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Introduction: Ticks are important ectoparasites of livestock. Ticks and tick-borne 
diseases (TBDs) cause losses to the animal husbandry industry and also present a 
major hidden danger to public health and safety. However, the tick species and 
prevalence of TBDs in border regions of China, Russia, and North Korea remain 
unknown. The purpose of this study was to identify the tick species and tick-borne 
pathogens endemic in these regions.

Methods: Morphological and molecular identification of ticks was performed 
by microscopy and polymerase chain reaction (PCR), and the distribution of tick 
species, pathogen, and risk factors of infection were analyzed.

Results: In total, 1,187 ticks were collected from the border areas of 13 localities in 
eight cities. Five tick species were identified: Haemaphysalis longicornis (39.68%), 
Ixodes persulcatus (25.36%), Haemaphysalis japonica (15.50%), Dermacentor 
silvarum (15.42%), and Haemaphysalis concinna (4.04%). There were more female 
than male ticks, and nymphs were the least frequently collected. I. persulcatus 
was the main species in the forest environment, while H. longicornis was the 
main species in grasslands and animal surface. Four pathogens were detected: 
Rickettsia, Bartonella, Anaplasma, and Babesia.

Discussion: Pathogen detection in ticks differed significantly among the environments 
and between Sexes. There were significant differences in the proportion of ticks infected 
with Rickettsia, Bartonella, Anaplasma, and Babesia among regions, species, sexes, 
and environments. The results of this survey of the tick species in border areas of 
China, Russia, and North Korea provided a scientific basis for the prevention and 
control of TBDs.
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1 Introduction

Ticks are important ectoparasites of livestock and can be divided into three families: Ixodidae, 
Argasidae, and Nuttalliellidae (1). Although most common tick species are distributed throughout 
various provinces and cities in China, some are unique to a certain region, which may be related 
to environmental differences (2). Currently, 907 species of ticks have been reported worldwide. 
About 120 tick species have been identified in China alone, with most (80%) being hard ticks (3). 
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Under normal circumstances, the body length of ticks is approximately 
2–15 mm, although body size can rapidly increase while sucking blood 
(4). Tick development occurs as a process of incomplete metamorphosis, 
which can be divided into the egg, larva, nymph, and adult stages (5). 
Ticks can be classified based on the number of hosts and molting sites 
(6). In addition, ticks can readily adapt to harsh environmental 
conditions and some species can survive without food for long periods 
(7). Tick distribution is closely related to climate, soil, water, geographical 
environment, hosts, and other factors (8, 9). Ticks and tick-borne 
diseases (TBDs) not only cause harm to the animal husbandry industry, 
but also pose a major hidden threat to public safety and health (10). 
Moreover, many tick species can cause anemia and other diseases, as well 
as transmit various pathogens to the hosts, including Anaplasma, 
Bartonella, Rickettsia, Babesia, and Tick-borne encephalitis virus (11).

Rickettsia are small Gram-negative bacteria with an obligate 
intracellular life cycle circulating between mammalian hosts and 
hematophagous arthropod vectors in nature. Rickettsia are 
transmitted to mammalian hosts during blood feeding by infected 
ticks and mites (12). Rickettsia are categorized as belonging to the 
spotted fever group (SFG), typhus group (TG), transitional group 
(TRG), and ancestral group (AG) (13). The main clinical 
symptoms of Rickettsia infection in humans are fever, headache 
and nausea. Severe patients may die. Overall, the public health 
burden of tick-borne Rickettsioses remains significantly 
underestimated (14). Anaplasma belongs to the family 
Anaplasmataceae of order Rickettsiales. The genus Anaplasma 
includes Anaplasma marginale, Anaplasma centrale, Anaplasma 
bovis, Anaplasma ovis, and Anaplasma phagocytophilum 
transmitted by ticks. Different types of Anaplasma cause different 
clinical symptoms. A. phagocytophilum mainly cause fever, 
abortion, and decreased milk production (15). A. marginale has 
the most severe symptoms and may lead to death of livestock if 
not treated in time (16). A. centrale is the least pathogenic and is 
often used in vaccines (17). Today, Anaplasma still has effects on 
human and animal health at the global level. Bartonella species are 
gram-negative, and zoonotic bacteria belonging to the 
α2-subgroup of proteobacteria (18). It is spread to mammals 
mainly by blood-sucking arthropods. Cat scratch disease (CDS) 
is the most harmful disease to humans caused by Bartonella, with 
approximately 12,000 cases reported annually in the United States 
(19). Although the incidence is not high, we still need to take it 
seriously. Babesia is a protozoan parasite of the phylum 
Apicomplexa. Babesiosis is a worldwide tick-borne zoonosis 
caused by hemoprotozoan parasites of the genus Babesia (20). 
Ixodes ticks are the main vectors of Babesia spp. Clinical 
manifestations of Babesiosis are mainly related to the immune 
function of the host. Babesia bovis can have a serious impact on 
the livestock industry. The economic loss to China is up to 
60 million dollars per year (21). Therefore, scientific prevention 
and control of Babesia is crucial for the livestock industry.

In terms of incidence, TBDs are the most serious vector-borne 
diseases in the animal husbandry and veterinary fields, and the 
second most common human vector-borne diseases after mosquito-
borne diseases (22). Tick species and the prevalence of TBDs in 
border areas of China, Russia, and North Korea remain unknown. 
Therefore, the aim of this study was to identify the tick species and 
pathogens in border areas of China, Russia and North Korea, and to 

analyze potential risk factors, so as to provide a scientific basis for the 
prevention and control of TBDs.

2 Materials and methods

2.1 Collection of tick samples

Free ticks were collected using the cloth flag method. The 
collection sites consisted of grasslands and forests with lush 
vegetation close to a water source. When sampling, the gauze was 
laid flat on the grass and moved slowly by hand with a stick. At 
regular intervals, a magnifying glass and tweezers were used to 
transfer ticks from the gauze to a 15 mL centrifuge tube and 
relative information was recorded. Farms and villages were 
randomly selected. After obtaining the consent of farmers, the 
surfaces of livestock (cattle and sheep) were checked for the 
presence of ticks at the preferred attachment sites, such as behind 
the ear, perineum, and lower abdomen. During collection, the head 
of the tick was clamped with elbow tweezers and the mouthparts 
were gently rotated and pulled out perpendicular to the body 
surface. The samples were then placed into a labeled plain 15 mL 
centrifuge tube.

2.2 Morphological identification of ticks

Adult ticks with relatively complete morphology of different 
species were selected and washed three times with sterile water to 
remove dust from the surface of the tick and soaked in phosphate-
buffered saline (23). The morphological structures of different species 
of male and female ticks were observed with a stereomicroscope. 
Images were captured and stored following appropriate taxonomical 
keys (24).

2.3 Tick DNA extraction

All ticks were used to extract DNA, and each tick was tagged 
individually. The ticks were ground to powder in liquid nitrogen. Tick 
DNA was extracted using a tissue Genomic DNA Extraction Kit 
(Tiangen Biotech (Beijing) Co., Ltd., Beijing, China), in accordance 
with the manufacturer’s instructions, and stored at-20°C until 
further use.

2.4 Detection of tick-borne pathogens

Species-specific primers were used to amplify the 16S 
ribosomal DNA (16SrDNA) gene of tick (45), outer membrane 
protein-A (ompA) gene of Rickettsia (41), citrate synthase (gltA) 
gene of Bartonella (42), 16S ribosomal RNA (16SrRNA) gene of 
Anaplasma (40), chaperonin-containing t-complex polypeptide 1 
(CCTeta) gene of Babesia (37), and major piroplasm surface protein 
(MPSP) gene of Theileria sinensis and Theileria orientalis (43, 44). 
The primers used in this study are listed in Table  1. The PCR 
reaction was conducted with a 25-μL reaction volume comprising 
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1 μL of each primer (10 pmol), 3 μL of template DNA (50–60 ng/
μl), 2 μL of deoxynucleotide triphosphates (Takara Biotechnology 
(Dalian) Co., Ltd., Dalian, China), 2.5 μL of 10× Ex Taq buffer, 
0.25 μL of Ex Taq, and 15.25 μL of distilled water. The PCR reaction 
conditions are presented in Table 2.

2.5 Sequencing and phylogenetic analyses

All samples verified as positive by agarose gel electrophoresis were 
sent to Shanghai Shenggong Biotechnology Company for Sanger 
sequencing. Newly obtained sequences were compared with the 
National Center for Biotechnology Information database1 using the 
Basic Local Alignment Search Tool2 and related sequences were 
retrieved from the GenBank database.3 Selection of representative 
samples for use ClustalW software4 multiple sequence alignment. 
Phylogenetic trees were constructed using the Maximum Likelihood 
method with a Tamura 3-parameter model and bootstrapping of 1,000 
replicates to calculate the evolutionary relationship using Molecular 
Evolutionary Genetics Analysis software (25).5

2.6 Risk factor analysis

Prism9 software (GraphPad Software, LLC, San Diego, CA, 
United States) was used for statistical analysis of tick-borne pathogen 
infections under different conditions. A Fisher score algorithm was 
used to select the optimal model. Univariate logistic regression was 

1 https://www.ncbi.nlm.nih.gov/

2 https://blast.ncbi.nlm.nih.gov/Blast.cgi

3 https://www.ncbi.nlm.nih.gov/genbank/

4 http://www.clustal.org/

5 v.11.0; https://www.megasoftware.net/

used to identify potential risk factors. A probability (p) value <0.05 
was considered statistically significant. The odds ratio (OR) and 95% 
confidence interval (CI) were calculated to explore the correlation 
between the prevalence of pathogens and different factors. Ref 
represents the reference value for each set of data. Relevant data were 
expressed with reference to Zhao et al. (26).

3 Results

3.1 Tick species survey

In total, 1,187 ticks, were collected from 2020 to 2021 among 
eight counties of border areas of China (Hunchun, Yanji, Tumen, 
Longjing, Dunhua, Helong, Wangqing, and Antu), Russia, and 
North Korea (Figure 1). Of the 1,187 ticks, 632 were female, 376 
were male, and 179 were nymphs. Regarding the environments, 
343 ticks were collected in forests, 351 in grasslands, and 493 on 
animal surfaces. According to the identification results, there were 
three genera and five species of ticks in border areas of China, 
Russia, and North Korea, which included 471 Haemaphysalis 
longicornis, 184 Haemaphysalis japonica, 48 Haemaphysalis 
concinna, 301 Ixodes persulcatus, and 183 Dermacentor silvarum 
with proportions of 39.68, 15.50, 4.04, 25.36, and 15.42%, 
respectively. Haemaphysalis accounted for 59.22%, indicating that 
it was the dominant tick genus in border areas of China, Russia, 
and North Korea.

3.2 Detection rate of TBDs

The average infection rate of Rickettsia, Bartonella, Anaplasma, 
and Babesia was 48.78, 22.91, 35.05, and 5.14%, respectively. Among 
these pathogens, four were detected in Hunchun, Wangqing, 

TABLE 1 PCR primers for ticks and pathogens.

Pathogen The name of the 
gene

Primer sequences (5′-3′) Fragment size (bp)

Anaplasma 16SrRNA
F-TACCTCTGTGTTGTAGCTAACGC

R-CTTGCGACATTGCAACCTATTGT
426 (40)

Rickettsia ompA
F-ATGGCGAATATTTCTCCAAAA

R-AGTGCAGCATTCGCTCCCCCT
530 (41)

Bartonella gltA
F-GGGGACCAGCTCATGGTGG

R-AATGCAAAAAGAACAGTAAACA
356 (42)

Babesia CCTeta
F-GCCCGCAGGTCATCATAAAGT

R-CATTTTGTGCCAGCGTTTTG
1,008 (37)

T. sinensis MPSP
F-CACTGCTATGTTGTCCAAGAGATATT

R-AATGCGCCTAAAGATAGTAGAAAAC
887 (43)

T. orientalis MPSP
F-CTTTGCCTAGGATACTTCCT

R-ACGGCAAGTGGTGAGAACT
776 (44)

Tick 16SrDNA
F-CTGCTCAATGATTTTTTAAATTGGGTGG

R-CCGGTCTGAACTCAGATCAAGT
460 (45)
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Tumen, Dunhua and Longjing. Anaplasma was not detected in 
Yanji. Rickettsia and Bartonella were only detected in Helong and 
Antu. Four pathogens were detected in H. longicornis, H. japonica, 
and I. persulcatus, while Rickettsia, Bartonella, and Anaplasma were 
found in D. silvarum, and Bartonella and Anaplasma were identified 
in H. concinna. Bartonella was confirmed in all tick species. No 
T. sinensis and T. orientalis were detected in this survey (Table 3).

3.3 Molecular survey of pathogens in ticks

The Rickettsia sequences were compared with known sequences in 
the GenBank database. Three genotypes of Rickettsia were detected in 
ticks in border areas of China, Russia, and North Korea: Rickettsia 
raoultii, Candidatus rickettsia jingxinensis and Candidatus rickettsia 
tarasevichiae. Among these, the YB-BJ-4 (PQ487798) strains were 
located in the same branch as isolates from India (MN537561), Sichuan 
province, China (MF590726), and Dandong, China (MH177456). The 
YB-BJ-5 (PQ487799) and YB-BJ-6 (PQ487800) strains were situated 
on the same branch as isolates from Siberia (MK304548), Turkey 
(MG920563), and Xinjiang, China (KU723511). The YB-BJ-2 
(PQ487796) and YB-BJ-3 (PQ487797) strains were highly homologous 
and on the same branch with isolates from Harbin, China (MT019661), 
Mudanjiang, China (KF008247), and Hokkaido, Japan (LC379461) 
(Figure 2). The Bartonella gltA gene sequence obtained from this study 
(PQ487795) formed one clade with the Korea (MT362935) and 
Shandong province, China (KX655838) (Figure  3). Also, the 
Anaplasma sequence from this study (PQ461353) was compared with 
known Anaplasma sequences in the GenBank database. The isolates of 
Anaplasma capra from Luoyang, China (MT799937), Shanxi, China 
(MG869594), and Korea were located on the same branch and had the 
highest homology (Figure 4). Lastly, the Babesia sequence (PQ487801) 
was compared with known Babesia ovata sequences in the GenBank 
database. The isolate obtained in this study clustered with sequences 
from Japan (AB367928) with high homology (Figure 5).

3.4 Analysis of four pathogens under 
different factors

Our results suggest that regionally, ticks from four regions, 
Hunchun, Wangqing, Dunhua, and Longjing, may be more likely to 
carry Rickettsia; ticks from Yanji, Dunhua, and Longjing had a higher 
detection rate of Bartonella; ticks from two regions, Hunchun and 
Dunhua, were more likely to be infected with Anaplasma; and there was 
no significant difference in the distribution of Babesia across regions. 
When analyzed from the perspective of tick species, H. longicornis, 
I. persulcatus, and D. silvarum are more likely to carry Rickettsia and 
Anaplasma; Bartonella is more likely to be present in all four species of 
ticks except H. longicornis; and for the Babesia, H. longicornis is a likely 
potential vector. The sex of the tick is also an important factor in the 
prevalence of TBDs. Our study found that female ticks were more likely 
to carry Rickettsia, Bartonella, and Babesia; male ticks were more likely 
to carry Anaplasma. Finally, analyzing the collection environment 
we found that ticks from animal body surfaces are more likely to carry 
pathogens compared to the natural environment. In summary, region, 
tick species, sex, and collection environment may be potential risk 
factors for TBDs transmission (Tables 4–7).T
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TABLE 3 The prevalence of tick-borne pathogens from tick samples in this study.

Location Tick spp. Detection of pathogen (No. positive)

Name No. collected Rickettsia Bartonella Anaplasma Babesia

Hunchun H. longicornis 471 227 39 206 41

H. japonica 13 5 4 5 1

H. concinna 8 0 7 1 0

I. persulcatus 10 7 4 3 2

D. silvarum 60 59 59 54 0

Wangqing H. japonica 82 1 19 3 2

I. persulcatus 151 108 10 34 5

D. silvarum 13 13 10 10 0

Helong H. concinna 40 0 15 0 0

I. persulcatus 16 15 0 0 0

Tumen H. japonica 26 0 1 2 2

D. silvarum 43 15 9 8 0

Yanji H. japonica 30 6 6 0 1

I. persulcatus 29 4 19 0 2

Antu D. silvarum 67 20 15 0 0

Dunhua I. persulcatus 95 81 40 85 4

Longjing H. japonica 33 18 15 5 1

Total 1,187 579 272 416 61

TABLE 4 Rickettsia infection under different factors.

Factors Category No. of samples 
collected

No. of 
positive 
samples

Positive rate 
(%)

OR 95% CI p- value

Region

Hunchun 562 298 53.02 5.53 2.75–11.14 <0.01

Wangqing 246 122 49.59 4.82 2.34–9.95 <0.01

Helong 56 15 26.79 1.79 0.73–4.42 0.20

Tumen 69 15 21.74 1.36 0.56–3.31 0.50

Yanji 59 10 16.95 Ref – –

Antu 67 20 29.85 2.09 0.88–4.92 0.09

Dunhua 95 81 85.26 28.35 11.69–68.75 <0.01

Longjing 33 18 54.55 5.88 2.24–15.44 <0.01

Species

H. longicornis 471 227 48.20 4.78 3.10–7.35 <0.01

H. japonica 184 30 16.30 Ref – –

H. concinna 48 0 0 – – –

I. persulcatus 301 215 71.43 12.83 8.07–20.42 <0.01

D. silvarum 183 107 58.47 7.23 4.43–11.79 <0.01

Sex

Female 632 405 64.08 4.87 3.37–7.04 <0.01

Male 376 126 33.51 1.38 0.93–2.04 0.11

Nymphal 179 48 26.82 Ref – –

Environment

Forest 343 89 25.95 Ref – –

Grass 351 188 53.56 3.29 2.39–4.53 <0.01

Body surface 493 302 61.26 4.51 3.37–6.10 <0.01

Ref, reference; 95% CI, confdence interval; OR, odds ratio.
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TABLE 5 Bartonella infection under different factors.

Factors Category No. of samples 
collected

No. of 
positive 
samples

Positive rate 
(%)

OR 95% CI p- value

Region

Hunchun 562 113 20.11 1.49 0.74–2.99 0.27

Wangqing 246 39 15.85 1.11 0.52–2.36 0.78

Helong 56 15 26.79 2.16 0.88–5.28 0.09

Tumen 69 10 14.49 Ref – –

Yanji 59 25 42.37 4.34 1.86–10.11 <0.01

Antu 67 15 22.39 1.70 0.70–4.12 0.24

Dunhua 95 40 42.11 4.29 1.96–9.40 <0.01

Longjing 33 15 45.45 4.92 1.89–12.82 <0.01

Species

H. longicornis 471 39 8.28 Ref – –

H. japonica 184 45 24.46 3.59 2.24–5.74 <0.01

H. concinna 48 22 45.83 9.37 4.87–18.06 <0.01

I. persulcatus 301 73 24.25 3.55 2.33–5.40 <0.01

D. silvarum 183 93 50.82 11.45 7.39–17.73 <0.01

Sex

Female 632 147 23.26 3.31 1.89–5.80 <0.01

Male 376 110 29.26 4.52 2.55–8.02 <0.01

nymphal 179 15 8.38 Ref – –

Environment

Forest 343 93 27.11 1.52 1.07–2.17 0.02

Grass 351 69 19.66 Ref – –

Body surface 493 110 22.31 1.17 0.84–1.65 0.35

Ref, reference; 95% CI, confdence interval; OR, odds ratio.

TABLE 6 Anaplasma infection under different factors.

Factors Category No. of samples 
collected

No. of 
positive 
samples

Positive rate 
(%)

OR 95% CI p- value

Region

Hunchun 562 269 47.86 5.42 2.72–10.81 <0.01

Wangqing 246 47 19.11 1.39 0.66–2.93 0.38

Helong 56 0 0 – – –

Tumen 69 10 14.49 Ref – –

Yanji 59 0 0 – – –

Antu 67 0 0 – – –

Dunhua 95 85 89.47 50.15 19.64–128.1 <0.01

Longjing 33 5 15.15 1.05 0.33–3.38 0.93

Species

H. longicornis 471 206 43.74 36.54 4.99–267.2 <0.01

H. japonica 184 15 8.15 4.17 0.54–32.42 0.17

H. concinna 48 1 2.08 Ref – –

I. persulcatus 301 122 40.53 32.03 4.36–235.4 <0.01

D. silvarum 183 72 39.34 30.49 4.11–226.0 <0.01

Sex

Female 632 214 33.86 1.53 1.05–2.22 0.03

Male 376 157 41.76 2.14 1.44–3.17 <0.01

Nymphal 179 45 25.14 Ref – –

Environment

Forest 343 77 22.45 Ref – –

Grass 351 100 28.49 1.38 0.98–1.94 0.07

Body surface 493 239 48.48 3.25 2.39–4.43 <0.01

Ref, reference; 95% CI, confdence interval; OR, odds ratio.
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FIGURE 1

Map of in border areas of China, Russia and North Korea. Gray ranges represent sampling areas. Black dots represent sampling points.

TABLE 7 Babesia infection under different factors.

Factors Category No. of 
samples 

collected

No. of 
positive 
samples

Positive rate 
(%)

OR 95%CI p- value

Region

Hunchun 562 44 7.83 2.85 0.67–12.01 0.16

Wangqing 246 7 2.85 0.98 0.20–4.84 0.98

Helong 56 0 0 – – –

Tumen 69 2 2.90 Ref – –

Yanji 59 3 5.08 1.80 0.29–11.13 0.53

Antu 67 0 0 – – –

Dunhua 95 4 4.21 1.47 0.26–8.28 0.66

Longjing 33 1 3.03 1.05 0.09–11.98 0.97

Species

H. longicornis 471 41 8.70 2.41 1.06–5.48 0.03

H. japonica 184 7 3.80 Ref – –

H. concinna 48 0 0 – – –

I. persulcatus 301 13 4.32 1.14 0.45–2.92 0.78

D. silvarum 183 0 0 – – –

(Continued)

https://doi.org/10.3389/fvets.2025.1529253
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Min et al. 10.3389/fvets.2025.1529253

Frontiers in Veterinary Science 08 frontiersin.org

Factors Category No. of 
samples 

collected

No. of 
positive 
samples

Positive rate 
(%)

OR 95%CI p- value

Sex

Female 632 49 7.75 2.55 1.34–4.86 <0.01

Male 376 12 3.19 Ref – –

Nymphal 179 0 0 – – –

Environment

Forest 343 8 2.33 1.37 0.47–4.00 0.56

Grass 351 6 1.71 Ref – –

Body surface 493 47 9.53 6.06 2.56–14.34 <0.01

Ref, reference; 95% CI, confdence interval; OR, odds ratio.

TABLE 7 (Continued)

FIGURE 2

Phylogenetic analysis of Rickettsia based on ompA (530 bp). The phylogenetic trees were constructed by maximum-likelihood method and Tamura 
3-parameter model with 1,000 bootstrap replications. The sequences obtained in this study are indicated with red color. The sequences of Rickettsia 
felis (AY727036) were included as outgroup.
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4 Discussion

China has a vast border with many countries. The border between 
China, North Korea, and Russia lies in northeast China. Because the 
forest hydrology resources in this area are very rich, the endemic tick 
species have gradually diversified. Ticks and other vectors in the border 
zone can freely migrate to another country through a variety of routes, 
which may increase the risk of tick-borne diseases. In this study, 1,187 
ticks collected from eight counties and cities in border areas of China, 
Russia, and North Korea were classified and analyzed. Among the five 
identified species, Haemaphysalis were the dominant tick species. 
H. longicornis was the most commonly detected species in this survey. 

H. longicornis, commonly known as the New Zealand cattle tick, is 
found mainly in East Asia and the Pacific region (27), and more recently 
in the United States and other countries in the Americas. H. longicornis 
can parasitize most warm-blooded animals, including humans and 
domestic animals, and spread a variety of pathogens (28), thus posing 
major hidden dangers to public safety and the animal husbandry industry.

In this study, three types of Rickettsia were detected. In fact, 
R. raoultii and C. rickettsia tarasevichiae have been endemic along the 
China-Russia border areas in recent years. Related studies have shown 
that R. raoultii and C. rickettsia tarasevichiae were detected in 
I. persulcatus and D. silvarum along the China-Russia border areas in 
2014 (29, 30). This is almost consistent with the results of our survey. 

FIGURE 3

Phylogenetic analysis of Bartonella based on gltA (356 bp). The phylogenetic trees were constructed by maximum-likelihood method and Tamura 
3-parameter model with 1,000 bootstrap replications. The sequences obtained in this study are indicated with red color. The sequences of Bartonella 
grahamii (DQ334256) were included as outgroup.
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Notably, in previous studies, C. rickettsia jingxinensis have been 
reported mainly in Southwestern China and Korea (31, 32). The 
C. rickettsia jingxinensis detected in this survey were also consistent 
with the above areas in terms of their affinities. This suggests that there 
is potential for the spread of C. rickettsia jingxinensis to the border areas. 
Bartonella is widely prevalent around the world, and usually lice and 
fleas are considered to be the main vectors of Bartonella (33). Whether 
ticks are capable of transmitting Bartonella remains controversial. In 
2022, some researchers from Portugal surveyed 268 ticks in Portugal 
and found that none of the ticks had infected Bartonella (34). However, 
a total of 272 Bartonella infections were detected in 1,187 ticks in our 
survey, indicating that ticks do have the ability to carry Bartonella. It 

remains to be investigated whether ticks can transmit Bartonella to their 
hosts through blood-sucking. A. capra is an emerging zoonotic tick-
borne pathogen with a broad host range, including many mammals. In 
2012, A. capra was detected in goats in China. Although current studies 
are not sufficient, domestic ruminants are considered the main host 
(35). Prior to this, A. capra was mainly prevalent in south-central 
China. A. capra have been reported to be detected in H. longicornis in 
Hubei Province, China, with a positivity rate of 1.32% (36). This is the 
first report of A. capra detected at the border areas of China, Russia, and 
North Korea. Gene sequences were in the same clade as the isolates 
from Luoyang and Shanxi. The positivity rate in this survey was 
significantly higher than in previous studies, a result that reminds us to 

FIGURE 4

Phylogenetic analysis of Anaplasma based on 16SrRNA (426 bp). The phylogenetic trees were constructed by maximum-likelihood method and 
Tamura 3-parameter model with 1,000 bootstrap replications. The sequences obtained in this study are indicated with red color. The sequences of 
Rickettsia slovaca (NR179179) were included as outgroup.
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pay close attention to the prevalence of A. capra. B. ovata is more 
frequently reported in Japan (37). The isolates from this investigation 
showed the highest homology with isolates from Japan. There are fewer 
reports on the epidemiology of B. ovata. It has been reported that 646 
bovine bloods from various regions of China were positive for B. ovata 
at a rate of 1.5% (38). The positivity rate of B. ovata was also low in this 
survey. There are many reasons for this phenomenon, but of course 
scientific prevention and control is essential.

Our survey identified four potential risk factors that influence 
the prevalence of TBDs. Tick species are one of the most important 
factors in the prevalence of TBDs. Different species of ticks can 
carry different pathogens. It has been reported that H. longicornis 
can carry up to 44 pathogens. It’s one of the tick species that carries 

the highest number of pathogens (39). Our study found similar 
problems. Among the ticks we collected, H. longicornis was the 
most abundant and infected with four pathogens. The relationship 
between region and tick species is inextricably linked, and the 
distribution of ticks is significantly regional. In China, tick species 
are more abundant in the Northwestern and Southwestern regions, 
TBDs epidemics are also more severe. Although the samples were 
collected only in the border area of Northeast China, we can see 
from the results that some species of ticks were detected only in 
specific areas. Interestingly, sex and collection environment were 
also found to be  risk factors for TBDs, and although the exact 
reasons for this are unclear, this phenomenon deserves to be studied 
in depth.

FIGURE 5

Phylogenetic analysis of Babesia based on CCTeta (1,008 bp). The phylogenetic trees were constructed by maximum-likelihood method and Tamura 
3-parameter model with 1,000 bootstrap replications. The sequences obtained in this study are indicated with red color. The sequences of Theileria 
sergenti (AY727036) were included as outgroup.
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5 Conclusion

Haemaphysalis are the dominant tick genus in border areas of 
China, Russia, and North Korea. Four pathogens (Rickettsia, 
Bartonella, Anaplasma, and Babesia) were detected in the tick species 
collected in this study. Based on our results, scientific exclusion of 
potential risk factors may provide a new idea for controlling the 
spread of tick-borne diseases. These findings provide epidemiological 
data to support the prevention and control of ticks and tick-borne 
diseases in the border region of China, Russia, and North Korea.
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