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Bos taurus and Bison bison

conservative retrotransposon
recombination products
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1Department of Biotechnology, Afanas‘ev Research Institute of Fur-Bearing Animal Breeding and

Rabbit Breeding, Moscow, Russia, 2Department of Biomedical Informatics, University of Arkansas for
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Background: Without identifying and studying the genomic characteristics

associated with domestication, managing farm animal genetic resources

becomes overwhelmingly di�cult. Accumulated data confirm that mobile

genetic elements participate in the domestication process and, in particular,

generate widely abundant microRNAs.

Methods: The recombination products were compared in silico between the

long interspersed nuclear element (LINE) and the endogenous retrovirus (ERV),

forming the LINE/ERV/LINE sequence, located in a closely linked conserved

block of 12 genes, as well as the microRNAs formed by these recombination

products in domesticated-wild pairs of mammals. For this comparison, the

reference genomes of domesticated cattle (Bos taurus) and its closely related

wild species counterpart, bison (Bison bison), were used.

Results: It was found that the above-noted highly conserved recombination

products (with more than 81.5% identity) were present in the corresponding

block of 12 genes in bison. These recombination products served as sources of

51microRNAs in bison and 129microRNAs in cattle, including 50microRNAs that

were similar in both species. A total of 79 microRNAs were found only in cattle

trinomial recombination products, with 98% belonging to the mir-30 family,

including the cattle-specific bta-miR-30a-5p and bta-miR-30e-5p. The mir-30

family is closely associatedwith biological processes influencing the quantity and

quality of agricultural products.

Conclusion: Trinomial retrotransposon recombination products were fixed in

both the cattle genome and the genome of its closely related wild species, the

bison. It was found that these products may be involved in the response to

intensive artificial selection and the domestication process since interspecific

di�erentiation of microRNAs is associated with regulatory networks that have

a significant impact on the formation of economically important traits.

KEYWORDS

cattle, bison, retrotransposons, microRNA, miR-30, artificial selection, domestication,

RTE-BovB

1 Introduction

Bos species (taurine cattle, zebu, yak, river buffalo, swamp buffalo, etc.) have complex

patterns of domestication and have been subjects of strong artificial selection (1). The

American bison (Bison bison) is one of the extant Bos species that has not been

domesticated (2). Since domesticated and semi-domesticated Bos species are well known,

cattle and bison represent two extremes on this scale. Therefore, the identification of
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genomic characteristics that distinguish highly specialized

commercial cattle breeds from closely related wild species is of

particular interest. However, the genetic factors underlying the

domestication of Bos species remain unknown (3).

In mammals, mobile genetic elements affect the formation

of new genes and their functional evolution. Increased activity

of mobile genetic elements can contribute to the formation,

subsequent selection, and fixation of new adaptive phenotypic traits

during domestication (4, 5). In addition, these elements are capable

of forming conserved and variable genomic domains (6–8) with

unknown functional features.

Retrotransposons and their recombination products are known

to be the main source of new microRNAs, which are an extensive

class of single-stranded, short (19–24 bp) non-coding RNAs (9),

and they are widely distributed throughout the genome (10–

12). Many studies have highlighted the significant importance of

microRNAs in the regulation of a wide range of biological processes

in different mammalian species (13, 14).

The involvement of microRNA regulatory variants in the

selection process plays an important role during domestication and

subsequent artificial selection. The origin of modern taurine cattle

is closely related to the presence of polymorphic 3′UTRmicroRNA

binding sites in 1,620 genes of modern-day cattle breeds, compared

to its ancestral form, the wild aurochs (Bos primigenius). These

sites influence neurobiological, metabolic, immunobiological, and

reproductive phenotypes associated with domestication (15).

Earlier, we identified 511 domains in bovine chromosome

1 (13,436,028 bp) that were recombination products of the

long interspersed nuclear element (LINE) and the endogenous

retrovirus (ERV). A total of 30 RTE-BovB/BTLTR1/RTE-BovB

clusters (hereinafter BovLTRBov) were found in 12 structural genes

(kcne2, gart, tmem50b, il10rb, ifnar2, urb1, grik1, usp16, ltn1, cyyr1,

app, and jam2). These genes form a large syntenic block that has

been preserved during the evolution of mammals, starting with

the platypus (7, 16). It was found that these BovLTRBov regions

are preserved in the bovine genome with high identity, as they

are part of its regulatory system containing different microRNAs.

Some of these microRNAs are associated with milk and meat

production (12).

To determine how these retrotransposon recombination

products are involved in the response to intensive artificial

Abbreviations: ERV, endogenous retrovirus; LTR, long terminal repeat; LINE,

long interspersed nuclear element; BovLTRBov, the recombination products

between the long interspersed nuclear element and endogenous retrovirus,

such as RTE-BovB/BTLTR1/RTE-BovB; kcne2, Bos taurus potassium

voltage-gated channel subfamily E regulatory subunit 2; gart, Bos taurus

phosphoribosylglycinamide formyltransferase, phosphoribosylglycinamide

synthetase, phosphoribosylaminoimidazole synthetase; tmem50b, Bos

taurus transmembrane protein 50B; il10rb, Bos taurus interleukin 10 receptor

subunit beta; ifnar2, Bos taurus interferon alpha and beta receptor subunit

2; urb1, Bos taurus URB1 71 ribosome biogenesis 1 homolog (S. cerevisiae);

grik1, Bos taurus glutamate ionotropic receptor kainate type subunit 1;

usp16, Bos taurus ubiquitin specifc peptidase 16; ltn1, Bos taurus listerin

E3 ubiquitin protein ligase 1; cyyr1, Bos taurus cysteine and tyrosine rich 1;

app, Bos taurus amyloid beta precursor protein; jam2, Bos taurus junctional

adhesion molecule 2.

selection and, presumably, the domestication process, we compared

microRNA-containing homologous regions in cattle and bison. The

analysis was conducted using open-source bison genomic sequence

data and the sequenced genome of Hereford cattle.

2 Results

2.1 Bison conservative syntenic group

The functional roles of the 12 structural genes (kcne2, gart,

tmem50b, il10rb, ifnar2, urb1, grik1, usp16, ltn1, cyyr1, app, and

jam2) were mostly analyzed in humans (Homo sapiens) and

laboratory mice (Mus musculus), suggesting their close connection

with the central nervous system, particularly in relation to the

occurrence of behavioral disorders (17, 18), Alzheimer’s disease

(19–21), and Down syndrome (22). They form an evolutionarily

conserved block, which can be found in a number of mammals,

including human chromosome 21, mouse chromosome 16, rabbit

chromosome 14, and platypus chromosome 17 (16).

They are also present in bison chromosome 1, maintaining the

same co-localization (Figure 1).

Pairwise comparisons for 12 genes between bison and

cattle demonstrated a high percentage of identity. The

maximum percentage of identity was 99.00% (Bos taurus

phosphoribosylglycinamide formyltransferase, gart), and the

minimum percentage of identity was 91.00% (Bos taurus cysteine

and tyrosine rich 1, cyyr1) (Table 1).

Furthermore, intron-located regions of bovine chromosome 1,

homologous to BovLTRBov, were also found in bison for these

genes. The maximum percentage of identity was 99.63% (Bos

taurus phosphoribosylglycinamide formyltransferase, gart), and

the minimum was 81.5% (Bos taurus junctional adhesion molecule

2, jam2) (Table 2). The frequency of BovLTRBov was 32% higher in

cattle than in bison.

It was found that regions that closely match six bovine

BovLTRBov recombination products in Bos taurus amyloid beta

precursor protein, app, were all present in the same bison sequence

of 2,772 bp in length, which is also part of the app (the coordinates

are shown in Table 3).

One sequence from Bos taurus junctional adhesion molecule

2, jam 2, which is 3,083 bp long in bison, showed a high degree

of homology to two bovine BovLTRBov regions located within the

same gene (Table 3).

Two pairs of highly homologous bovine BovLTRBov regions

from Bos taurus glutamate ionotropic receptor kainate type subunit

1, grik1, were found in two sections of the bison grik1 gene,

measuring 1,559 bp and 1,947 bp in length (Table 3).

Multiple sequence alignments of all bison sequences with

a high percentage of identity to bovine BovLTRBov showed a

minimum percent identity of 90.48% (sequences in listerin E3

ubiquitin protein ligase 1, ltn1, and potassium voltage-gated

channel subfamily E regulatory subunit 2, kcne2) and a maximum

of 100% (between two sequences in amyloid beta precursor protein,

app) (Figure 2).

The percent identity of these bison regions was higher than that

of the cattle recombination products (Figure 3).
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FIGURE 1

Genomic distribution of evolutionarily conserved 12 genes (kcne2, gart, tmem50b, il10rb, ifnar2, urb1, grik1, usp16, ltn1, cyyr1, app, and jam2) in Bos

taurus and Bison bison.

The high similarity between BovLTRBov regions within the

genes from the studied wild-domesticated pair suggested their

specific functional roles. This strong conservation may be due to

the presence of regulatory network elements such as microRNAs.

The regions, homologous to microRNAs, were further searched in

the cattle and bison to test this assumption.

2.2 Analysis of microRNA presence

The following sequence (266 bp) was identified from the Bison

regions homologous to bovine 30 BovLTRBov, with at least 95.29%

similarity (Table 4):

TACTAGCGTGTGAGATGAGTGCAATTGTGC GGTAG

TTTGAGCATTCTTTGGCATTGCCTTTC TTTGGGATTGG

AATGAAAACTGACCTTTTCCAGTCCTGT GGCCACTG

CTGAGTTTTCCAAATTTGCTGG CATATTGAGTGCAGC

ACTTTCACAGCATCAT CTTTCAGGATTTGAAATAGCTC

AACTGG AATTCCATCACCTCCACTAGCTTTGTTC GTAGTG

ATGCTTCCTAAGGCCCACTTGACTTCACATTCCAGGATG

TCT.

Earlier, we identified a conserved sequence of 266 bp in length

from recombination products in cattle (12). The percent identity

between the conserved sequences of cattle and bison was 99.2%

(Figure 4).

The search for microRNAs in the conserved bison sequence

resulted in 51 microRNAs from 30 different species (both animals

and plants). A total of 129 microRNAs from 63 different species

were found in the Bos taurus conserved sequence (Figure 5).

A total of 50 microRNAs were identified as common between

cattle and bison (Figure 6). For example, mtr-miR-5754 (Medicago

truncatula, barrel clover), found in the conserved sequence of

both bison and cattle, is known to decrease the stability of

oncogenic target transcripts in humans, whose products promote

cell proliferation (23).

The most similar plant-specific microRNAs (14 out of 20)

belonged to the miR-397 family. MiR-397 is involved in various

biological processes, including cell growth, reproductive organ

development, and plant resistance to external adverse stimulation.

Additionally, it also is involved in regulating gene functions related

to fatty acid metabolism (24).

MiR-526b overexpression is statistically significant in patients

with bipolar disorder (25). MiR-526b is also associated with various

types of oncological diseases, such as cervical cancer (26) and

breast cancer (27). Moreover, MiR-1272 plays a crucial role in

the regulation of immune signaling, cytokine production, and

migration of immune cells in order to control visceral leishmaniasis

infection in humans (28). Eca-miR-9104 is expressed in horses

during equine herpesvirus 1 infection (29). However, for the

majority of microRNAs homologous between cattle and bison, their

functional roles remain to be studied.

At the same time, it was found that one microRNA, cli-miR-

1416-3p, was absent in cattle but present in bison. This microRNA

belongs to the miR-1416-3p family and is presumably involved in

follicle atresia during specific stages of folliculogenesis in birds (30).

A total of 79 microRNAs were absent in bison but present

in cattle, including 78 microRNAs belonging to the miR-30

family, with 2 bovine-specific microRNAs, namely bta-miR-30a-5p

and bta-miR-30e-5p.

The accumulated evidence suggests that miR-30a-5p and miR-

30e-5p are crucial for regulating key physiological systems in cattle.

They play a key role in the response to heat stress (31), affect the

development of the immune system and the immune response

(32), are vital for milk production (85, 86), can influence milk

composition (81, 82), inhibit the differentiation of muscle cells

(33), and play an important regulatory role in the processes of

fertilization and early development (34).
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MiR-30e-5p and miR-30a-5p are also involved in the process

of aging in humans (35) and play a role in the regulation of

various diseases, including bacterial infections (36). They are

considered potential biomarkers for neurodegenerative disorders

(37), systemic lupus erythematosus (38), diabetes (39), various

tumors (40), and heart diseases (83, 84).

3 Discussion

It is becoming clear that domesticated species differ from

their closely related wild counterparts in terms of a high level

of phenotypic variability (41). Understanding the evolution of

the genetic mechanisms behind phenotypic traits has become

possible by comparing closely related species with their wild

counterparts and identifying key elements that regulate underlying

variability (42).

Nonetheless, selecting the appropriate wild-domesticated pair

has become a fundamental consideration. Along with the European

bison (Bison bonasus) and the gaur (Bos gaurus), the American

bison is one of the few remaining wild animals of the genus Bos

(2). The gaur, on the other hand, has a domesticated form known

as the gayal, and it has been noted that artificial selection has an

impact on the gaur genome (43). In contrast, no domesticated form

of bison is known, and evidence suggests that bovine alleles may

only be present in a limited portion of the genome (44).

To date, a large amount of public data on the organization of

the bovine genome has been accumulated (45–47). We used open-

source Hereford cattle (Bos taurus) gene data based on the Baylor

Btau_4.6.1/bosTau7 October 2011 assembly to maintain the logic

and reproducibility of our previous research. It should be noted

that for the purpose of this study, the use of the latest version of

the cattle reference genome [The ARS-UCD1.3 (47)] did not affect

the results as the sequences of the studied structural genes exhibited

high similarity across different versions (Supplementary material).

Modern sequencing technologies generate new high-quality

assemblies, reducing possible errors in sequences enriched with

elements such as CG repeats (48, 49). However, the type of

animal used for genome obtaining is also of great importance. The

reference scaffold-level bison genome, Bison_UMD1.0, is currently

available in the NCBI database (50). A more recent genome

assembly, ARS-UCSC_bison1.0, (51) exists, but this genome

represents an F1 hybrid between a bison sire and a Simmental cow.

To avoid potential hybridization effects (52, 53), we excluded this

assembly from the analysis.

In the majority of cases of speciation, genetic information

cannot be traced through the evolution of particular genes

but only through gene clusters (54). Synteny analysis, that

is, studying the conserved blocks of genes found in different

species, is one of the comparative genomics methods used

for understanding evolutionary relationships, including those

during domestication (55–57). Genomic studies typically rely on

closely linked and conserved gene clusters and also require an

understanding of the functional features of the genes included in

these clusters (58, 59).

The 12 genes mentioned in this study form a large

syntenic block, maintained during the evolution of mammals,

and are notable for their well-conserved synteny (7, 12).
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TABLE 2 Percent identity matrix of the RTE-BovB/BTLTR1/RTE-BovB recombination products in cattle and bison (pairwise alignment) (%).

No. Cluster % No. Cluster % No. Cluster %

1 2 3 1 2 3 1 2 3

1 +1-gart 99.63 11 +11-grik1 98.0 21 c1-kcne2 93.49

2 +2-tmem50b 99.07 12 +12-grik1 96.9 22 c2-grik1 97.9

3 +3-il10rb 98.84 13 +13-ltn1 87.03 23 c3-grik1 91.0

4 +4-il10rb 99.07 14 +14-app- 91.7 24 c4-grik1 93.3

5 +5-ifnar2 99.47 15 +15-app 97.7 25 c5-usp16 97.99

6 +6-urb1 98.00 16 +16-app 99.0 26 c6-cyyr1 98.51

7 +7-grik1 98.6 17 +17-app 89.2 27 c7-app 89.2

8 +8-grik1 98.1 18 +18-app 84.9 28 c8-app 87.8

9 +9-grik1 97.7 19 +19-app 84.8 29 c9-app 84.9

10 +10-grik1 98.0 20 +20-jam2 81.5 30 c10-jam2 99.12

TABLE 3 Bison sequence coordinates (within the corresponding genes) with a high percentage of identity to the RTE-BovB/BTLTR1/RTE-BovB

recombination products in the cattle.

No. Cluster Beginning End Length No. Cluster Beginning End Length

1 1- gart -Bis 6,481 8,348 1,868 16 C5- usp16-Bis 23,727 24,125 399

2 2- tmem50b -Bis 22,859 25,875 3,017 17 C6- cyyr1-Bis 27,214 29,161 1,948

3 3- il10rb -Bis 24,068 25,872 1,805 18 C7- app -Bis 238,752 241,966 3,215

4 4- il10rb -Bis 15,573 16,759 1,187 19 C3- grik1-Bis 286,114 287,632 1,519

5 5- ifnar2-Bis 43,219 44,162 944 9- grik1-Bis 286,116 288,060 1,945

6 6- urb1-Bis 51,345 54,346 3,002 20 10- grik1-Bis 359,675 361,233 1,559

7 7- grik1-Bis 147,651 150,567 2,917 11- grik1-Bis 359,675 361,233 1,559

8 8- grik1-Bis 215,970 216,535 566 21 C8- app -Bis 164,412 166,018 1,607

9 12- grik1-Bis 466,917 468,534 1,618 C9- app -Bis 164,769 165,870 1,102

10 13- ltn1-Bis 40,839 42,607 1,769 15- app -Bis 164,433 167,183 2,751

11 14- app -Bis 24,343 27,080 2,738 17- app -Bis 164,433 166,087 1,655

12 16- app -Bis 205,433 206,385 953 18- app -Bis 164,430 166,591 2,162

13 C1- kcne2-Bis 1,569 3,525 1,957 19- app -Bis 164,433 166,715 2,283

14 C2- grik1-Bis 110,695 113,631 2,937 22 C10- jam2-Bis 75,734 78,221 2,488

15 C4- grik1-Bis 276,452 278,785 2,334 20- jam2-Bis 76,649 78,816 2,168

These genes are involved in social activity, which is a crucial

component of the domestication process (60). Our results also

support the accumulated evidence that evolutionarily conserved

syntenic blocks have a higher density of genes involved in the

formation of anatomical characteristics and the development of

the central nervous system (61). Hence, these genes are also

believed to be associated with animal socialization and, therefore,

domestication (62, 63). Gart, il10rb, ifnar2, urb1, and ltn1 are

also considered candidates for bovine artificial selection (64–

66). In cattle, tmem50B and app are candidate domestication

genes according to the presence of divergent microRNA binding

sites (15).

The pairwise comparison of the full-length genes indicated they

are highly conserved in both Bos genus species. Therefore, the

identified differences in the presence and genomic position of the

microRNAs, which are involved in the regulatory networks of gene

expression, are intriguing.

The Bison regions, homologous to bovine BovLTRBov, were

never found in exons of either bison or cattle. This may be

because the consensus sequence is too long to be present in exons

without interfering with the genes’ functions. In addition, they

had a lower frequency but higher pairwise identity compared to

cattle. It probably reflects the differences between the two species

in phenotypic variability and the width of species distribution

(1). In addition, the higher proportion of retrotransposons in

domesticated animals compared to their wild counterparts is likely

related to the domestication process (67).

Retrotransposons and their genome distribution are very

species-specific. For example, LINE/RTE-BovB is frequently

found only in Bos species, despite being involved in horizontal
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FIGURE 2

Percent identity matrix. The heatmap shows the bison sequences with a high percentage of identity to RTE-BovB/BTLTR1/RTE-BovB recombination

products in cattle (multiple sequence alignment). The colors indicate the percent identity between the sequences. Green represents 90% identity, red

represents 100% identity, and other colors represent values in between.

FIGURE 3

The percent identity between all the detected regions in the gene block in the Bos taurus and Bison bison.

genetic information transfer (68). This situation is similar

to the presence of SINE/Alu in primate genomes and

SINE/tRNA-Core-RTE in cattle genomes. Even very different

transposons, such as the LINE, SINE, and long terminal

repeat (LTR), can sometimes contain the same regulatory

elements (69).

The in silico microRNA identification strategy is used as

an accurate, fast, and reliable method for predicting microRNA

homologs in different species (70, 71). The proportion of

microRNAs derived from transposons in humans is higher than

in other vertebrates, especially non-mammal vertebrates (72).

We provide evidence that the number of microRNAs derived

from transposons also increases during the domestication process

(Figure 6). It is important to note that multiple hybridization events

between Bos taurus and Bison bison have taken place over the

last 200 years (44). Nevertheless, our study revealed interspecific

differences in microRNA presence. Considering the high identity

of the two conserved sequences, a number of microRNAs were

found in both cattle and bison. The likely diversity of species-

specific microRNAs has been proven by existing scientific data.

Recent evidence suggests that microRNAs can move from plants

to animals via the gastrointestinal tract and access cellular targets,
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affecting the physiological and pathological conditions of their

recipients (73).

The most interesting result of our study is that some

microRNAs were different between the genomes of cattle and

bison. This occurred because of the variations in the conserved

sequences of the two species in three nucleotides at the beginning

and the presence of a single-nucleotide polymorphism (SNP) in

the bison conserved sequence at 251 bp (Figure 4). Of these,

78 microRNAs were from the miR-30 family, including two

bovine-specific microRNAs: bta-miR-30a-5p and bta-miR-30e-5p.

Members of this family are known to increase milk fat content (74),

contribute to the development of muscle tissue in cattle (75), and

play a role in the development of stress and immune responses

(32). Since the microRNAs that differed between the two species

were related to important agricultural differences between cattle

and bison, we assumed that these differences result from intensive

artificial selection.

In general, the obtained results indicate that the accumulation

of retrotransposons and their recombination products may be

a source of microRNA regulatory networks. Our comparative

analysis of the LINE and ERV sequences in a domesticated species

(Bos taurus) and a closely related wild species (Bison bison)

at 12 loci, where synteny has been maintained since the early

stages of evolution, suggests the identification of molecular genetic

pathways underlying the response to intensive artificial selection

and, presumably, the domestication of Bov species. It should be

noted that these gene products are likely to be involved in higher

central nervous system activity in mammals.

Frequently, genome assemblies are insufficient for comparative

genomic analysis as they may limit further interpretation by failing

to capture the entire range of genetic diversity within a species

(76, 77). However, in our study, we analyzed the sequences located

in structural genes that preserve genetic linkage during evolution

in different species. The clear difference we found in microRNA

presence between the cattle and bison and the existing data on the

formation of new binding sites during bovine domestication (15)

both support our hypothesis that microRNAs could be involved in

the process of artificial selection.

4 Materials and methods

The bison annotation release (IDs: 237421 [UID] 1351428

[GenBank] 1426508 [RefSeq]) (50) was retrieved from the NCBI

GenBank (GenBank, RRID: SCR_002760). We used the Bison

chromosome-scale genome, ARS-UCSC_bison1.0, to identify gene

locations (51).

All gene data of Hereford cattle (Bos taurus) were based on

the Baylor Btau_4.6.1/bosTau7 October 2011 assembly available

in the Integrated Genome Browser (IGB, RRID:SCR_011792) to

maintain the logic and reproducibility of our previous research. The

ARS-UCD1.3 reference bovine genome was used to confirm the

reliability and accuracy of the sequences utilized (47). The results

are presented in Supplementary material.

The available cow RepeatMasker genomic dataset was used

for obtaining information on the distribution of mobile genetic

elements and their positioning in the cattle genome (78,
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FIGURE 4

Alignment of the bison (Bison bison) conserved sequence with the cattle conserved sequence, as reported by Skobel et al. (12).

FIGURE 5

Distribution of microRNAs present in the conserved sequences in bison (Bison bison and Bos taurus).
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FIGURE 6

Comparison of microRNAs found in the Bos taurus and Bison bison syntenic gene block.

79). We identified 511 trinomial recombination products RTE-

BovB/BTLTR1/RTE-BovB between the endogenous retrovirus

(ERV) containing the LTR BTLTR1 and the non-LTR long

interspersed nuclear element (LINE) RTE-BovB in the 13,436,028

bp nucleotide sequences of bovine chromosome 1. For further

analysis, we took 30 RTE-BovB/BTLTR1/RTE-BovB (hereinafter

BovLTRBov) recombination products detected in the 12 structural

genes (kcne2, gart, tmem50b, il10rb, ifnar2, urb1, grik1, usp16, ltn1,

cyyr1, app, and jam2), while the rest were found in intergenic

spaces (7).

The coordinates of the 30 cattle RTE-BovB/BTLTR1/RTE-

BovB recombination products according to the Baylor

Btau_4.6.1/bosTau7 October 2011 assembly are indicated in

Supplementary material.

Our previous studies (7, 12) have provided detailed methods

for detecting trinomial recombination products between the

LINE and LTR ERV, analyzing their localization in relation to

structural genes and identifying the RTE-BovB/BTLTR1/RTE-BovB

conserved sequence.

Open-source software provided by the European Institute

of Bioinformatics was used to identify regions of similarity

between the nucleotide sequences of cattle (Bos taurus)

and bison (Bison bison). We used Clustal Omega (Clustal

Omega, RRID: SCR_001591) and Kalign (Kalign, RRID:

SCR_011810) for multiple sequence alignments with default

settings. The EMBOSS Matcher (EMBOSSMatcher, RRID:

SCR_017252) option during the pairwise sequence alignment

was changed. We set the maximum value of alternative

matches to 20 to ensure that possible additional alignments

were not missed, while keeping all other parameters at their

default settings.

The conserved sequence from the bison regions homologous to

bovine was identified manually based on the results obtained from

Kalign (Kalign, RRID: SCR_011810).

To check the presence of microRNAs in the conserved

sequences of both bison and cattle, we used the microRNA database

(v20), sorted by E-value, with the maximum possible number of

results set to be displayed (80).

5 Conclusion

It can be assumed that the trinomial recombination products

between the LINE and the ERV are fixed in the genomes

of cattle and the closely related wild species, bison. These

products could be actively involved in the response to intensive

artificial selection and the domestication process by serving

as sources of microRNAs that have a significant impact on

agriculturally important cattle traits. Consequently, regulatory

networks could change significantly under intensive artificial

selection and probably domestication, not only due to the origin

of new microRNA binding sites (15) but also due to the formation

of new microRNAs.
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Future studies are needed to validate these results by examining

other wild-domesticated pairs of vertebrates and verifying

the functional association with the observed differentiation

of microRNA.
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