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Introduction: Enterocytozoon bieneusi is one of the most frequent 
microsporidia species causing digestive disorder mainly diarrhea in humans and 
animals. Eld’s deer (Rucervus eldii) is the class I national key protected wildlife 
and only distributed on Hainan Island in China. No report on the prevalence and 
molecular characterization of E. bieneusi in wild Eld’s deer worldwide.

Methods: 217 fecal samples were collected from Eld’s deer in two isolated 
habitats of a nature reserve in Hainan, and examined by nested Polymerase 
Chain Reaction (PCR) targeting the internal transcribed spacer (ITS) region.

Results and discussion: The overall prevalence of E. bieneusi in Eld’s deer 
was 17.5% (38/217), with 13.5% (12/89) and 20.3% (26/128) in habitats 1 and 
2, respectively. Seven ITS genotypes were identified, including five known 
genotypes: D (n = 19), Peru11 (n = 10), EbpC (n = 5), Peru8 (n = 1) and Type IV 
(n = 1), and two novel genotypes: HNED-I and HNED-II (one each). Genotypes 
Peru8 and Peru11 were firstly identified in cervids. Phylogenetic analysis showed 
that all the detected genotypes belonged to zoonotic Group 1. The results 
implied that the further research on threaten of E. bieneusi to endangered Eld’s 
deer and potential risks for public health is necessary.
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1 Introduction

Microsporidia are widely spread obligate intracellular pathogens that infect a broad range 
of hosts, including both vertebrates, such as humans, and invertebrates (1, 2). There are about 
220 genera and 1,700 species of microsporidia, which are classified based on their ultrastructural 
features, developmental cycle, host–parasite relationship, and molecular analysis (3). Of the 17 
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microsporidian species known to infect humans, Enterocytozoon 
bieneusi is by far the most frequent species in the clinical setting and 
generally presents as chronic diarrhea and wasting syndrome, 
particularly in immunocompromised individuals such as those with 
AIDS or transplant recipients, as well as travelers, children, and the 
elderly (4–6). It was transmitted by fecal-oral route, mainly by ingestion 
of contaminated food and water with spores (7–9). Due to the difficulty 
of microscopic identification for small size, E. bieneusi is mainly 
detected and genotyped by the method of nested polymerase chain 
reaction (PCR) targeted internal transcribed spacer (ITS) region and 
sequence analysis (10). To date, around 900 different genotypes of 
E. bieneusi have been identified and classed into 13 phylogenetic 
groups (group 1–13) (11). The first two clusters (Groups 1 and 2) 
accounted for a significant proportion (94%) of the total genotypes, 
encompassing the majority of known human-pathogenic genotypes 
and zoonotic genotypes (12). Group 3–13 were host adaptation groups 
and might be present in specific hosts and wastewater (5, 12).

Eld’s deer (Rucervus eldii) is a rare and globally endangered tropical 
deer species, belonging to Artiodactyla, Family Cervidae and Subfamily 
Cervinae. It is distributed across Southeast Asia, Southern China and the 
northeastern part of India. Because of illegal poaching and severe habitat 
encroachment, the global population of Eld’s deer has sharply declined 
(13). It has been listed in Appendix I of the Convention on International 
Trade in Endangered Species of Wild Fauna and Flora (CITES) and 
classified as endangered on the Red List of Threatened Species by the 
International Union for Conservation of Nature (IUCN) and the class 
I national key protected wildlife in China (14–17). In China, Eld’s deer is 
only distribute in Hainan Island. Due to the rapid destruction of habitats 
and intense hunting by humans, only 26 individuals was remained in 
Hainan at end of 1970s (18). Despite fact that the Eld’s deer population 

has recovered and grown after over 40 years of development and 
preservation, it continues to be  extremely vulnerable to extinction 
because of inbreeding, poor genetic diversity, the diminishing 
evolutionary capacity of tiny populations, high population density, and 
infectious diseases (19). At present, no information about E. bieneusi in 
endangered wild Eld’s deer was reported. The aims of this study were to 
investigate the prevalence and molecular characterization of E. bieneusi 
in wild Eld’s deer in Hainan, and provide valuable information for 
development and preservation of this endangered wildlife.

2 Materials and methods

2.1 Ethics statement

The collection of fecal samples from Eld’s deer have been permitted 
by Hainan Bangxi Provincial Nature Reserve without human 
disturbance to the animals. The non-invasive sampling strategy did not 
involve hunting or otherwise manipulating the experimental animals.

2.2 Sample collection

From March to August 2021, a total of 217 fresh fecal samples 
were collected from wild Eld’s deer in two completely isolated areas of 
Hainan Bangxi Provincial Nature Reserve: Habitat 1 (n = 89) and 
Habitat 2 (n = 128) (Figure 1). Fresh specimens (approximately 20 g) 
were immediately collected in sterilized 5-mL tubes with the assistance 
of experienced staff of the nature reserve, after observing the leaving 
of Eld’s deer. Each collected fecal sample should be kept more than 

FIGURE 1

Distribution of sampling sites of Eld’s deer in the Hainan Bangxi Provincial Nature Reserve in the present study.
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3 m apart to ensure that they were not from the same deer, and 
temporarily stored in a refrigerated insulated tank. All the samples 
were taken back to the laboratory for storage at −80°C until analysis.

2.3 DNA extraction and nested PCR 
amplification

Fecal samples were washed with distilled water and centrifuged 
at 1500×g for 10 min. This process was repeated three times. Genomic 
DNA was extracted directly from 200 mg of each processed fecal 
specimen using the QIAamp DNA stool mini kit (Qiagen, Hilden, 
Germany). The extraction procedure adhered to the manufacturer’s 
recommended protocol, with an elevated lysis temperature of 95°C 
to guarantee a high DNA yield. The extracted DNA was stored at 
−20°C until PCR analysis.

To assess the prevalence and genotypes of E. bieneusi, nested PCR 
assays were used to amplify a 390 bp fragment encompassing the ITS 
region as described in primers previously reported (20). Each PCR 
run included a positive control with DNA of the E. bieneusi BEB6 
genotype from goat and a negative control (reagent-grade water 
without DNA). All the secondary PCR products were run on a 1.5% 
agarose gel and visualized by staining the gel with Goldenview.

2.4 Sequencing and phylogenetic analysis

Secondary PCR products of positive samples were sequenced in 
both directions using Big Dye Terminator v3.1 Cycle Sequencing Kit 
(Applied Biosystems, USA) and an ABI PRISM 3730 XL DNA Analyzer 
(Thermo Fisher Scientific, Waltham, MA, USA). Sequence accuracy was 
verified through bidirectional sequencing. The obtained nucleotide 
sequences were aligned with each other and compared to the reference 
sequences downloaded from GenBank using the Basic Local Alignment 
Search Tool (BLAST)1 and ClustalX 1.832 in order to determine the 
genotypes. According to the established nomenclature system, the 
nucleotide sequences of the ITS region identical to known genotypes 
were given the first published name; the nucleotide sequences with 
single nucleotide substitutions, deletions, or insertions as compared to 
the known ITS genotypes were considered novel genotypes (21). 
Meanwhile, the novel genotypes were confirmed by sequencing another 
two separate PCR products of the same preparations.

A phylogenetic analysis was performed using the Neighbor-joining 
(NJ) method as implemented in MEGA 7,3 which was calculated by the 
Kimura 2-parameter model with 1,000 bootstrap replicates. The 
nucleotide sequences representative of the present study have been 
deposited in the GenBank database, with the corresponding accession 
numbers of OL603973 and OL603974 for E. bieneusi.

2.5 Statistical analysis

Statistical analysis were performed using Statistical Package for 
the Social Sciences (SPSS) version 22.0 (SPSS Inc., Chicago, IL, USA). 

1  http://www.ncbi.nlm.nih.gov/BLAST/

2  http://www.clustal.org/

3  http://www.megasoftware.net/

Chi-square analysis was performed to compare the prevalence of 
E. bieneusi among different areas. The difference was considered 
statistically significant when the p < 0.05.

3 Results

3.1 Prevalence of E. bieneusi

The overall prevalence of E. bieneusi in Eld’s deer was 17.5% 
(38/217) in this study. Specifically, the infection rates were 13.5% 
(12/89) in Habitat 1, and 20.3% (26/128) in Habitat 2 (Table 1). There 
was no significant differences in infection rates between the two 
completely independent areas under investigation (p > 0.05).

3.2 Characterization and distribution of 
E. bieneusi genotypes

Seven genotypes were obtained from ITS sequencing of 38 
E. bieneusi isolates, including five known genotypes: genotype D 
(n = 19), Peru 11 (n = 10), EbpC (n = 5), Peru 8 (n = 1) and Type IV 
(n = 1), and two novel genotypes: HNED-I (n = 1) and HNED-II 
(n = 1). Notably, the detected genotypes were different between two 
completely isolated habitats of Eld’s deer. The genotypes Peru 11, 
HNED-I and HNED-II were all detected in samples from Habitat 1, 
but the genotypes D, EbpC, Peru 8 and Type IV were all detected in 
samples from Habitat 2 (Table 1). The phylogenetic analysis of the ITS 
region of E. bieneusi divided the genotypes, which were identified in 
Eld’s deer in this study, all into Group 1 (Figure 2).

Among the 38 recognized sequences, two were novel and labeled as 
genotypes HNED-I (GenBank accession no: OL603974) and HNED-II 
(GenBank accession no: OL603973). Genotype HNED-I exhibited 
97.53% similarity with genotype SHW7 (MT458689) from urban 
wastewater in China, and has four nucleotide substitutions at positions 
128 (T → C), 198 (T → G), 218 (A → G) and 232 (C → G). Compared 
to genotype D (MN704918) from donkeys in China, genotype HNED-II 
exhibited 99.18% similarity and has two nucleotide substitutions at 
positions 3 (A → G) and positions 217 (G → A) (Table 2).

4 Discussion

To date, there have been near 20 reports on the molecular 
epidemiological research of E. bieneusi involving 13 cervid species 

TABLE 1  Prevalence and distribution of genotypes of E. bieneusi in Eld’s 
deer.

Location Infection rate (%) 
(No. of positive/

No. of examined)

Genotypes (n)

Habitat 1 13.5 (12/89) Peru11 (10), HNED-I (1), HNED-II 

(1)

Habitat 2 20.3 (26/128) D (19), EbpC (5), Peru8 (1), Type IV 

(1)

Total 17.5 (38/217) D (19), Peru11 (10), EbpC (5), Peru8 

(1), Type IV (1), HNED-I (1), 

HNED-II (1)
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FIGURE 2

Phylogenetic relationships of representative sequences for the ITS genotypes of E. bieneusi identified from Eld’s deer in present study with reference 
sequences using maximum likelihood analysis. The known and novel genotypes identified in this study were indicated by black squares (■) and red 
circles(●), respectively. Genotype CSK2 from white kangaroo (KY706128) is used as the outgroup.
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worldwide, and the infection rates varied from 0 to 75.0% (Table 3). 
In present study, the overall prevalence of E. bieneusi in wild Eld’s 
deer in Hainan was 17.5%, which was higher than infection rate of 
captive Eld’s deer (14.3%) (22), sika deer (5.7–16.0%) (9, 22–24), 
red deer (6.8–8.3%), Siberian roe deer (11.1%) (25) and free-
ranging Chinese water deer (7.5%) in China (23), wild red deer 
(1.5%) in Spain (26), Sambar deer (4.8%) in Australia (27) and 
white-tailed deer (12.2%) in the USA (28). However, it was 
considerably lower than the prevalence in captive hog deer (75.0%) 
(29), fallow deer (27.3%) (23), sika deer (28.6–44.1%), and red deer 
(20.0–37.5%) (29–31), free-ranging and wild Père David’s deer 
(24.5–35.2%) (23, 32–34) in China, wild Korean water deer (53.6%) 
in Korea (35), and white-tailed deer (32.5%) in the USA (36). 
Notably, the infection rate of E. bieneusi in wild Eld’s deer in this 
study not only was similar to those in wild reindeers (16.8%) (34) 
and captive sika deer (17.8%) in China (9), captive red deer (19.4%) 
in Spain (26), but also in the average rate of cervid species in China 
(19.3%) (37) and around the world (19.7%) (95% CI: 0.021–0.310, 
I2 = 97.651%, p = 0.001, Table 3). The different infection rates of 
E. bieneusi in cervids not only were significantly associated with 
deer species (23), but also were influenced by various living 
conditions, biogeographic distributions, age, susceptibilities and 
health status of individuals (9, 20, 29).

At present, a total of 100 ITS genotypes of E. bieneusi with high 
genotypic heterogeneity and phenotypic diversity have been 
identified in cervid species, including 61 genotypes in Group 1, 38 
genotypes in Group  2 and one in Group  3 (Table  3). Genotypes 
HLJD-V and BEB6 were the most popular genotypes in deer from 
China, and many other genotypes also have been detected in deer 
from Australia, Korea, Spain and the USA, such as D, MWC_d1, J, 
Korea-WL-, WL-, CHN- and JLD- associated genotypes. Many 
genotypes in Groups 1 and 2 have been previously discovered both 
in humans and animals, which implied that E. bieneusi might 
be spread from deer to humans (Table 3). In our research, 7 distinct 
genotypes were identified, including five known (D, EbpC, Peru11, 
Peru8 and Type IV) and two novel genotypes (HNED-I and 
HNED-II) (Table 1). All genotypes of were categorized into Group 1 
(Figure  1). This result indicates a possible risk of zoonotic 
transmission, where these genotypes could potentially pass from Eld’s 
deer to humans. Genotype D was the most prevalent genotypes in 
Eld’s deer with the rate of 50.0% (19/38), which was similar to the 
results of previous studies on wild Korean water deer (35). Genotype 
D also were identified in wild Sambar deer in Australia (27), free-
ranging Père David’s deer (Elaphurus davidianus) (34) and captive 
Sika deer (31) in China. Genotype D was known as the most prevalent 
zoonotic genotype and not only distributed in humans but also in 
livestock (sheep, goat, cattle, and pig), companion animals (cat and 
dog), wild animals (wild boar, wild deer, non-human primates, and 
tiger), and water sources worldwide (12). Genotypes Peru11, EbpC, 
Peru8 and Type IV have been frequently observed in humans and 
various animal hosts, including nonhuman primates, domesticated 
animals, and avian species (11, 38). To our knowledge, genotypes 
Peru11 and Peru8 have not been documented in deer previously. This 
work represented the initial detection of these two genotypes in 
cervid species, broadening their recognized range of hosts. Genotype 
EbpC has been detected in wild Père David’s deer (32) and captive 
Sika deer in China (9, 24, 31). Remarkably, genotypes Peru8 and 
EbpC have been reported in diarrheic livestocks, and genotype EbpC T

A
B

LE
 2

 P
o

si
ti

o
n

s 
o

f 
n

u
cl

eo
ti

d
e 

ch
an

g
es

 o
f 

kn
o

w
n

 a
n

d
 n

o
ve

l g
en

o
ty

p
es

 o
f 

E
. b

ie
n

eu
si

 is
o

la
te

s 
in

 p
re

se
n

t 
st

u
d

y.

G
e

n
o

ty
p

e
3

3
1

5
1

5
2

8
1

9
3

11
3

11
7

12
8

13
0

13
1

13
8

14
1

16
5

17
6

19
8

2
17

2
18

2
3

2
A

cc
e

ss
io

n
 

n
o

.
Ty

p
e

 o
f 

g
e

n
o

ty
p

e
s

SH
W

7
A

A
G

T
T

T
T

T
T

G
A

A
T

T
G

T
G

A
C

M
T4

58
68

9
Re

fe
re

nc
e

H
N

PL
-I

·
·

·
·

·
·

·
·

C
·

·
·

·
·

·
G

·
G

G
O

L6
03

97
4

N
ov

el

H
N

PL
-I

I
G

G
·

·
C

C
C

·
·

·
G

G
·

G
A

·
A

·
·

O
L6

03
97

3
N

ov
el

D
·

G
·

·
C

C
C

·
·

·
G

G
·

G
A

·
·

·
·

K
P2

62
37

9
K

no
w

n

Pe
ru

11
·

G
·

·
C

C
C

·
·

A
G

G
·

G
A

·
·

·
·

M
T2

31
50

7
K

no
w

n

Pe
ru

8
·

G
·

·
C

C
C

G
·

·
G

G
·

G
A

·
·

·
·

M
N

74
74

70
K

no
w

n

Ty
pe

 IV
·

G
·

·
C

·
C

G
·

·
G

G
·

G
A

·
·

·
·

M
K

98
24

99
K

no
w

n

Eb
pC

·
G

·
·

C
·

·
G

·
·

G
G

C
G

A
·

·
·

·
A

F1
35

83
2

K
no

w
n

https://doi.org/10.3389/fvets.2025.1521055
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Z
h

an
g

 et al.�
10

.3
3

8
9

/fvets.2
0

2
5.152

10
55

Fro
n

tie
rs in

 V
e

te
rin

ary Scie
n

ce
0

6
fro

n
tie

rsin
.o

rg

TABLE 3  Prevalence and distribution of genotypes of E. bieneusi in cervid species.

Species Existence Locations Infection rate (%) (No. of 
positive/No. of 

examined)

Genotypes (n) References

Chinese water deer (Hydropotes inermis inermis) free-ranging Beijing, China 7.5 (3/40) HLJD-V (1), HND-I (1), BJCWD (1) (23)

Fallow deer (Dama dama) wild Melbourne, Australia 0 (0/17) — (27)

wild BR1-5, Spain 0 (0/96) — (26)

captive Sichuan, China 0 (0/7) — (29)

captive Beijing, China 27.3 (15/55) HLJD-V (2), BEB6 (2), MWC_d1 (1), BJFD (10) (23)

Eld’s deer (Rucervus eldii) wild Hainan, China 17.5 (38/217) D (19), Peru11 (10), EbpC (5), Peru8 (1), Type IV (1), HNED-I (1), HNED-II (1) This study

captive Hainan, China 14.3 (1/7) HNED-III (1) (22)

Hog deer (Axis porcinus) captive Sichuan, China 75.0 (3/4) BEB6 (2), CHS9 (1) (29)

Korean water deer (Hydropotes inermis 

argyropus)

wild Chungbuk, Jeonbuk, 

ChungNam, JeonNam and 

GyungNam, Korea

53.6 (52/97) D (29), Korea-WL1 (12), Korea-WL2 (5), Korea-WL5 (1), Korea-WL6 (1) (35)

Père David’s deer (Elaphurus davidianus) wild Henan, China 34.0 (16/47) Type IV (4), EbpC (4), EbpA (4), BEB6 (2), COS-I (1), COS-II (1) (32)

Père David’s deer (Elaphurus davidianus) wild Hubei, China 35.2 (45/128) HLJD-V (42), MWC_d1 (3) (33)

free-ranging Beijing, China 30.0 (24/80) HLJD-V (12), MWC_d1 (4), BEB6 (1), BJED-I to BJED-V (7) (23)

free-ranging Beijing, China 24.5 (70/286) HLJD-V (35), MWC_d1 (14), BEB6 (3), D (2), Peru6 (1), BJED-I (2), BJED-II (5), 

BJED-III (2), BJED-IV (2), BJED-V (4)

(34)

Reindeers (Rangifer tarandus) wild Great Hinggan Mountains, 

China

16.8 (21/125) CHN-RD1 (12), Peru6 (6), CHN-RD2 - CHN-RD4 (one each) (49)

Red deer (Cervus elaphus) wild Melbourne, Australia 0 (0/77) — (27)

wild BR2 and BR3, Spain 1.5 (5/329) EbCar2 (1), S5 (2), BEB17 (1), Type IV (1) (26)

captive Heilongjiang, China 20.0 (1/5) HLJD-V (1) (30)

captive Heilongjiang, China 6.8 (3/44) BEB6 (2), HLJD-VI (1) (25)

captive Sichuan, China 25.0 (1/4) BEB6 (1) (29)

captive Liaoning, China 8.3 (5/60) BEB6 (5) (25)

captive Jilin, China 37.5 (6/16) BEB6 (2), JLD-IV (3), JLD-XIII (1) (31)

captive BR5, Spain 19.4 (63/324) HLJD-V (43), BEB6 (3), MWC_d1 (1), Wildboar3 (6), DeerSpEb1 (7), DeerSpEb2 

(13), DeerSpEb3 (1)

(26)

wild BR1-5, Spain 0 (0/93) — (29)

Sambar deer (Rusa unicolor) wild Melbourne, Australia 4.8 (25/516) MWC_d1 (19), D (3), J (1), Type IV (1), MWC_d2 (1) (27)

Siberian roe deer (Capreolus pygargus) captive Liaoning, China 11.1 (2/18) BEB6 (2) (25)

(Continued)
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TABLE 3  (Continued)

Species Existence Locations Infection rate (%) (No. of 
positive/No. of 

examined)

Genotypes (n) References

Sika deer (Cervus nippon) captive Jilin, China 44.1 (15/34) BEB6 (12), HLJD-V (3) (30)

captive Jilin, China 7.1 (23/326) J (11), BEB6 (4), EbpC (1), CHN-DC1 (1), KIN-1 (1), JLD-1 (2), JLD-2 (2), JLD-3 

(1)

(24)

captive Jilin and Henan, China 35.9 (215/599) BEB6 (129), HLJDI (18), EbpC (3), HLJD-IV (2), COS-I (1), EbpA (1), D (1), 

JLD-I (7), JLD-II (5), HND-I (4), JLD-III (2), HND-II (1), JLD-IV (3), JLD-V (2), 

JLD-VI (5), HND-III (1), JLD-VII (1), JLD-VIII (16), JLD-IX (1), JLD-X (1), 

HND-IV (1), JLD-XI (2), JLD-XII (1), JLD-XIV (7)

(31)

captive Jilin, China 17.8 (96/538) BEB6 (74), EbpC (3), I (1), JLD-III (1), JLD-IX (1), JLD-XV (2), JLD-XVI (1), 

JLD-XVII (2), JLD-XVIII (2), JLD-XIX (2), JLD-XX (2), JLD-XXI (2), JLD-XXII 

(1), JLD-XXIII (2)

(9)

captive Hainan, China 14.3 (1/7) CM1 (1) (22)

captive Heilongjiang, China 32.6 (13/52) BEB6 (8), HLJD-I -HLJD-V (one each) (30)

captive Heilongjiang, China 16.0 (13/81) BEB6 (10), JLD-VIII (3) (9)

Sika deer (Cervus nippon) captive Sichuan, China 28.6 (2/7) BEB6 (1), SC03 (1) (29)

captive Liaoning, China 5.7 (2/35) LND-I (1), JLD-XVI (1) (9)

captive Beijing, China 12.5 (5/40) CGC2 (3), JLD-XV (2) (23)

White-tailed deer (Odocoileus virginianus) wild New York, USA 12.2 (6/49) WL18 (2), WL19 (2), WL4 (2) (28)

wild Maryland, USA 32.5 (26/80) WL4 (7), I (4), J (1), LW1 (1), DeerEb1-DeerEb13 (one each) (36)

Total 19.7a (816/4,540) Group 1: HLJD-V (140), D (54), MWC_d1 (42), EbpC (16), Korea-WL1 (12), 

CHN-RD1 (12), BJFD (10), Peru11 (10), Type IV (7), Peru6 (7), JLD-I (7), 

DeerSpEb1 (7), Wildboar3 (6), JLD-II (6), HND-I (5), JLD-VI (5), Korea-WL2 (5), 

EbpA (5), JLD-III (3), S5 (2), JLD-2 (2), JLD-V (2), JLD-XVI (2), JLD-XVIII (2), 

JLD-XIX (2), WL18 (2), WL19 (2), Peru8 (1), HNED-I (1), HNED-II (1), Korea-

WL5 (1), Korea-WL6 (1), EbCar2 (1), BEB17 (1), MWC_d2 (1), CHN-DC1 (1), 

KIN-1 (1), JLD-3 (1), JLD-XXII (1), HLJD-II (1), HLJD-III (1), SC03 (1), HND-II 

(1), HND-III (1), LW1 (1), CHN-RD2 - CHN-RD4 (oen each), DeerEb1- 

DeerEb13 (one each)

Group 2: BEB6 (263), JLD-VIII (19), HLJDI (18), J (13), DeerSpEb2 (13), I (5), 

JLD-XIV (7), BJED-II (6), JLD-IV (6),

Total 19.7a (816/4,540) BJED-V (5), JLD-XV (4), BJED-I (3), BJED-III (3), BJED-IV (3), HLJD-IV (3), 

CGC2 (3), COS-I (2), JLD-1 (2), JLD-XVII (2), JLD-IX (2), JLD-XX (2), JLD-XXI 

(2), JLD-XXIII (2), BJCWD (1), HNED-III (1), CHS9 (1), COS-II (1), HLJD-VI 

(1), JLD-XIII (1), DeerSpEb3 (1), JLD-VII (1), JLD-X (1), JLD-XI (1), JLD-XII (1), 

CM1 (1), HLJD-I (1), HND-IV (1), LND-I (1), Group 3: WL4 (9)

aThe random-effects model was used to analyse E. bieneusi infection in deer worldwide (95% CI: 0.021–0.310, Heterogeneity: I2 = 97.651%, p = 0.001).
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was the main genotype and demonstrating higher genetic diversity 
than others in diarrheic pigs in China (39–42), which implied that 
these 2 genotypes might be  associated with intestinal disease in 
artiodactyl animals, including deer. Genotype Type IV was dominant 
genotype in wild Père David’s deer in Henan, China (32), which also 
was identified in wild Sambar deer in Australia (27) and Red deer in 
Spain (26). In our study, the novel genotype HNED-I showed the 
highest match (97.53% identity) with E. bieneusi genotype SHW7, 
obtained from urban wastewater in China in 2020 (43). Genotype 
SHW7 also has been found in civets and bamboo rats in Hainan (44, 
45), and wild rats in Zhejiang, China (46). The novel genotype 
HNED-II exhibited 99.18% similarity with genotype D, obtained 
from donkeys in China in 2020 (47).

Despite no significant difference between infection rates of 
E. bieneusi in Eld’s deer from two completely isolated habitats, the ITS 
genotypes carried by Eld’s deer in perfectly independent habitats were 
rather different. Genotypes Peru11, HNED-I and HNED-II were 
detected in samples from Habitat 1, but genotypes D, EbpC, Peru8 and 
Type IV were identified from Habitat 2 in the nature reserve. Moreover, 
the genotype HNED-III was identified in captive Eld’s deer in Hainan 
Tropical Wildlife Park in our previous research (22). The similar results 
were found in research on E. bieneusi in Père David’s deer from Henan, 
Hubei and Beijing (23, 32, 33), and in giant pandas from Sichuan and 
Shaanxi in China (30, 48). These data suggest that the difference among 
genotypes of E. bieneusi in the same animal species may be related to 
living status, habitant environment and sources of infection. Currently, 
there were no reports on direct evidence of deer’s diarrhea caused by 
E. bieneusi, but it was crucial to persistently observe and comprehend 
the epidemiology of E. bieneusi in endangered Eld’s deer to acquire a 
more profound comprehension of its transmission patterns and 
prospective consequences on health and survival of Eld’s deer.

5 Conclusion

In summary, E. bieneusi infection was detected in wild globally 
endangered Eld’s deer for the first time. Seven ITS genotypes were 
identified and all belonging to zoonotic Group 1. The discovery of 
novel genotypes HNED-I and HNED-II offered more genetic 
diversity of E. bieneusi. Genotypes Peru11 and Peru8 were first 
identified in cervids in this study. The future studies should 
systematically focus on revealing the biological characteristics of 
E. bieneusi and assessing its potential threats to public health, 
veterinary, and Eld’s deer conservation.
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