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Deep learning (DL), a subfield of artificial intelligence (AI), involves the development 
of algorithms and models that simulate the problem-solving capabilities of the 
human mind. Sophisticated AI technology has garnered significant attention in recent 
years in the domain of veterinary medicine. This review provides a comprehensive 
overview of the research dedicated to leveraging DL for diagnostic purposes 
within veterinary medicine. Our systematic review approach followed PRISMA 
guidelines, focusing on the intersection of DL and veterinary medicine, and identified 
422 relevant research articles. After exporting titles and abstracts for screening, 
we narrowed our selection to 39 primary research articles directly applying DL 
to animal disease detection or management, excluding non-primary research, 
reviews, and unrelated AI studies. Key findings from the current body of research 
highlight an increase in the utilisation of DL models across various diagnostic areas 
from 2013 to 2024, including radiography (33% of the studies), cytology (33%), 
health record analysis (8%), MRI (8%), environmental data analysis (5%), photo/video 
imaging (5%), and ultrasound (5%). Over the past decade, radiographic imaging has 
emerged as most impactful. Various studies have demonstrated notable success in 
the classification of primary thoracic lesions and cardiac disease from radiographs 
using DL models compared to specialist veterinarian benchmarks. Moreover, 
the technology has proven adept at recognising, counting, and classifying cell 
types in microscope slide images, demonstrating its versatility across different 
veterinary diagnostic modality. While deep learning shows promise in veterinary 
diagnostics, several challenges remain. These challenges range from the need 
for large and diverse datasets, the potential for interpretability issues and the 
importance of consulting with experts throughout model development to ensure 
validity. A thorough understanding of these considerations for the design and 
implementation of DL in veterinary medicine is imperative for driving future research 
and development efforts in the field. In addition, the potential future impacts of DL 
on veterinary diagnostics are discussed to explore avenues for further refinement 
and expansion of DL applications in veterinary medicine, ultimately contributing 
to increased standards of care and improved health outcomes for animals as this 
technology continues to evolve.
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Introduction

The field of artificial intelligence (AI) involves the development of 
computer systems that can emulate human like problem-solving 
abilities. AI systems are increasingly demonstrating proficiency across 
a wide range of sectors. These AI methods have been widely studied 
and applied to improve many aspects of a diverse range of disciplines 
in human medicine, such as drug development and delivery, patient 
monitoring, surgery, diagnostic imaging, screening, etc. (1). 
Numerous studies have consistently demonstrated that many AI 
models are at least as good as healthcare experts and specialists in 
performing some of the tasks, which they are designed to do, and even 
surpass the performance of the experts in some cases (2). This 
highlights the transformative capabilities of AI in addressing complex 
healthcare challenges.

Machine learning and deep learning in 
veterinary medicine

Machine learning (ML) is a core approach in artificial intelligence 
(AI) that enables computers to learn from data and make predictions 
without explicit programming. ML encompasses two broad categories: 
traditional ML and deep learning (DL). Traditional ML methods, such 
as support vector machines (SVM), k-nearest neighbours (k-NN), and 
random forests, have been widely applied in livestock health, including 
oestrus and calving prediction, lameness detection, and disease 
monitoring (3–5). While these methods have demonstrated success in 
precision livestock farming and veterinary diagnostics (6), they often 
require manual feature engineering, which limits their scalability for 
complex data.

DL, on the other hand, is a subset of AI that is better suited for 
processing large amounts of complex data compared to ML with the 
additional costs of requiring higher computation power. The key 
difference between traditional ML and DL lies in feature engineering and 
model complexity. Traditional ML models often require manual feature 
engineering to extract relevant information from the data. In contrast, DL 
models, based on neural networks, automatically learn relevant features 
from the data during the training process, reducing the need for extensive 
manual intervention (7). DL involves the use of various types of neural 
networks with many layers, hence the term “deep.” These models are 
inspired by the structure and function of the neuron connections in the 
brain and are capable of learning from complex, high-dimensional data 
by breaking it down into different layers or representations for analysis. 
Through DL, machines can now achieve a more nuanced approach to 
detecting trends in data, leading to accurate predictions and insights 
across numerous applications. DL technology has been a driving force 
behind many recent advancements in AI, including speech recognition, 
image recognition, and natural language processing (8). Figure 1 provides 
a brief general overview of the key stages involved in the workflow process 
of the development of a DL model.

Among DL architectures, convolutional neural networks (CNNs) 
are the frequently used for image analysis in veterinary medicine. 

CNNs excel at processing visual data by learning spatial hierarchies of 
features, making them highly effective for disease detection, 
classification, and segmentation in medical imaging. The general CNN 
architecture consists of:

 • Convolutional layers, which apply filters to extract essential 
patterns such as edges, textures, and structures from input images.

 • Pooling layers, which reduce the spatial dimensions of feature 
maps, enhancing computational efficiency while preserving 
critical features.

 • Fully connected layers, which integrate extracted features for 
classification or regression tasks (9, 10).

CNNs form the backbone of many advanced DL architectures, 
such as ResNet, EfficientNet, and Inception, which have been 
successfully applied in veterinary diagnostics for disease classification 
and prognosis prediction. These architectures continue to drive 
progress in AI-assisted veterinary medicine (11).

Deep learning has been extensively applied in human medicine 
for diagnosis, treatment planning, and disease monitoring, leading to 
improved patient outcomes and cost reductions (12, 13). However, its 
application in veterinary medicine remains in its early stages (6). This 
review examines the current state of DL applications in veterinary 
diagnostics and animal health, highlighting key advancements, 
challenges, and potential future directions in the field.

Methods

We conducted this systematic review following the Preferred 
Reporting Items for Systematic Reviews and Meta-Analyses 
(PRISMA) guidelines (Figure  2). The PRISMA 2020 guidelines 
provide a universal framework that contains a 27-element checklist 
and a flow diagram to ensure the comprehensive documentation of 
the review process, from literature search and study selection to data 
extraction and synthesis (14). The search query included the terms 
‘Deep learning’ and ‘Veterinary’ within the PubMed database, aiming 
to identify literature focused on the application of deep learning (DL) 
techniques in veterinary medicine. This search yielded 422 relevant 
articles. The titles and abstracts of these articles were exported as a 
CSV file for further examination, and only primary research articles 
were retained. A total of 66 non-primary articles, including those 
related to veterinary curriculum, review articles, and books or book 
chapters mentioning AI, were excluded. Abstracts of the remaining 
articles were carefully reviewed to confirm that they involved the use 
of deep neural networks for animal disease diagnostics. Articles that 
mislabelled simple neural networks or ML techniques as DL, used DL 
only for preprocessing, object detection, or segmentation, or focused 
on animal models for human medicine were excluded, totalling 142 
articles. Additionally, 174 articles related to human medicine and one 
duplicate were removed. Finally, 39 articles met the inclusion criteria 
(Table  1). Only full-text articles available via open access or the 
University of Sydney’s institutional access were included in this review.

Results

The articles that met the inclusion criteria were initially arranged 
into applications of DL in diagnostics and other domains. Next, in the 

Abbreviations: AI, Artificial Intelligence; ML, Machine Learning; DL, Deep Learning; 

CNN, Convolutional Neural Network; ANN, Artificial Neural Network; RNN, 

Recurrent Neural Network; LLMs, Large language models; CT, Computed 

topography; MRI, Magnetic resonance imaging.
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diagnostics section, articles that were relevant to the diagnosis of 
diseases were summarised and grouped based on the type of images 
and/or data they investigated. This helped to synthesise the relevance 
of these techniques in accordance with the wide variety of information 
required for accurate diagnosis in the veterinary health context. The 
remaining section included research on DL applications in areas 
outside of diagnostics but still consistent with the theme of detecting 
or predicting diseases.

Most of the diagnostic DL research in veterinary medicine is 
related to the interpretation of medical images. The proportion of 
different data types used in the DL studies is presented in Figure 3, and 
the species-wise studies in Figure 4. Most of the DL studies (84%) 
were on canine (64%) and feline (20%), highlighting the gap in 
research on other animals, especially those in the livestock industry. 
The increasing development of DL within the veterinary health/
diagnostics context since its inception in 2013 is presented in Figure 5.

Over the years, the quest for improved performance in various 
studies led to the exploration of different methodologies. When 
examining the trajectory of accuracy over the years, no clear 
overarching trend emerged. It appeared model accuracy was 
dependent on the problems these studies attempted to solve, the 
animal species, the size of the dataset available, and the complexity of 
the models utilised. While there was not a consistent upward trend in 
the size of training data across all studies, variations were notable 
depending on the domains. Datasets for diagnostics studies involving 
canine and feline companion animals were larger compared to those 
involving other animals, which indicates limited research on other 
animals, such as horses, as DL modelling required larger data sizes for 
better classification performance. Moreover, there was a discernible 
disparity in sample sizes, with text/health records and sensor data 
studies often featuring more substantial datasets compared to studies 
using radiograph data. Finally, there was not a dramatic shift in the 
types of models used over the years. CNNs continued to be  the 
predominant model type in various studies, as seen in Table 1, which 

suggested that the research in DL was still at an early stage, as other 
DL models were rapidly evolving and yet to be investigated in the 
veterinary health context. However, a noteworthy observation was the 
incorporation of transfer learning techniques based on more updated 
sophisticated models, such as different ResNet versions throughout 
the years reviewed. The use of transfer learning, a technique which 
enhances model performance by leveraging pre-existing knowledge 
from a pre-trained model often on larger datasets of images, and fine 
tuning it for a new image classification task allows the model to adapt 
effectively to the specific contexts found in the domain of animal 
health (15). The following sections examine how deep learning have 
been applied across key domains of veterinary practice.

Deep learning involved in disease diagnosis

Veterinary medical imaging
Traditional ML strategies can be used for medical image analysis, 

such as the bag of features (BoF) strategy that was applied by Yoon 
et al. (16), which aimed to distinguish between normal and abnormal 
radiographic findings from canine thoracic radiographs across many 
different regions. The same study included a DL component using a 
CNN to accomplish the same goal. A direct comparison between the 
two strategies in this study showed that CNN had higher accuracy and 
sensitivity measures in performing these tasks when compared to BoF 
(16). Similarly, a comprehensive study trained a CNN model using a 
large sample of 22,000 veterinary radiographs of cats and dogs 
combined to predict and identify 15 types of primary thoracic lesions 
from the radiographs. It showed that classification based on DL 
produced a significantly lower error rate when compared to the 
classification performance made by veterinarians (17). Interestingly, 
the study also asked veterinarians to make predictions with access to 
the results provided by the DL model, but the experts’ prediction 
results did not improve significantly, which was implied by the authors 

FIGURE 1

Example workflow of the development of a deep learning system.
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that experts have a certain level of scepticism about the results of the 
AI technology. Thoracic radiographs were also analysed to quantify 
cardiac enlargement to predict cardiac diseases, where DL modelling 
achieved high concordance between its assessment and human 
specialists across both canine and feline patients (18). This success was 
mirrored in another study, where a DL model’s cardiac index 
calculation outperformed the clinical standard produced by veterinary 
radiologists in predicting cardiac enlargement (19). Expanding on 
these applications in thoracic radiographic analysis, convolutional 
neural networks (CNNs) have been particularly effective in detecting 
cardiomegaly (heart enlargement) from these images, achieving high 
diagnostic accuracy in canines (20, 21). Further advancements in DL 
have led to the creation of cardiac scoring models for predicting and 
diagnosing canine heart diseases (22). CNN models have also been 

applied to feline heart conditions, such as feline hypertrophic 
cardiomyopathy, achieving diagnostic accuracies exceeding 90% in 
identifying the disease from radiographic images (23). These findings 
highlight the adaptability of DL techniques across different species for 
the diagnosis of heart diseases.

Further illustrating CNN’s utility in image analysis, Banzato et al. 
(24) showed that CNNs outperformed non-invasive diagnostic tests, 
such as serum biochemistry and cytology, in the detection of hepatic 
diseases from ultrasound images, underscoring DL’s potential to 
enhance diagnostic confidence. However, a separate study on canine 
chronic kidney disease (CKD) highlighted ongoing challenges, 
particularly in tackling more complex multi-class classification 
problems. The CNNs studied struggled to classify five stages of the 
disease from ultrasound images, achieving a performance accuracy of 

FIGURE 2

PRISMA flow diagram.
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TABLE 1 Applications of deep learning in veterinary medicine.

Title Year DL Technique Sample size Type of 
animal

Type of data/
Modality

Evaluation metric Reference

Using machine learning to classify image features from canine 

pelvic radiographs: evaluation of partial least squares 

discriminant analysis and artificial neural network models

2013 ANN 256 Canine Radiograph

Classification error: 0.089

Sensitivity: 0.86

Specificity: 1

(36)

A methodological approach for deep learning to distinguish 

between meningiomas and gliomas on canine MR-images
2018 CNN (GoogLeNet) 80 Canine MRI

Accuracy

Post-contrast T1: 0.94

Pre-contrast T1: 0.91

T2 images: 0.90

(24)

Use of transfer learning to detect diffuse degenerative hepatic 

diseases from ultrasound images in dogs: A methodological 

study

2018 CNN (AlexNet) 52 Canine Ultrasound

AUROC: 0.91

Sensitivity: 1

Specificity: 0.83

(24)

Using Convolutional Neural Networks for Determining 

Reticulocyte Percentage in Cats
2018 CNN 1,046 Feline

Microscope slide 

image
Accuracy: 0.987 (40)

Prediction of radiographic abnormalities by the use of bag-of-

features and convolutional neural networks
2018 CNN 7,138 Canine Radiograph

Accuracy: 0.929–0.969

Sensitivity: 0.921–1

Specificity: 0.938–0.96

(16)

A combined deep learning gru-autoencoder for the early 

detection of respiratory disease in pigs using multiple 

environmental sensors

2018 RNN (Gru)
Pig farms across Europe 

(unspecified)
Swine Sensor data

Precision: 0.909

Recall: 0.909
(62)

Predicting early risk of chronic kidney disease in cats using 

routine clinical laboratory tests and machine learning
2019 RNN 106,251 Feline Electric health record

Sensitivity: 0.907

Specificity: 0.989
(60)

CNN-based diagnosis models for canine ulcerative keratitis 2019
CNN (GoogLeNet, 

ResNet, VGGNet)
281 Canine Photograph Accuracy: > 0.9 (55)

Detection of Cutaneous Tumours in Dogs Using Deep 

Learning Techniques
2019 CNN 1,500 Canine Cytological image Unperformed (41)

Computer-Aided Diagnosis for Lung Lesion in Companion 

Animals from X-ray Images Using Deep Learning Techniques
2019 CNN 2,862

Canine

Feline
Radiograph

Abnormal lung classification

Accuracy: 0.723

Sensitivity: 0.81

Specificity: 0.637

Lung lesion detection

Accuracy: 0.796

Sensitivity: 0.76

Specificity: 0.833

(32)

Comprehensive analysis of machine learning models for 

prediction of sub-clinical mastitis: Deep Learning and 

Gradient-Boosted Trees outperform other models

2019 CNN 364,249 Bovine
Dairy attributes/

Sensor data
Accuracy: 0.84 (64)

(Continued)
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TABLE 1 (Continued)

Title Year DL Technique Sample size Type of 
animal

Type of data/
Modality

Evaluation metric Reference

Pilot study: Application of artificial intelligence for detecting 

left atrial enlargement on canine thoracic radiographs
2020 CNN 792 Canine Radiograph

Accuracy: 0.827

Sensitivity: 0.684

Specificity: 0.871

(21)

Deep learning algorithms out-perform veterinary pathologists 

in detecting the mitotically most active tumour region
2020

RetinaNet (ResNet18)

CNN (U-net, ResNet18, 

ResNet50)

32 Canine
Microscope slide 

image
Correlation coefficient: 0.963–0.979 (42)

Machine learning for syndromic surveillance using veterinary 

necropsy reports
2020 RNN (LSTM) 1,000 Unspecified Necropsy report

F1 scores

Gastrointestinal disease: 0.932

Respiratory disease: 0.947

Urinary disease: 0.752

(61)

Use of deep learning to detect cardiomegaly on thoracic 

radiographs in dogs
2020 CNN 1,465 Canine Radiograph AUROC: > 0.9 (20)

Deep feature learning for histopathological image 

classification of canine mammary tumours and human breast 

cancer

2020 CNN (VGGNet-16) 352 Canine
Histopathological 

image

Binary classification of canine 

mammary tumour accuracy: 0.93
(39)

Artificial intelligence evaluating primary thoracic lesions has 

an overall lower error rate compared to veterinarians or 

veterinarians in conjunction with the artificial intelligence

2020 CNN 22,120
Canine

Feline
Radiograph Overall error rate: 0.107 (17)

Using Deep Learning to Detect Spinal Cord Diseases on 

Thoracolumbar Magnetic Resonance Images of Dogs
2021 CNN 2,693 Canine MRI

IVDP detection

Sensitivity: 1

Specificity: 0.951

IVDE detection

Sensitivity: 0.908

Specificity: 0.989

FCE detection

Sensitivity: 0.622

Specificity: 0.979

ANNPE detection

Sensitivity: 0.91

Specificity: 0.90

(33)

Histopathological Classification of Canine Cutaneous Round 

Cell Tumours Using Deep Learning: A Multi-Centre Study
2021

CNN (AlexNet, 

Inceptionv3, ResNet)
416 Canine

Histopathological 

image

Accuracy

RCT classification: 0.917

Mast cell tumour grading: 1

(46)

Using Artificial Intelligence to Detect, Classify, and 

Objectively Score Severity of Rodent Cardiomyopathy
2021 CNN (ResNet50) 300 Rat

Microscope slide 

image

Spearman rank-order correlation 

between pathologist median grade 

and AI grade: 0.82

(43)

(Continued)
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TABLE 1 (Continued)

Title Year DL Technique Sample size Type of 
animal

Type of data/
Modality

Evaluation metric Reference

OncoPetNet: A DL based AI system for mitotic figure 

counting on H&E stained whole slide digital images in a large 

veterinary diagnostic lab setting

2021

CNN (ResNet18, UNet, 

EfficientNet, SE-

Resnext)

3,845
Canine

Feline

Haematoxylin and 

eosin-stained 

histologic slides

Improved mitotic count compared to 

human baselines
(47)

Computerised assisted evaluation system for canine 

cardiomegaly via key points detection with deep learning
2021 CNN (HRNet) 2,274 Canine X-ray Average performance: 0.864 (22)

Comparison of a Deep Learning Algorithm vs. Humans for 

Vertebral Heart Scale Measurements in Cats and Dogs Shows 

a High Degree of Agreement Among Readers

2021 CNN 60
Canine

Feline
Radiograph

Intraclass correlation coefficient for 

vertebral heart scale between AI and 

specialists: 0.998 for both canine and 

feline

(18)

Disease Diagnosis of Dairy Cow by Deep Learning Based on 

Knowledge Graph and Transfer Learning
2021 CNN (KGTL_CNN) 21,649 Bovine Medical records

F1 score for CNN based on knowledge 

graph: > 0.85
(58)

A deep learning model for CT-based kidney volume 

determination in dogs and normal reference definition
2022 nnUNet, UNETR 386 Canine CT scan

R = 0.96 between manual voxel count 

and DL model
(30)

Developing a diagnosis model for dry eye disease in dogs 

using object detection
2022 CNN (YOLOv5) 95 Canine Eye video image mAP: 0.995 (57)

DL in veterinary medicine, an approach based on CNN to 

detect pulmonary abnormalities from lateral thoracic 

radiographs in cats

2022 CNN (ResNet50V2) 500 Feline Radiograph

Accuracy: 0.82

F1 score: 0.85

Specificity: 0.75

Positive predictive value: 0.81

Sensitivity: 0.88

(31)

Cytologic scoring of equine exercise-induced pulmonary 

haemorrhage: Performance of human experts and a DL-based 

algorithm

2022 CNN (RetinaNet) 52 Equine Microscope slide Accuracy: 0.923 (44)

An automated deep learning method and novel cardiac index 

to detect canine cardiomegaly from simple radiography
2022

CNN (improved 

attention U-Net)
1,000 Canine Radiograph

Left atrial & ventricular enlargement 

F1 score

Vertebral heart score: 0.43

Adjusted heart volume index: 0.55

(19)

Deep learning-based diagnosis of feline hypertrophic 

cardiomyopathy
2023

CNN (Resnet50V2, 

Resnet152, 

InceptionResnetV2, 

MobilenetV2, Xception)

273 Feline Radiograph Accuracy: > 0.9 (23)

Deep learning-based diagnosis of stifle joint diseases in dogs 2023 CNN (R-CNN, ResNet) 2,382 Canine Radiograph Accuracy: > 0.8 (53)

(Continued)
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TABLE 1 (Continued)

Title Year DL Technique Sample size Type of 
animal

Type of data/
Modality

Evaluation metric Reference

Canine Mammary Tumour Histopathological Image 

Classification via Computer-Aided Pathology: An Available 

Dataset for Imaging Analysis

2023 CNN (VGG16, 

InceptionV3, 

EfficientNet)

1,056 Canine Haematoxylin and 

eosin-stained 

histologic images

Accuracy: 0.63–0.85 (49)

Automated diagnosis of 7 canine skin tumours using machine 

learning on H&E-stained whole slide images

2023 CNN (EfficientNet B5) 350 Canine Haematoxylin and 

eosin-stained 

histologic images

Accuracy: ~0.95 (50)

Application of convolutional neural network for analysing 

hepatic fibrosis in mice

2023 CNN (Xception) 33 Mice Whole slide images Correlation with pathologist hepatic 

fibrosis grade (r = 0.9067)

(52)

Histological classification of canine and feline lymphoma 

using a modular approach based on deep learning and 

advanced image processing

2023 CNN (Unet++) 116 Canine

38 Feline

Canine

Feline

Haematoxylin and 

eosin-stained 

histologic images

Accuracy: 0.92 for canine

0.84 for feline

(45)

Automatic grading of intervertebral disc degeneration in 

lumbar dog spines

2023 CNN (VGG16) 5,991 Canine MRI Accuracy: > 0.9

Sensitivity: > 0.83 (except 1 class)

(26)

Use of deep learning for the classification of hyperplastic 

lymph node and common subtypes of canine lymphomas: a 

preliminary study

2024 CNN (GoogLeNet) 1,530 Canine Whole slide images Accuracy: 0.99 (51)

Automatic classification and grading of canine tracheal 

collapse on thoracic radiographs by using deep learning

2024 CNN (YOLOv3, 

YOLOv4, YOLOv4 tiny)

600 Canine Radiograph Accuracy: 0.989

Sensitivity: 0.983

Specificity: 0.992

(27)

Deep learning-based ultrasonographic classification of canine 

chronic kidney disease

2024 CNN (YOLOv8-n) 883 Canine Ultrasound Accuracy: 0.46 (25)
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only 0.46 on average, likely due to the subtle differences between 
stages and the limitations of the ultrasound imaging. Importantly, 
ultrasound may not be the most suitable modality for accurate CKD 
staging, which affects the reliability of the ground truth used to train 
and evaluate the model. Since DL models are highly dependent on the 
quality of their training data, a suboptimal ground truth can constrain 
model performance, regardless of architectural improvements. This 
underscores the importance of carefully selecting diagnostic 
modalities and ground truth definitions in AI studies to ensure 
meaningful and clinically relevant outcomes. While model selection 
and hyperparameter tuning remain critical, optimising study design 
and ensuring high-quality, confirmatory diagnostic data are equally 

essential for unlocking the full potential of DL applications in 
veterinary medicine (25).

VGG (visual geometry group) networks have been applied 
successfully to MRI scans of canine lumbar discs, where they were 
used to grade intervertebral disc degeneration, achieving over 0.9 
accuracy across all five degeneration grades (26). Another noteworthy 
development in DL for veterinary imaging was the use of YOLO (You 
Only Look Once) a CNN based model. Originally designed for object 
detection, YOLO v3, v4, and v4 tiny have been adapted to not only 
detect object but also classify tracheal collapse grades (Normal, grade 
1–2, and grade 3–4) from lateral cervicothoracic canine radiographs, 
offering a versatile tool for both detection and classification tasks (27).

FIGURE 3

The proportion of different data modalities used in the deep learning studies.

FIGURE 4

The proportion of different species researched in the deep learning studies.
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CNN techniques have developed rapidly and branched off into 
more specialised networks with addition of image segmentation 
components to better analyse medical images (28). Image 
segmentation divides the image into multiple significant parts to make 
the input dataset more informative to analyse (29). This technique was 
investigated in a kidney disease diagnosis study where a Unet CNN 
with an image segmentation component was tested to successfully 
estimate kidney volume from CT scans (30). Similarly, inbuilt image 
segmentation in a CNN was used to detect pulmonary abnormalities 
in feline radiographs, showcasing its utility (31). This level of 
diagnostic success was not consistently reproduced in other studies 
such as in the diagnosis of lung lesions in both dogs and cats from 
x-ray images, the diagnostic accuracy was only around 70–80% (32). 
Another study demonstrated low levels of performance for the 
detection of neoplasms (sensitivity ranged from 0 to37.5%) and 
syringomyelia (sensitivity ranged from 0 to 10%) on MRI images 
using custom CNN models. The poor performance was due to the 
limited training samples of those cases (33), demonstrating that in 
certain contexts, DL remains an evolving technology requiring further 
refinement. Additional experimentation in both modelling approaches 
and pipeline design is necessary to optimise the algorithmic efficacy.

In another MRI analysis study, the authors attempted to 
distinguish between meningioma and glioma conditions in dogs from 
a selection of MRI images utilising a process known as transfer 
learning to develop a CNN model from a pre-trained GoogLeNet 
CNN (deep neural network consisting of 144 layers) (34). The 
GoogLeNet has been trained on the ImageNet database with up to 
1.2 million images across 1,000 categories to extract the CNN features. 
It was retrained on a new dataset of MRI images which achieved high 
accuracy (91 and 94%, respectively) of the model in correctly 
classifying the condition from both pre-and post-contrast MRI 
images. The correct differentiation between the two conditions is 
necessary for choosing the right treatment procedures that could lead 
to better health outcomes for patients. Retraining pre-trained models 
reduces the computational resources and potentially the number of 
images required to apply DL, increasing the accessibility of AI’s 

advantages in various animal health applications. It is still important 
to note that this improvement in accessibility may come in exchange 
for accuracy in certain situations.

Artificial neural network (ANN) is another DL technique that is 
composed of fully connected layers where each neuron is connected 
to every neuron in directly neighbouring layers, which are more 
commonly used for general purpose problem solving (35). It was 
applied to identify canine hip joints on ventrodorsal pelvis radiographs 
with low classification error, and high sensitivity and specificity 
measures of 8.9, 86, and 100%, respectively (36). ANN has the 
flexibility to choose different activation functions for nonlinear 
function learning purposes and change the number of hidden layers 
and nodes in these hidden layers, to improve its performance to suit 
various image processing needs (37). An updated study instead used 
a deep CNN for the detection of the hip joint and extended their aim 
to the classification of hip dysplasia from pelvis radiographs in two 
stages. The first stage involved identifying the boundary box of the hip 
joint from the radiographs using the YOLOv3 object detection 
algorithm (38). These regions were then cropped and put through the 
second stage of analysis, where a CNN model graded hip dysplasia, 
which resulted in a high specificity of 0.92 for FCI scores in the “C-E” 
group. However, the model’s sensitivity metric was low at 0.53, 
suggesting its failure to identify many positive cases (false negative). 
One contributing factor to this limitation was that the image dataset 
contained unbalanced annotated images, where certain types of hip 
dysplasia were under-represented, which impaired the performance 
of the model in its testing phase (38). This outlines the importance of 
having a large data set to train an effective CNN.

Microscope slide images
Microscopic examination of tissues, cells, and blood on 

microscope slide images is known to be tedious and challenging for 
disease diagnosis, even for well-trained specialists (39). DL techniques, 
particularly CNN, have proven effective in addressing these challenges, 
such as its utilisation in recognising reticulocytes in cat blood smears 
to a high accuracy of 98.7% (40). Another study used CNN modelling 

FIGURE 5

The number of deep learning studies in veterinary medicine across the years.
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to diagnose and classify abnormal cell growth in canine skin samples 
from cytological images (a subset of microscope slide images), 
improving cancer detection (41). Furthermore, DL methods, 
particularly CNNs, outperformed veterinary pathologists in grading 
prognostic elements of canine tumours based on stained canine 
cutaneous mast cell tumours (42). Along with the results, it was noted 
that the chosen section of the slide images for analysis by veterinary 
pathologists was quite varied, thus producing more inconsistent 
results between experts in their mitotic counts. Also, a more advanced 
network based on the CNN known as ResNet 50 was able to match 
with pathologists’ grading of cardiomyopathy severity from 
microscope slide images in rodents with a Spearman rank-order 
correlation of 0.82 (43). In some cases, DL techniques surpass human 
performance as indicated by a study on horses, where the CNN 
outperformed human specialists (76% accuracy) in diagnosing 
exercise-induced pulmonary haemorrhage, achieving a high accuracy 
of 92% (44). These studies emphasised the utility of DL in diagnosing 
diseases across different animals, showcasing the potential of these 
techniques to match or even outperform human specialists in certain 
contexts within veterinary medicine.

Recent advancements have adopted a more flexible approach to 
the analysis of microscope slide images, such as using DL models to 
first preprocess the images by dividing them into grid sections to 
ensure areas of interest are separated from irrelevant backgrounds. 
This step is crucial for achieving high classification accuracy, 
particularly when applying segmentation techniques like Unet, which 
enables the identification of relevant regions prior to classification 
(45), and combining different parts of the algorithm from various 
known architectures to suit different needs like the aggregate model 
used in this study, where different CNNs (AlexNet, Inception v3, and 
ResNet) are combined to form the ARCTA algorithm, which was 
utilised to accurately classify canine cutaneous round cell tumours 
(accuracy of 91.7%) and mast cell tumours (accuracy of 100%) (46). 
This approach of utilising aggregate modelling have also shown 
success in mitotic figure count, enabling critical early tumour 
detection (47).

Pretrained models like VGGNet-16, have been applied to 
classify canine mammary tumours and human breast cancer from 
histopathological images, achieving improved accuracy when 
combined with traditional ML classifiers (93%) (39). The 
incorporation of transfer learning helps to alleviate the issues of 
using a small image dataset by only fine-tuning the model 
parameters based on the knowledge obtained from a large dataset 
(48). Recent studies have leveraged advanced CNN architectures 
such as VGG16, InceptionV3, and EfficientNet as feature extractors 
for canine tumour histopathology. By removing the final 
classification layers of these networks and feeding their outputs into 
traditional machine learning algorithms like support vector 
machines (SVM), researchers have enhanced differentiation 
between benign and malignant tumours (49). In some cases, 
transfer learning-based approaches have demonstrated particularly 
high accuracies, such as the use of EfficientNet B5, which achieved 
approximately 95% accuracy in classifying seven different types of 
canine skin tumours, though this still fell short of human expert 
performance levels (50). Another study used GoogLeNet transfer 
learning to classify three classes of canine lymphoma from whole 
slide images, achieving 99% accuracy in the test set (51). Similarly, 
XceptionNet was employed to analyse whole slide images in mice, 

where it showed a strong correlation (r = 0.9067) with pathologists’ 
grading of hepatic fibrosis (52), further illustrating the viability of 
DL techniques in diagnostic contexts.

Another example where combining different machine learning 
techniques presents a promising avenue in the veterinary health 
context. The R-CNN method, an object detection method, was first 
utilised to extract regions of interest then a ResNet classification 
model was utilised to detect patterns related to canine stifle joint 
disease with an accuracy over 80% (53). These results demonstrate the 
potential of combining multiple CNN networks for improved 
classification performance in veterinary medicine.

RGB images
The widespread availability of RGB images from smartphones and 

digital cameras has made DL models more accessible, highlighting 
potential beneficial applications and ease of access to this technology 
in veterinary medicine (54). Hundreds of annotated photo images of 
canine eyes were trained and evaluated with CNN models: GoogleNet, 
ResNet, and VGGNet, to determine and predict corneal ulcer severity 
in dogs (55). It was shown that many of these DL models achieved 
accuracies beyond 90% for identifying the different levels of corneal 
ulcer severity. Another study supports the above claim as its dataset 
was formed from photo images of equine eyes taken via smartphones 
(56). Four different CNN models (MobileNetV2, InceptionV3, 
VGG16, VGG19) were studied to classify 3 categories of eye conditions 
with a particular focus on equine uveitis (a particular eye inflammatory 
disease), the top performing model achieved a validation accuracy of 
96% (56). A part of the imaging data of the eye was collected using a 
smartphone camera, which further highlights the applicability of DL 
algorithms in the analysis of photo images gathered via smartphones 
in the animal health domain. DL techniques have performed well 
deciphering limited-quality smartphone image data to produce highly 
accurate results. Images can also be obtained from videos by using 
object detection DL algorithms to form the image dataset for analysis. 
In a separate study on canine eye disease, images were isolated from 
video footages of the face of the animals for application in DL 
models (57).

Text analysis
DL can be  used to extract textual information to produce 

diagnostic suggestions. Disease knowledge was first extracted from a 
dairy cattle disease graph found in literature, as well as information 
obtained from experts and features found in medical records on a 
variety of dairy cow diseases such as mastitis, forestomach atony, 
rumen indigestion, gastroenteritis, rumen acidosis and abomasum 
dislocation to form the initial dataset. Then a CNN model was 
pretrained on this initial dataset to obtain the model parameters and 
weights. Finally, a transfer learning technique was employed utilising 
this pretrained model on a more limited separate real-life dataset of 
textual features of the above outlined dairy cow diseases for training 
and testing to ascertain the diagnostic performance of the developed 
DL approach (58). The developed model showed a promising F1 score 
around 86% in the automation of the diagnosis of dairy cow diseases. 
The authors compared this model’s performance to other standalone 
ML models, including support vector machine, random forests, and 
decision tree, as well as DL methods: recurrent neural network (RNN) 
and CNN. The results showed the effectiveness of the transfer learning 
strategy with a pretrained model.
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RNN is a DL method which is devised to formulate sequential 
patterns such as texts and videos (59). RNN was adopted for 
detection of chronic cat kidney diseases from historical electronic 
hospital records of patients and achieved high classification 
performance of 0.907 and 0.989 for sensitivity and specificity, 
respectively (60). In other text-based veterinary medicine data like 
necropsy reports as seen in the study performed by Bollig et al. (61), 
an RNN with a long short-term memory (LSTM) design successfully 
classified evidence of gastrointestinal, respiratory and/or urinary 
diseases, which helps to reveal the features of these diseases such as 
its epidemiological nature.

Sensors
DL has been used to predict disease occurrence in animals based 

on historical sensor data. One study utilised a recurrent neural 
network (RNN) to generate an autoencoder that recognised 
environmental sensor data, such as CO2, temperature, and humidity, 
which were associated with housing environment health for pigs 
(62). The collected sensor data was evaluated by the 
GRU-autoencoder based on its similarity to normal data. If the data 
exceeds a specific anomaly threshold, optimised using Particle 
Swarm Optimisation, the algorithm outputs a prediction warning for 
respiratory disease. As sensor data is collected in real-time, it allows 
timely prediction for farmers to act and intervene to prevent the 
development of respiratory disease. Another type of data which is 
collected routinely is in the field of dairy, where milk attributes are 
continuously being collected and recorded by machines at each 
milking. An important reason for this is to monitor for the 
occurrence of mastitis in the dairy cows, as contamination will affect 
the milk quality and cause it to be discarded. Traditionally, statistical 
methods have been used to predict subclinical mastitis from dairy-
related attributes (63). However, one recent study utilised a relatively 
simple multilayer feed-forward deep neural network to forecast 
subclinical mastitis with a high accuracy of 84% based on multiple 
milking variables, showcasing the capabilities of DL techniques in 
this field (64).

From the literature, it appears that there is more research being 
performed on inferring, predicting, and tracking animal behaviour 
from sensor data, where it found moderate to higher levels of success 
(65, 66). Compared to this, the analysis of sequential sensor data using 
DL algorithms appear to be  premature at this current stage of 
development in the diagnosis of diseases in animals. Thus, more 
research in this area may uncover new and more comprehensive 
information that can be used to inform disease management and 
prevention in livestock farming.

Issues for consideration when designing 
and conducting studies

Accountability and ethical considerations in AI assisted 
veterinary practice: The technology to replicate human thought 
processes in AI analysis is still evolving. The tasks assigned to AI 
algorithms are diverse and complex, requiring tailored 
infrastructure for each study (10). For example, Vinicki’s study 
required a precise image scoring system consistent with expert 
evaluations to correctly label images and guide AI in accurately 
classifying reticulocytes (40). This underscores the importance of 

expert consultation throughout the design and implementation 
phases, ensuring results are interpreted with specialist input for 
meaningful understanding.

Many studies reviewed here indicate that DL models are most 
effective when used as decision-support tools rather than standalone 
diagnostic systems. While accurate and reliable AI applications can 
enhance patient outcomes, unreliable AI use may introduce risks, 
particularly in veterinary medicine, where training datasets are often 
limited. Unlike human medical AI, which benefits from vast, 
standardised, and well-validated datasets, veterinary AI faces 
challenges due to species-specific variability and context dependent 
variables (67). Companion animals such as dogs and cats are more 
commonly studied, while data for exotic and livestock species remain 
scarce as shown in this review. In addition, animal health data are 
often lower in quality, unstructured, inconsistently collected across 
institutions, and subject to less standardisation and scrutiny compared 
to human medical datasets (68). These factors significantly impact 
training quality, as DL models rely heavily on well-curated, high-
quality datasets to achieve precise and accurate predictions. 
Consequently, data imbalance and variability affect model 
generalisability, resulting in an AI system trained on feline or canine 
images that may not be directly transferable to other species, even 
when diagnosing the same disease. This underscores the critical role 
of veterinarians in validating AI-generated outputs and ensuring that 
AI is used responsibly as a supporting tool, rather than as an 
independent diagnostic system (69). Proper clinical oversight is 
essential for ethical and effective AI integration in veterinary medicine.

Sample size and data quality

A large volume of training data is crucial for developing and 
testing reliable DL applications (70). Although specific sample size 
requirements vary by context, certain factors can help estimate the 
sample size required for effective modelling (71). The size and 
complexity of the model significantly impact the required dataset, as 
demonstrated in Krizhevsky’s study where training a deep CNN 
model required over 1 million labelled images (72). Although not 
directly mentioned, it can be inferred that the number of predicted 
classes affects the required sample size, given the study’s aim to classify 
1,000 different classes. In contrast, veterinary medicine often focuses 
on predicting fewer classes, with currently annotated and labelled data 
being limited, especially within specific veterinary imaging cases, 
where small sample sizes and unbalanced classes are common 
limitations (73). Veterinary AI studies often have smaller sample sizes 
due to factors such as having smaller and more dispersed patient 
(companion and livestock) populations, which makes data collection 
difficult as veterinary records are often heterogeneous (74). In 
addition, species-specific variability requires separate datasets for 
different animals, further fragmenting available data for prospective 
studies. Hence sourcing animal samples that meet specific disease 
criteria is big challenge, often necessitating retrospective data 
collection from historical health records, which may contain missing 
or inaccurate information (75). However, increasing sample size alone 
is not always beneficial if the data quality is compromised. If poorly 
labelled, inconsistent, or inaccurate ground truth data are used, AI 
models may exhibit misleading performance gains while lacking true 
clinical utility. As veterinary AI research progresses, larger and more 
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diverse datasets will be needed, but they must be carefully curated, 
standardised, and validated to maintain model reliability (76). In 
human medicine, one approach to addressing small sample sizes is the 
use of pre-trained large models, which can be fine-tuned for specific 
tasks while leveraging existing large scale datasets (77). This is known 
as transfer learning, which is a promising approach that offers 
significant potential for further exploration and application in the field 
of animal health, particularly in settings where data availability is 
constrained. Data augmentation is another potential solution as it is a 
method used to enhance the variety of the training dataset by applying 
various transformations to the existing data, producing altered 
versions that remain representative of the original dataset (78). This 
artificially inflates the dataset and increases the effective sample size 
for the training of the model, which can help to teach AI models more 
diverse features aiding in its classification performance.

Evaluation and validation challenges

Ensuring the reliability and generalisability of DL models is 
highly dependent on the validation strategies employed. While a 
clean and well-structured dataset is fundamental, models must 
undergo a rigorous validation process to confirm that they can 
perform beyond the controlled environment in which they were 
trained. Without appropriate validation, even highly optimised 
models may exhibit overfitting, suffer from dataset biases, or fail to 
generalise to real-world clinical applications, limiting their practical 
use (79). One of the major challenges in veterinary AI research is 
the lack of universally standardised and fully labelled validation 
datasets, which complicates fair comparisons between different AI 
models. Unlike human medical AI, where large-scale benchmark 
datasets exist for model evaluation, veterinary AI studies often rely 
on institution specific datasets, making it difficult to directly 
compare performance across different studies. This absence of 
standardisation can lead to inflated performance metrics if 
validation datasets do not accurately represent real 
world conditions.

The selection of validation strategies is therefore crucial. Internal 
validation, where models are assessed using the same dataset on which 
they were trained, is an essential initial step but does not account for 
variations in clinical practice, different imaging modalities, or novel 
cases encountered in real-world settings (80). External and clinical 
validation are necessary to test the model’s performance across diverse 
datasets, imaging techniques, and patient populations. Without these 
steps, a model that appears to perform well under controlled 
conditions may fail when deployed in practice. Additionally, the 
quality of validation datasets plays a significant role in model 
reliability. If datasets are small, unbalanced, or inconsistently 
annotated, AI models may demonstrate misleading performance gains 
while lacking true clinical utility. Poor validation design can also lead 
to circular reasoning, where models inadvertently learn dataset-
specific artefacts rather than true disease characteristics.

Given these challenges, AI studies should transparently report 
their validation methodologies to allow accurate interpretation and 
comparability across research. Standardising validation frameworks 
for veterinary AI (81), including establishing common datasets and 
benchmarking protocols, would be a critical step in improving model 
assessment and ensuring AI applications are both scientifically 

rigorous and clinically relevant. Despite the necessity of these 
validation steps, there remains a lack of regulatory validation strategies 
that apply to all DL modelling, particularly in veterinary applications. 
Again, unlike in human medical AI, where regulatory frameworks are 
more established, veterinary DL models are often developed with less 
stringent oversight. This gap in regulatory validation could lead to 
risks for animal patients if veterinary experts are not actively involved 
throughout the entire model development lifecycle, including post-
implementation monitoring and error reporting (82).

Data analysis workflow

An effective and smooth analysis pipeline is key to the successful 
and efficient building of DL networks. General principles to follow 
include data preprocessing techniques like data augmentation, 
normalisation, and class imbalance handling to ensure the model 
robustness (83). It is crucial to understand the characteristics of the 
images and provide accurately annotated data for processing. Lapses 
in these areas can lead to poor performance or unexpected results. 
Choosing the most appropriate model is essential, considering factors 
like the number of classes and problem complexity. Network 
architecture design and careful selection of hyperparameters, such as 
the loss function, optimisation algorithm, and learning rate, 
significantly affect model convergence and performance (83).

Black box approach

DL methods are often called “black-box” approaches due to 
their complex and opaque inner workings, making them difficult 
to interpret. None of the reviewed veterinary health studies 
attempted to address this issue in a technical fashion, highlighting 
the nascent stage of DL research in this field. However, explainable 
AI (X-AI) approaches, such as GradCAM, which generates gradient 
maps, and LIME (Local Interpretable Model-agnostic 
Explanations), which explains how input modifications affect 
model predictions, are used in human medical image analysis (73). 
Researching and implementing X-AI in veterinary medicine could 
enhance understanding and improve imaging diagnostics. Beyond 
technical interpretability, transparency is also a critical 
consideration. Veterinary users need to understand and trust AI 
driven tools before integrating them into clinical practice (67). A 
lack of transparency in how these models generate predictions may 
hinder their adoption, reinforcing the need for X-AI methods to 
enhance trust and usability in veterinary diagnostics. Researching 
and implementing X-AI in veterinary medicine could improve 
both interpretability and confidence in AI-assisted 
imaging diagnostics.

Opportunities for future DL applications in 
the animal health domain drawing 
inspiration from human health and other 
domains

DL techniques in human health can guide and indicate the 
potential for veterinary medicine. Application of AI image analysis for 
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detecting skin tumours, bone fractures, and lung infections in humans 
could be  similarly developed and adapted for diagnosing animal 
diseases (84). The application of transfer learning in veterinary 
medicine for these types of disease classification is a potential avenue 
for exploration as these types of disease research are currently limiting 
in the animal health context.

AI can transform healthcare delivery by improving efficacy, 
accessibility, and personalisation. For example, human healthcare 
providers utilise monitoring devices and smart phone technology to 
obtain real-time patient vitals for monitoring purposes (85). This area 
could be  adapted to track animal health indicators, enhancing 
veterinary health management. Virtual assistants with NLP 
capabilities, which provide health and medication information post-
hospital visits, have shown improved patient outcomes and could 
similarly benefit animal healthcare, particularly in rural and 
underserved areas. NLP techniques that extract information from 
human clinical records can also be  applied to veterinary health 
records for clinical research, revealing additional information to 
support veterinarians (86). Even though this type of research is still 
relatively nascent in human medicine but as this technology 
improves, it could potentially be  implemented in the analysis of 
veterinary health records to support better decision making by 
veterinarians. In another aspect of medicine, CNNs have been used 
to track and analyse surgical procedures to assess surgeon 
performance during medical training (87). This application holds 
promise in veterinary medicine for training new surgeons and 
providing individualised feedback to assist and support veterinarians 
in training.

Human medicine has successfully utilised specific models such as 
BERT for natural language processing and ResNet for image 
classification, achieving high accuracy and robustness (88, 89). These 
successes are partly due to the availability of large, diverse datasets and 
synthetic data generation techniques, which help augment training 
datasets and improve model performance. In contrast, veterinary 
medicine lacks similarly extensive datasets and established models, 
making it a prime candidate for applying and adapting these advanced 
techniques. The success of synthetic data in human studies, enhancing 
model training and performance, suggests a promising avenue for 
veterinary applications, potentially mitigating the challenges posed by 
limited real-world data.

Rapid development in AI

AI is advancing at an unprecedented rate, with new models 
continually emerging in human medical applications. A recent study 
published by Google introduced Med-PaLM, formerly known as 
MultiMedQA, a comprehensive benchmark for evaluating the clinical 
knowledge of large language models (LLMs) across various medical 
topics (90). While Flan-PaLM, a 540-billion parameter LLM, achieves 
state-of-the-art accuracy on Med-PaLM datasets, human evaluations 
reveal key shortcomings in areas such as comprehension and 
reasoning, underscoring the need for improved evaluation frameworks 
and methodologies to make LLMs safe and useful in clinical settings 
(91). Med-PaLM and its evaluation framework hold significant 
potential for adaptation in veterinary medicine. By tailoring these 
benchmarks to veterinary-specific datasets, it is possible to assess and 
enhance the accuracy and safety of LLMs in diagnosing and treating 

animal health conditions ensuring that LLMs can effectively support 
veterinary professionals.

The recent introduction of Med-Gemini, a family of highly 
capable multimodal models specialised in medicine, highlights the 
rapid development in AI. Med-Gemini models excel in advanced 
reasoning, up-to-date medical knowledge access, and complex 
multimodal data understanding. It achieved state of the art 
performance on 10 out of 14 medical benchmarks (92). Med-Gemini’s 
capabilities to interpret and analyse complex data could be adapted to 
diagnose animal health conditions using diverse data sources, 
including images, health records, and sensor data. Moreover, its 
capability to surpass human experts in medical text summarisation 
and video question answering could enhance veterinary training and 
decision-making processes. These strengths suggest promising 
potential for the applications of these tools in veterinary medicine, 
providing more accurate and comprehensive diagnostic tools and 
improving overall animal healthcare.

The adaptation of transformer models, initially developed for 
natural language processing, has opened new frontiers in veterinary 
computer vision applications. The “transformer” architecture, based 
on a self-attention mechanism, allows the model to weigh the relative 
importance of different features independently of their order, providing 
a more flexible and nuanced approach to data interpretation (93). This 
approach has demonstrated comparable performance to CNNs in 
image classification tasks (94). In a recent medical imaging study, a 
Vision Transformer (ViT) was used to analyse PET brain scans, 
classifying healthy tissue versus Alzheimer’s disease, and outperformed 
the CNN-based VGG19 (95). In oncology, ViT models have shown 
superior performance in classifying skin cancer from lesion images 
(96). Another study highlighted ViT’s potential in detecting 
tuberculosis in chest X-rays, where a hybrid approach incorporating a 
ViT component with a CNN backbone achieved higher classification 
performance than a standalone CNN (97). These successes suggest that 
researching ViTs in veterinary health contexts could improve 
diagnostic accuracy in medical imaging, which is crucial for effective 
treatment and disease control in animals. Moreover, generative 
adversarial networks (GANs) and variational autoencoders (VAEs) 
showed promise in mitigating the need for extensive labelled datasets 
in medical image analysis (98). By synthesising realistic medical 
images, these models can augment training data, potentially enhancing 
the performance and generalizability of DL models even with limited 
real-world samples (99). Such approaches could be useful in veterinary 
diagnostic where limited images are currently available. In summary, 
the rapid development of AI technologies, exemplified by models like 
Med-Gemini, Med-PaLM, ViTs, GANs, and VAEs, presents significant 
opportunities for advancing veterinary medicine. By adapting these 
technologies and benchmarks to veterinary contexts, the field can 
benefit from improved diagnostic tools, more robust data 
augmentation techniques, and ultimately, better health outcomes 
for animals.

Conclusion

This review has highlighted the application of DL in veterinary 
medicine. This is a rapidly evolving area of research with increasing 
attention on its use in the veterinary healthcare industry in recent 
years. Its advantages are better understood and can be utilised to 
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benefit many aspects of the industry as seen in the examples discussed, 
particularly in image analysis, which is enabling health specialists and 
farmers to develop optimal and timely treatment and prevention plans 
for the best possible health outcomes for affected animals.

The creation of training datasets for veterinary diagnostics is both 
labour-intensive and costly, presenting a significant bottleneck in the 
broader application of AI within this field. The limited availability of 
comprehensive datasets, encompassing various diagnostic modalities, 
further constrains the successful deployment and optimization of 
AI-driven tools in veterinary diagnostics.

This review underscores the urgent need to create standardised, 
high-quality large training datasets that include a wide array of 
diagnostic modalities and animal species. Given the inherent diversity 
of species within veterinary practice, fostering international 
collaboration is not only advantageous but also essential for the 
successful implementation and fine-tuning of AI models in veterinary 
diagnostics. To facilitate this crucial endeavour, we suggest the formation 
of an international consortium focused on veterinary phenomics for 
AI. Such a collaborative framework would not only accelerate the 
assembly of comprehensive and interoperable datasets but also catalyse 
advancements in AI-driven veterinary diagnostic techniques, thereby 
elevating the quality and efficacy of animal healthcare globally.
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