioventral in both lungs, with the most 
positive values present in LCant.

Visual appraisal of these gradients was made possible through the 
generation of the radiomic feature maps for variables with a major 
influence on the principal components. A feature map of GLCM 
contrast, the texture feature with the strongest positive association 
with PC1, is shown in Figure 6.

3.5 Growth-related change in radiomic 
features

In the six sheep studied at monthly intervals between 4 and 
12 months of age, bodyweight increased from 37.7 ± 3.1 to 67.5 ± 4.8 
Kg and measured lung volumes increased from 1,297 ± 394 to 
1840 ± 195 cm3 (mean ± SD).

The time-dependent dynamics of segment PC scores are shown in 
Figure 7. Analysing the significance of change between consecutive 

CTs indicates that at times (in red) there was synchrony within the 
cohort of sheep; i.e., all six sheep demonstrated the same direction of 
change for the majority of segments (e.g., PC3 between CT1 and CT2, 
and between CT4 and CT5). The association between paired PC scores 
from different lung segments is illustrated in the correlograms in 
Figure 8. With the exception of LC for PC1 scores, there was generally 
a high degree of concordance between scores from different segments.

4 Discussion

In addressing our hypothesis, we used PCA to summarise the 
variation across the dataset and examined whether PCs would vary 
according to lung segment, reflecting a spatial ‘encoding’ of lung 
radiomic features. We  demonstrated a region-specific increasing 
emphasis of PC1 from caudodorsal to cranioventral, with a positive 
bias towards the left lung, and RI notable as a positive extreme. A 
feature map prepared for GLCM contrast, the radiomic texture feature 
with the strongest positive association with PC1, confirmed this 
gradient. A marked decreasing dorsal to ventral gradient was noted 
for PC2 with particularly negative values for RC and LC. Regarding 
the observations that fuelled the central hypothesis, PC5 was notable 
for closely reflecting classic notions of respiratory pathology 
distribution associated with acute suppurative and acute fibrinous 
bronchopneumonia, as well as chronic bronchopneumonia (26). Such 

TABLE 2  Eigenvectors from PCA.

Feature 
class

Radiomic feature PC1 PC2 PC3 PC4 PC5

First Order 90th percentile 0.283 −0.057 −0.115 0.014 −0.152

GLCM Contrast 0.277 0.136 0.025 −0.033 0.184

GLSZM Zone entropy 0.275 −0.008 −0.122 0.151 0.065

GLRLM Grey-level variance 0.261 0.199 0.159 0.086 −0.019

NGTDM Contrast 0.251 −0.022 0.276 −0.003 0.068

GLCM Difference variance 0.238 0.275 0.096 −0.021 0.07

First Order Median 0.211 −0.169 −0.268 −0.101 −0.213

GLCM Correlation 0.188 0.042 0.232 0.308 −0.5

GLCM Cluster prominence 0.159 0.348 0.27 0.124 −0.122

GLSZM Grey-level variance 0.095 0.462 0.027 0.053 0.048

NGTDM Complexity 0.028 0.399 −0.345 0.045 0.19

NGTDM Strength 0.012 0.269 −0.065 −0.544 −0.244

First Order Maximum −0.065 0.347 −0.393 0.011 −0.037

GLSZM Grey-level non-uniformity −0.153 0.056 −0.032 0.562 0.346

GLRLM Low grey-level run emphasis −0.16 0.13 0.378 −0.191 0.365

GLSZM Large-area high grey-level emphasis −0.217 0.049 −0.071 0.397 −0.157

GLCM Inverse difference moment normalised −0.229 0.148 −0.304 0.047 −0.182

GLDM Large-dependence low grey-level emphasis −0.23 0.121 0.312 −0.059 −0.054

GLSZM Size zone non-uniformity normalised −0.237 0.199 0.096 −0.027 −0.126

GLDM Dependence variance −0.239 0.102 0.177 0.112 −0.433

First Order Kurtosis −0.265 0.171 −0.007 −0.103 0.034

GLSZM Grey-level non-uniformity normalised −0.275 −0.088 0.061 −0.087 0.025

The eigenvectors are linear combinations of the original variables that essentially describe how each variable contributes to each principal component.

https://doi.org/10.3389/fvets.2025.1495278
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Collie et al.� 10.3389/fvets.2025.1495278

Frontiers in Veterinary Science 07 frontiersin.org

lung pathologies are generally multifactorial and often encompass 
infection with Mannheimia haemolytica, Pasteurella multocida, 
Histophilus somni, and Mycoplasma spp. (26). Whilst analysis of 
individual features would have demonstrated similar associations, the 
functional or form-based underpinnings of either PCs or individual 
radiomic feature measurements are unknown, and investigation of 
such is beyond the scope of the present study. Therefore, for the 
purpose of addressing the hypothesis, we opted for the simplicity that 
PCA affords.

The bronchi serving RI and RC arise in common from the right 
main bronchus, with RI located in the mediastinal recess between the 
heart and diaphragm. It was occasionally noted that the margins of RI 
were poorly defined following the lung segmentation. Whilst this 
effect was partly a consequence of the close association of this segment 
with the caudal cardiac and cranial diaphragmatic cupola margins, it 
was also compounded by the segment’s tendency towards increased 
attenuation relative to the other segments (RI -492 (−928, −15); 
remaining lung −646 (−794, −149); median (range) Hounsfield units). 

FIGURE 6

Feature map of glcm_contrast, demonstrating caudodorsal to cranioventral gradient. An oblique segmentation was created and used to mask and 
crop a randomly chosen lung volume from the cohort to facilitate radiomic feature map creation. (A) The oblique aspect of the segmentation is 
apparent on the pleural surface of the right lung. (B) The mid-slice CT image. (C) The related radiomic feature map for glcm contrast. An increasing 
caudodorsal to cranioventral intensity gradient is apparent for this feature. In (B,C), the right lung is positioned on the right of the image, and the top of 
the image represents the cranial aspect.

FIGURE 4

Heatmap visualisation of lung segment PC score data. Baseline 
(n = 30) PC scores were feature-standardised and conditionally 
formatted within columns to illustrate the intensity and range of 
values for each PC score. All columns are sorted on the basis of the 
first principal component.

FIGURE 5

Segmental disposition of PC scores. Colour intensities from the 
heatmap in Figure 4 were ascribed to the respective segment 
volumes in order to illustrate the anatomical disposition of average 
principal component values.
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Special emphasis was placed on evaluating RI segment boundaries, 
and where necessary, manually adjusting them to compensate for this 
effect. However, it should be noted that conducting the PCA without 
including the RI segment led to the same general conclusions 
regarding the spatial segmental disposition of the major PCs.

Whilst the present approach averaged lung segmental radiomic 
feature values, Yang et al. (19), by employing a 3D sliding window 
kernel to capture radiomic features for each voxel, were able to 
generate 3D feature maps that revealed subsegmental variation in 
radiomic features that were otherwise visually inapparent (19). Such 
an approach could potentially offer more focus on exploring the lung 
pathobiology underlying particular radiomic feature extremes in 
preclinical models, where tissue sampling could be  specifically 
directed by radiomic feature analysis of CTs acquired immediately 
prior to euthanasia.

Since our results indicate that radiomic features vary across the 
normal ovine lung, the question arises as to which aspects of lung 
function or anatomy might be associated with such PC distribution 
and, conceptually, with disease susceptibility. Certainly, the proportion 
of air relative to tissue is reduced in dependent lung regions, a feature 
discernible in CT as increased attenuation (27–29). Furthermore, 
studies of ventilation and perfusion in the prone sheep lung indicate 
that dependent (ventral) regions are relatively poorly ventilated, 
whereas perfusion is preferentially distributed to dorsal regions (30). 
Regional lung compliance maps obtained from anaesthetised supine 
pigs also highlight increased compliance in dependent lung regions 
(31), and varying elastic behaviour of lung tissue according to 
gravitational influence (32).

Changes in the healthy lung microbiome are an inherent feature 
of diseases such as suppurative bronchopneumonia or fibrinous 
pneumonia in small ruminants. We have previously demonstrated the 
variability that can exist in the healthy sheep lung microbiome with 
craniocaudal clustering evident (33), likely reflecting region-specific 
biochemical and physical pressures shaping ecosystem ecologies. The 
availability of multimodal spatial omics technologies to analyse 
metabolites, histology, and gene expression across tissue regions (34) 
will help elucidate the underlying mechanisms shaping such 
relationships in lung health, and provide the foundation to understand 
disease susceptibility. As spatial radiomics offers the potential to 
characterise in  vivo subregional lung features relevant to specific 
aspects of lung biology and function, it will be a significant partner in 
this regard.

We found that, with the notable exceptions of LC and RAcr, the 
majority of segments demonstrated a progressive decline in PC1 
scores between 4 and 12 months of age, a period of time when 
measured lung volumes increased appreciably. In lambs, postnatal 
lung volume changes are rapid during the first 2 months of life, 
accommodating the growth of nearly half the number of alveoli found 
in adult sheep, as well as an increase in alveolar size. Thereafter, the 
rate of increase starts to plateau, with volume increases beyond 
6 months of age being much more modest (35). In line with the overall 
growth in lung volume, the pulmonary capillary network continues to 
expand through adulthood (36). Changes in the mechanical properties 
of the lung are evidenced by studies in goats demonstrating growth-
related increases in dynamic lung compliance and viscous work of 
breathing and a decrease in total pulmonary resistance between 20 
and 550 days of age (37). Whilst it is not known whether the major PC 
is specifically influenced by any of these changes, it is, however, 
tempting to speculate that the progressive change in PC values does 
indeed reflect on some aspects of growth-related changes in lung 
structure and/or function.

For the remaining PCs, discerned patterns of dynamic change 
appeared largely consistent throughout the lung. In some instances 
(e.g., PC3 between CT1 and CT2 and between CT4 and CT5), the 
monthly patterns of change were consistent (i.e., demonstrated by 
every sheep in the group). These sheep were group housed within 
the same airspace and demonstrated no clinical signs suggestive 
of respiratory disease throughout the time course of the 
experiment. However, our analysis indicates that every sheep 
experienced the same pattern of change in their lung CT images 
at the same point in time. The radiomic features with the strongest 
positive association to PC3 were GLRLM low grey-level run 
emphasis, a measure of the distribution of low grey-level values, 
and GLDM large-dependence low grey-level emphasis, which 
reflects the grey-level relationship between a central pixel or voxel 
and its neighbourhood (Table 1). Both reflect low-resolution lung 
structure heterogeneity, i.e., coarse texture (38, 39). These healthy 
co-habiting animals experiencing similar subtle changes in lung 
image characteristics are significant and warrant further analysis. 
In particular, probing for associations with more sensitive indices 
of systemic and respiratory states, as well as air quality in the 
housing environment, such as the presence of particulates and 
bioaerosols (airborne viruses, bacteria, and fungi), would 
appear logical.

In conclusion, we  used PCA to reduce a dataset of lung 
radiomic features derived from healthy sheep lung segments to 

FIGURE 7

Time-dependent change in PCs by segment. For the majority of 
segments, a progressive decline in PC1 scores occurred throughout 
the time course. Notable exceptions to this pattern were apparent 
for LC and RAcr. For the remaining principal components, discerned 
patterns of dynamic change appeared largely consistent throughout 
the lung. Marker interconnections in red indicate where change 
between paired samples was significant (p < 0.05; Wilcoxon signed-
rank test for paired data with the alternative hypothesis that the 
population median differs from the hypothesised median = 0).
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five uncorrelated PCs explaining 90% of the total variance. 
We established that the PCs are spatially encoded in the sheep 
lung, demonstrating an increasing emphasis of the first component 
from caudodorsal to cranioventral, and a marked decreasing 
dorsal-to-ventral gradient for PC2. Furthermore, we demonstrated 
a time-dependent progressive decline in PC1 scores between 4 and 
11 months of age. Whilst patterns of change for PCs were generally 
highly consistent between segments, indicating an organ-level 
response, deviation from this was observed for the left cardiac 
segment, indicating a local influence on radiomic features. Finally, 
at certain times we  observed the same patterns of change in 
texture features in all sheep group-housed together, suggesting a 
shared subclinical lung response to an unknown stimulus. Our 
findings provide a baseline for understanding the nature and 
temporal variation of radiomic features in healthy sheep lungs. 
Such data will be  central to interpreting radiomic feature 

characteristics associated with disease and determining the extent 
of association between such changes and concomitant 
lung pathobiology.
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