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Introduction: Bovine mastitis in dairy cattle is often complicated by antibiotic-
resistant bacteria such as Staphylococcus aureus. Metal-based nanoparticles, 
especially plant-mediated nanoparticles have emerged as promising therapeutic 
tools for treating S. aureus-associated mastitis through the intramammary route. 
In this study, we synthesized, characterized, and assessed the antioxidant activity 
of Thespesia populnea nano silver particles (TPNS) and Thespesia populnea 
nano zinc oxide particles (TPNZ) derived from Thespesia populnea leaf extract 
(TPE). Silver nitrate and zinc acetate were reduced using TPE to synthesize TPNS 
and TPNZ, which were characterized by Scanning Electron Microscopy (SEM), 
UV–Visible Spectroscopy, Dynamic Light Scattering (DLS), and Zeta Potential 
analysis. The antioxidant activity of green-synthesized nanoparticles was 
evaluated in mastitis-induced mice.

Methods: Forty-eight female Swiss albino mice, 10–15 days of lactation, were 
divided into six groups (number of mice in each group-8). Group I  served as 
the control, while mastitis was induced in groups II, III, IV, V and VI. Group III 
received T. populnea methanolic leaf extract (TPE); groups IV and V were treated 
with TPNS and TPNZ respectively; and group VI received Ceftriaxone.

Results: UV–Visible Spectroscopy confirmed the successful reduction of the 
metal ions to nanoparticles. SEM and DLS analysis revealed agglomerated 
morphologies with minimal variations in particle size. TPNS had a higher zeta 
potential than TPNZ, indicating a greater stability in the suspension. Mastitis-
induced group showed significantly increased thiobarbituric acid reacting 
substances (TBARS) levels (p < 0.01) and significantly decreased Superoxide 
dismutase (SOD), Glutathione- S- transferase (GST), catalase (CAT), reduced 
glutathione (GSH), and glutathione peroxidase (GPx) activities (p < 0.01) 
compared to group I. Improvements were observed in groups IV, VI, V, and III.

Conclusion: The TPNS-treated group (IV) showed the highest restoration of 
antioxidant activity, followed by the ceftriaxone (VI), TPNZ (V), and TPE-treated 
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groups (III). These findings suggest that phytogenic nanoparticles exhibit higher 
antioxidant activity than TPE extract alone.
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Thespesia populnea, TPNS, TPNZ, antioxidant parameters, green synthesis, mice 
mastitis model

1 Introduction

Bovine mastitis is a destructive disease of cattle that causes 
significant economic losses in the dairy industry (1). Staphylococcus 
aureus is a common cause of bovine mastitis. The disease is linked to 
oxidative stress from bacterial invasion, as indicated by changes in the 
oxidative stress parameters in the blood (2, 3). During inflammation, 
phagocytes produce reactive oxygen species (ROS) that destroy the 
bacteria (4). Excessive ROS production can overwhelm the antioxidant 
system and adversely affect the immune system of cows (5). ROS can 
oxidize macromolecules, such as proteins, lipids, and deoxyribose 
nucleic acid (DNA), causing oxidative cell damage and altering 
metabolic pathways (6). Oxidative stress can enhance the adherence 
of active neutrophils to mammary endothelial cells, worsening 
inflammation (7). Clinical and subclinical mastitis leads to the release 
of free radicals and a reduction in the total antioxidant capacity (8). 
Severe mastitis results in antioxidant imbalance due to excessive 
peroxynitrite production (9). Evaluating peroxidative damage 
products (TBARS) and antioxidants, such as glutathione and enzymes 
(SOD, GPx, and catalase), may serve as markers of oxidative stress and 
antioxidant status (10). Mastitis alters redox potential, increases 
oxidative free radicals, and decreases protective antioxidant enzymes 
(10). In addition to oxidative stress, bacterial infections in mastitis are 
difficult to combat because of the ability of bacteria to evade the host 
immune response through biofilms, exotoxins, proteases and bacterial 
superantigens, and by adhering to mammary epithelial cells (11). 
Staphylococcus aureus induced mastitis poses a significant challenge 
in the dairy industry because of the ability of bacteria to survive in 
phagocytes and epithelial cells, rendering antibiotic treatment 
ineffective (12). Therefore, alternative treatment options are needed. 
Studies indicate that adequate antioxidant intake in dairy cows 
enhances immunological functions such as phagocytosis, bacterial 
killing, and neutrophil oxidative metabolism (13). Recent studies have 
highlighted that inorganic nanoparticles effectively scavenge reactive 
oxygen species (14, 15).

Nanomedicine is an emerging field that involves the fabrication of 
nanoparticles for therapeutic applications (16, 17). Nanoparticles 
exhibit unique physicochemical properties (17). Various materials, 
including metals, metal oxides, and silicates, have been used to create 
nanoparticles (18). Noble metals like copper (Cu), silver (Ag), gold 
(Au), and titanium (Ti) are commonly used for nanoparticle 
fabrication (19).

While AgNPs can induce oxidative stress in disease-causing 
organisms, which indirectly reduces free radical generation, their free 
radical scavenging activity is attributed to the functional groups 
present on their surfaces (20). Zinc oxide nanoparticles have 
demonstrated antioxidant properties in both intracellular and 
extracellular environments (21). By activating antioxidant enzymes, 
ZnO nanoparticles reduce the quantity of free radicals intracellularly, 
whereas their use of electron transfer reduces free radicals in the 

extracellular environment to perform their free radical scavenging 
action (22). However, green-synthesized nanoparticles have been 
found to have higher antioxidant properties, which is attributed to the 
capping and stabilizing properties of various phytochemicals involved 
in their production (23).

The production of large quantities of nanoparticles often involves 
physical techniques that can yield highly pure nanoparticles; however, 
these techniques typically require expensive equipment, high pressures 
and temperatures (24, 25), as well as a significant amount of energy. 
Alternatively, chemical processes such as chemical reduction and 
electrochemical and sol–gel processes can also be  used to create 
nanoparticles, but these methods may produce hazardous or polluting 
waste due to the inclusion of toxic reagents or solvents (26, 27).

The synthesis of nanoparticles using green methods primarily 
involves the incorporation of cell extracts, such as those derived from 
plants, microorganisms, algae, and fungi, into a substrate without the 
use of harmful chemicals. The aerial parts of plants, such as the leaves 
and flowers, are frequently utilized in green synthesis. Numerous 
researchers have found that proteins and secondary metabolites 
present in plant extracts serve as reducing and capping agents that 
promote the production of nanoparticles (28, 29). Phytochemicals, 
such as vitamins, amino acids, polysaccharides, terpenoids, alkaloids, 
and other compounds extracted from plants, help in the effective 
bio-reduction of metal ions during the synthesis of nanoparticles, 
which exhibit stability and variability in their structure and dimension. 
Plant components, ranging from leaves to roots, are widely used to 
produce metal oxide nanoparticles.

Thespesia populnea of the Malvaceae family, commonly known as 
the Indian tulip tree, is widely distributed in the southeastern and 
coastal forests of India. The bark, blossoms, and leaves of this tree, also 
known as the portia tree, possess medicinal benefits that can be used 
to treat skin infections (30). Research has shown that T. populnea 
leaves contain flavonoids, tannins, saponins, terpenoids, polyphenols, 
glycosides, alkaloids, quercetin, phytosterols, lupeol, and rutin (31, 
32). The phytochemicals found in T. populnea have been shown to 
possess anti-inflammatory, anti-diarrheal, antibacterial, antifungal, 
and haemostatic properties so it is used in traditional medicinal 
systems like Sidha and Ayurveda especially the bark and leaves are 
often used in decoctions or poultices, while the fruits and seeds are 
be used in oil preparations (33, 34). However, studies examining the 
effectiveness of T. populnea herbal extract in eliminating oxidative 
stress related to bacterial mastitis using metal nanoparticles are 
limited. Considering this, the current study aimed to investigate the 
green synthesis and characterization of Ag and ZnO nanoparticles 
from T. populnea leaf extract, as well as the antioxidant activity of 
these nanoparticles in the treatment of mastitis in a murine model.

This study focuses on the synthesis and characterization of silver 
(AgNPs), ZnO nanoparticles derived from Thespesia populnea extract 
using green synthesis approach. The main objective is to evaluate the 
antimicrobial activity of the nanoparticles against Staphylococcus 
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aureus induced mouse mastitis model, assess their antioxidant 
properties in  vivo, and investigate their potential for reducing 
oxidative stress in mastitis model. The study did not include long-term 
toxicity assessments and the plant extract was sourced during a single 
season, which may limit the seasonal variability of its 
bioactive compounds.

2 Materials and methods

The experiment was conducted at the Department of Veterinary 
Biochemistry, College of Veterinary Science, Rajendranagar, 
Telangana, India, using T. populnea leaves collected from Andhra 
Pradesh, India which were harvested during the flowering season 
(February to March). Higher concentrations of bioactive compounds 
were found during this period in Thespesia populnea.

2.1 Preparation of T. populnea methanolic 
leaf extract

Hundred gram of dried, coarsely powdered T. populnea leaves was 
soaked in 95% methanol for 72 h with intermittent mixing. The 
concentrated filtrate was air-dried and the percentage yield was 
calculated after weighing.

2.2 Synthesis of TPNS

Ninety milliliter of 0.1 M silver nitrate solution was added to 
10 mL of 2% T. populnea methanolic leaf extract at 95°C with vigorous 
stirring. The color change of the solution from pale yellow to brown 
indicates the formation of TPE-mediated AgNPs.

2.3 Synthesis of TPNZ

Four milliliter of TPE was added dropwise to 0.5% zinc acetate, 
and the solution was mixed using a magnetic stirrer for 10 min. The 
pH was adjusted to 12 using 2 M NaOH, resulting in a white 
crystalline ZnO precipitate, which was repeatedly washed, filtered, and 
dried at 60°C to obtain ZnO nanoparticles.

2.4 Scanning electron microscopy

Morphology of TPNS and TPNZ nanoparticles was determined 
by SEM machine (JEOL JSM—5,600, Japan) operating in high vacuum 
mode with an acceleration voltage of 15 kV.

2.5 Dynamic light scattering analysis

The particle velocity distribution was assessed by measuring the 
dynamic fluctuations in the light-scattering intensity, and the Stokes-
Einstein equation was used to determine the hydrodynamic radius or 
diameter, with measurements conducted using a Nanopartica SZ-100 
instrument (Horiba, Japan).

2.6 Zeta potential

Zeta potential provides the net surface charge of the nanoparticles, 
as determined by Kim et al. (35).

2.7 Animals

Female albino mice (25–35 g) were sourced from M/s. Jeeva Life 
Sciences, Hyderabad, Telangana, India and were approved by the 
Institutional Animal Ethics Committee (I/2018-3/IAEC/C.V.Sc., Hyd).

2.8 Experimental design

Forty-eight lactating female Swiss Albino mice (10–15 days 
postpartum) weighing 35–40 g were randomly divided into six groups 
(n = 8). Group I  was the control group. After anaesthesia using a 
mixture of ketamine and xylazine at the rate of 87 and 13 mg/kg of 
body weight, respectively, mastitis was induced in groups II to VI via 
intramammary inoculation of 20 μL of S. aureus (4.0 × 104 C.F.U.) 
isolated from a field strain isolated from bovine mastitis in Left 4th 
teat (36) with a 33-gauge hamilton blunt needle after exposing the teat 
canal by cutting the end of the teat under a binocular microscope. The 
antibiotic susceptibility profile of the S. aureus strain was determined 
prior to the study using the disc diffusion method. The strain was 
tested for sensitivity to ceftriaxone using a ceftriaxone disc (30 μg), 
and the zone of inhibition was measured. The highest zone of 
inhibition was found to be against ceftriaxone followed by tetracycline, 
gentamycin, O floxacin and streptomycin.

Later, the mice were administered butorphenol at a rate of 3–5 mg/kg 
body weight to prevent post-inoculation trauma. The CPCSEA guidelines 
were followed during the procedure. Six hours post-inoculation, Group 
I  received PBS; Groups III, IV, V, and VI were intramammary 
administered 20 μL each of TPE (in 1% aqueous DMSO), TPNS, TPNZ, 
and Ceftriaxone (Intacef-4, INTAS Pharmaceuticals Limited, INDIA) 
into L4. The induction of mastitis in the mice was confirmed by observing 
characteristic signs of inflammation (swelling, redness, and discharge) at 
the site of infection within first 24 h. After 48 h of inocculation, the signs 
were more pronounced and the mice were anesthetized with ketamine 
and euthanized using Co2 chamber. Blood collected via cardiac puncture 
was stored in heparin-coated tubes for oxidative stress and antioxidant 
analysis. To evaluate oxidative stress and antioxidant parameters, whole 
blood was used to estimate GSH (37), and hemolysate was prepared to 
assess TBARS (38), SOD (39), CAT (40), GPx (41), and GST (42).

The green synthesized nanoparticles were characterized using 
SEM, DLS, and UV–Vis spectroscopy. In vitro antimicrobial testing 
was performed against Staphylococcus aureus, while in vivo antioxidant 
effects were assessed in murine mastitis model. No seasonal variation 
of the plant extract was considered, and the study did not include 
investigations into chronic toxicity.

2.9 Statistical analysis

The data obtained from the experimental animals of different 
treatment groups were tabulated and analyzed to determine the 
significance among the experimental groups according to the 
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procedures of Snedecor and Cochran (43) using a statistical package 
for social sciences (SPSS – 20 software, IBM, United States). Statistical 
significance was analyzed using one-way factorial analysis of variance 
(ANOVA) and evaluated using Duncan’s multiple comparison test. 
The significance level was set at p < 0.01. Data are expressed as 
mean ± standard error (SE).

3 Results

Synthesis and Characterization of Nanoparticles UV–VIS 
Analysis: Figures 1A,B display the UV–visible absorption spectra 
of the TPNS and TPNZ particles, respectively. TPNS particles 
exhibited a maximum absorbance peak at 421 nm, confirming the 
bioreduction of Ag+ to Ag (0). The absorption spectrum of the 
TPNZ particles, recorded between 200 and 800 nm, showed a peak 
at 260 nm, indicating the formation and stability of 
ZnO nanoparticles.

3.1 Characterization of T. populnea 
methanolic extract mediated nanoparticles 
using UV–visible spectroscopy

The reduction of pure nano ions was monitored by measuring the 
UV–visible spectrum of the reaction medium after 5 h, with the 
sample diluted in distilled water, using a UV–Visible 
Spectrophotometer (Spectrophotometer UV–VIS spectrophotometer 
UV-2450, Shimadzu, Japan).

3.2 Scanning electron microscopy analysis

SEM analysis of the TPNS particles, depicted in Figure 2A, shows 
electron-dense and elliptical-to-spherical nanoparticles arranged in 

clusters. The SEM analysis of the TPNZ particles (Figure 2B) showed 
that the spherical particles were uniformly distributed.

3.3 DLS technique

DLS technique was used to determine the hydrodynamic diameter 
of the nanoparticles. The measurements revealed that the TPNS 
particles (Figure 3A) had a size of 99 nm, while the TPNZ particles 
(Figure 3B) exhibited a size of 87.7 nm.

3.4 Zeta potential

The zeta potential for T. populnea-mediated nano-silver 
nanoparticles was measured as 90.5 mV (Figure  4A) with an 
electrophoretic mobility (mean) of −0.000700 cm2 /Vs. The zeta 
potential and electrophoretic mobility (Figure  4B) of T. populena 
mediated nano ZnO particles were found to be  48.5 mv and 
000376 cm2 /Vs, respectively.

3.5 Evaluation of oxidative stress and 
antioxidant parameters

Oxidative stress marker assays confirmed the antioxidant efficacy 
of the synthesized TPNS and TPNZ particles. Group II exhibited 
significantly elevated TBARS levels and reduced SOD, CAT, GSH, 
GPx, and GST activities (p < 0.01) compared with the other groups. 
No significant differences were observed in TBARS and GSH activities 
between groups IV and I. Similarly, SOD and GST activities did not 
differ significantly between groups III and V. Table  1 shows no 
significant difference in GPx activity between Groups V and 
VI. TBARS levels in Groups VI, V, and III were significantly lower 
(p < 0.01) than those in Group II. The activities of SOD, CAT, GSH, 

FIGURE 1

(A) UV-Visible spectrum of TPNS. (B) TPNZ nanoparticles.
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FIGURE 2

(A) SEM image analysis of TPNS particles. (B) TPNZ particles.

FIGURE 3

(A) Dynamic Light Scattering (DLS) analysis of TPNS nanoparticles. (B) Dynamic Light Scattering (DLS) analysis of TPNZ nanoparticles.

FIGURE 4

(A) Zeta potential measurement of TPNS nanoparticles. (B) Zeta potential measurement of TPNZ nanoparticles.
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GPx, and GST were significantly increased (p < 0.01) in groups IV, VI, 
V, and III, respectively, compared with those in group II.

4 Discussion

Green synthesis of nanoparticles, leveraging various 
phytochemicals in plant extracts, is biocompatible and 
environmentally friendly, making it efficient for large-scale 
biomedical applications (44). In this study silver and ZnO 
nanoparticles were synthesized using T. populnea methanolic leaf 
extract and characterized by UV–VIS analysis, SEM, DLS, and Zeta 
potential measurements. The addition of 1 mM silver nitrate and 
zinc acetate to T. populnea leaf extract resulted in a color change, 
confirming the production of TPNS and TPNZ (45, 46). UV–VIS 
spectroscopy indicated peaks at 421 nm and 260 nm for TPNS and 
TPNZ, respectively, suggesting bioreduction of aqueous silver ions 
(Ag+) upon exposure to plant extracts. Phytochemicals in 
T. populnea leaf extracts facilitate the transformation of silver ions 
into metallic nanoforms (47). Previous studies have shown peaks 
around 420 nm for T. populnea-synthesized silver nanoparticles 
(48) and 295 nm for TPNZ (49), while ZnO nanoparticles from 
Deverra tortuosa and the aqueous extract exhibited peaks in the 
200–800 nm range (50), which is consistent with the findings of this 
studyTPNS and TPNZ particles were further characterized using 
SEM to examine their morphologies and structures. The SEM image 
analysis in this study revealed the formation of elliptical to spherical 
agglomerated TPNS, consistent with the findings of Bhuyar et al. 
(51) and Widatalla et al. (52) using Padina sp. and green tea leaf 
extracts. SEM images of TPNZ showed uniformly distributed 
spherical particles, aligning with results from Yedurkar et al. (53) 
and Muhammad et  al. (54), who synthesized spherical ZnO 
nanoparticles using Ixora coccinea and Papaver somniferum leaf 
extracts, respectively. DLS, a technique for measuring particle size 
through laser beam analysis of Brownian motion in suspension, 
revealed sizes of 99 nm for TPNS and 87.7 nm for TPNZ. Similar 
diameters were reported for TPNS synthesized from Rizophora 
apiculata (99 nm) (55). Comparable sizes of 70 and 100 nm have 
reported for TPE-mediated silver nanoparticles (48) and M. oleifera 
seed extract-mediated silver nanoparticles (56). Sundrarajan et al. 
(57) reported a size of 100 nm for Pongamia pinnata leaf extract-
mediated nano ZnO particles via DLS, while Shukla et  al. (58) 
showed a size range of 76.2 to 183.8 nm for Zinc oxide nanoparticles 
synthesized from Aspergillus niger.

The zeta potential method is crucial for estimating the surface 
charge of nanoparticles, which is essential for their 
characterization and understanding the physical stability of 
nanosuspensions (19). Studies (59) have indicated that stable 
particles have a zeta potential of ≥ + 30 mV or ≤ −30 mV. A 
positive charge value of +37.4 mv of zeta potential for silver 
nanoparticles synthesized using Morus alba leaf extract were 
reported by Das et al. (60).

TPNS displays higher zeta potential than TPNZ, suggesting 
that TPE can effectively mediate nano-silver compared to nano 
ZnO particles.

Reactive oxygen species (ROS) are the natural byproducts of 
cellular metabolism. Oxidative stress occurs when ROS production 
exceeds the antioxidant defense capacity (61). In dairy cattle, both 
clinical and subclinical mastitis increase free radical production, 
increase total oxidant capacity, and reduce total antioxidant 
capacity (8). Lipid peroxidation products, particularly 
polyunsaturated fatty acids susceptible to free radical attack, are 
commonly used as oxidative stress markers, with TBARS being a 
widely recognized indicator (62). The elevated TBARS levels in 
Group II indicated oxidative stress. Among the treated groups, 
higher restoration of TBARS values was observed in group IV, 
followed by VI, V, and III, suggesting that TPNS had a stronger 
antioxidant effect than ceftriaxone, TPNZ, and TPE alone. 
Siddique and Al-Samman (63) observed a similar decrease in 
TBARS with Delphinium denudatum wall. Root extract-mediated 
AgNPs in mice with nephrotoxicity. However, aloin-mediated 
nano-silver and 11-α-keto boswellic acid-mediated nano-silver 
did not effectively exert antioxidant effects (64, 65). Kiyani et al. 
(66) reported a significant (p < 0.01) reduction in TBARS, 
approaching control values, in gout-affected mice treated orally 
with nano ZnO (Figure 5).

Endogenous antioxidants include enzymes such as superoxide 
dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), 
and reductase, play a crucial role in mitigating oxidative stress. 
The activities of these enzymes increase during oxidative stress 
to neutralize excess free radicals. During mastitis, PMNs are 
activated and generate reactive oxygen species (ROS) such as 
H2O2, superoxide anions, hydroxyl radicals, and halogen reactive 
species, partially reducing O2 and lowering antioxidant enzyme 
levels (67). In this study, the activities of SOD, CAT, GSH, GPx, 
and GST significantly decreased (p < 0.01) in the blood of 
mastitis-induced mice, indicating oxidative stress, which is 
consistent with the findings of Chinchali and Kaliwal (68). The 

TABLE 1 Mean (±SE) values of oxidative stress and Anti-oxidant parameters in blood of different experimental groups.

Oxidative stress and anti-oxidant 
parameters

Group I Group II Group III Group IV Group V Group VI

TBARS (nano moles/gm of Protein) 0.198e ± 0.004 0.365a ± 0.005 0.307b ± 0.007 0.202e ± 0.005 0.281c ± 0.008 0.251d ± 0.004

SOD (units/mg of protein) 25.16a ± 0.87 12.84e ± 0.36 18.12d ± 0.31 23.08b ± 0.45 19.13d ± 0.38 21.35c ± 0.29

CAT (μ moles of H2O2 utilized /min/mg of protein) 133.28a ± 0.43 107.91f ± 0.39 118.19e ± 0.43 131.73b ± 0.45 122.80d ± 0.38 126.25c ± 0.48

GSH (μmoles/mg of protein) 5.58a± 0.02 2.33e± 0.03 3.53d± 0.02 5.54a ± 0.03 4.46c ± 0.02 4.76b ± 0.01

GPx (units/gm of protein) 29.93a± 0.32 15.56e± 0.49 20.28d± 0.48 27.23b ± 0.51 22.24c ± 0.39 23.4c ± 0.49

GST (μmoles of CDNB-GSH conjugate formed/min/

mg of protein)

3.11a± 0.18 0.88e± 0.02 1.94d± 0.08 2.89b ± 0.06 2.05d ± 0.1 2.43c ± 0.05

The different superscripts in the column are the mean values which differ significantly (P < 0.01).
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reduced enzyme activities in the mastitis-affected group were 
normalized more effectively in group IV, followed by groups VI, 
V, and III, suggesting a higher antioxidant activity of TPNS, likely 
due to its increased free radical scavenging capacity. GPx activity 
was nearly restored in mice treated with Rhizophora apiculata-
derived AgNPs in hepatotoxin-induced liver damage (69).  
Yadav et  al. (70) reported a significant (p < 0.001)  
increase in SOD, catalase, and GPx activity in the  
granulation tissue of rats treated with T. portulacastrum-mediated 
nano ZnO compared to untreated rats in an induced 
wound model.

Suresh et al. (71) reported the antioxidant activity of Cassia 
fistula-mediated nano ZnO in in vitro assays. Ilavarasan et al. (72) 
and Pandanaboina et  al. (73) demonstrated the antioxidant 
activity of TPE in rats with carbon tetrachloride-induced liver 
injury and alcohol-induced hepato-renal injury, respectively. 
Chaitanya et al. (64) observed improved glutathione levels with 
aloin-mediated silver nanoparticles in mastitis-induced mice. 
Jacob and Rajiv (74) showed that Curcuma longa-mediated nano 
ZnO particles possess free radical scavenging abilities through 
in vitro assays. ZnO nanoparticles enhance antioxidant enzyme 
activities, reduce free radical levels (OH., O2., H2O2), and 
scavenge free radicals by electron transfer. Silver nanoparticles 
synthesized via plant extract phytochemicals efficiently reduce 
reactive oxygen species (ROS) and protecting biomolecules (75). 
Biosynthesized AgNPs exhibit superior antioxidant activity 
compared to extracts alone because of their large surface area, 
which enhances bioactive chemical adsorption (76). Our findings 
align with recent literature suggesting that AgNPs, particularly 

when interacting with antioxidants or phytochemicals, may offer 
therapeutic benefits. Specifically, studies have demonstrated that 
AgNPs act as catalysts in antioxidant reactions or facilitate 
cellular repair under controlled conditions, such as low doses or 
in combination with herbal compounds (77). TPE can 
be mediated with nano silver and nano ZnO particles, exerting 
more effective antioxidant effects than the methanolic 
extract alone.

5 Conclusion

This study explores the green synthesis and characterization 
of nanoparticles, specifically silver and ZnO nanoparticles, using 
TPE-mediated leaf extract. In the present study, it was shown that 
the overall antioxidant activity of TPNS was higher than  
that of ceftriaxone, TPNZ, and TPE indicating that  
biologically synthesized nanoparticles are more potent  
than the TPE extract alone, likely due to the combined  
antioxidant effect of phytochemicals and nanoparticles. Further 
safety studies are necessary for the upscaling and potential 
parental use of TPE-mediated nanoparticles as effective 
antioxidant agents.

5.1 Limitations of the study

The study has certain limitations, including the lack of 
seasonal variation analysis, as the plant extract was sourced 

FIGURE 5

Schematic diagram representing the antioxidant activity of silver and zinc oxide nanoparticles.
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during a specific season, which may affect the reproducibility due 
to changes in bioactive compound composition. Additionally, the 
analysis of oxidative stress was limited to serum antioxidant 
parameters, and other organs such as liver and kidneys  
were not analyzed for oxidative stress. The in vivo studies were 
not done as it was beyond the objective of the experiment. 
Furthermore, the long-term stability of the nanoparticles was 
not assessed.
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