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The intestine is the largest immune and barrier organ in the body, and diarrhea
and even death during piglet development are related to dysfunction caused by
intestinal barrier damage and inflammation. A water-soluble p-glucan produced by
Agrobacterium ZX09 has been shown to have a beneficial effect on gastrointestinal
health. The main objective of this study was to investigate whether pre-feeding
B-glucan has a protective effect on LPS-induced immune stress in piglets. In this study,
24 weaned piglets (21-day-old; 6.64 + 0.16 kg) were assigned to 4 treatments in a
two X two factorial design with diet (with or without p-glucan) and immunological
challenge (saline or LPS). Piglets were challenged with saline or LPS after 39 days
of feeding 0 or 200 mg/kg B-glucan. The results demonstrated that p-glucan
supplementation increased the average daily weight gain and daily feed intake, and
decreased diarrhea rate of piglets. Intestinal inflammation symptoms and histological
changes in LPS-challenged piglets were alleviated by pre-feeding of p-glucan.
B-glucan supplementation reduced serum IL-1p (interleukin-1p) and NO (nitric oxide)
secretion in piglets after LPS challenge (0.01 < p < 0.05). Supplementation with
B-glucan downregulated the mRNA expression of IL-6 in piglets after LPS challenge
(0.01 < p < 0.05). p-glucan supplementation enriched the short-chain fatty acid-
producing bacteria, such as Agathobacter and Subdoligranulum (0.01 < p < 0.05),
and increased the concentrations of propionate and butyrate (0.01 < p < 0.05).
In conclusion, pre-feeding p-glucan can enhance piglet immunity and promote
piglet growth by influencing gut microbiota composition and metabolism, and
alleviate intestinal damage after LPS challenge.
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1 Introduction

The intestinal tract is the largest immune and barrier organ in the
mammalian body, and its function is to effectively prevent the invasion
of foreign antigens, microorganisms, and toxins from the external
environment into the interior of the organism. Piglet stress reduces
feed intake, leads to intestinal dysfunction and diarrhea, and
ultimately hinders growth (1, 2). The health of the piglet gut is critical
to pig production, but the underlying mechanisms of intestinal
epithelial cell injury currently require further investigation. Studies
have shown a subtle correlation between disruption of intestinal
epithelial barrier function and the development of an inflammatory
state in the gastrointestinal tract (3-5). In addition, intestinal
microorganisms may also be involved in the latent mechanisms of
intestinal injury and repair (6, 7). In the presence of inappropriate
epithelial injury and repair processes, the gut microbiota may deviate
from a state of ecological imbalance or undergo migration. Therefore,
it is critical to reduce intestinal inflammation or optimize the GI
microbiota to maintain normal GI tract function.

Contemporary means of regulating gut health include promoting
intestinal immunity and modifying the gut microbiota (8-10).
f-glucan is a linear polysaccharide composed of D-glucose monomers
linked by glycosidic bonds. It has been shown to selectively promote
the growth or activity of intestinal bacteria, thereby impacting host
health and the immune system (11, 12). Our previous study revealed
that a water-soluble B-glucan (molecular weight 2000 kDa, purity
60%) from Agrobacterium zeylanicum ZX09 improved the growth
performance of weaned piglets by altering the gut microbiota (13). In
addition, this p-glucan reduced obesity in mice by enriching the
beneficial flora, increasing short-chain fatty acid content in the cecum
(14, 15), and alleviating dextrose sodium sulfate-induced colonic
inflammation (16). Thus, this water-soluble f-glucan may be beneficial
for the gastrointestinal health of animals. It has potential uses as an
immunomodulator and for the development of functional foods.
However, the role and mechanism of B-glucan in the treatment of
intestinal inflammation in piglets is unknown.

In this study, we challenged piglets with LPS (lipopolysaccharide)
after 4 weeks of B-glucan supplementation and investigated the effects
of p-glucan on growth, intestinal immunity, and gut microbiology of
piglets after LPS challenge.

2 Materials and methods
2.1 Animal care and experimental design

The experimental design and procedures used in this study were
approved by the Animal Care and Use Committee of the Institute of
Subtropical ~ Agriculture, Chinese of Sciences
(ISA-2021-00-20).

Twenty-four 21-day-old weaned piglets (Duroc x (Landrace x

Academy

Yorkshire); 6.64 + 0.16 kg) of similar body weight were randomly
divided into four treatments in a 2 x 2 factorial design with diet (with
or without B-glucan) and immunological challenge (saline or LPS).
LPS was purchased from Sigma-Aldrich (E. coli serotype 055: B5;
purity >99%; REF: L2880; St Louis, MO, USA). Following a 4-day
pre-feeding period, two of the groups were provided with a basal diet,
while the remaining two groups received a basal diet supplemented
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with 200 mg/kg of p-glucan (2,000 kDa; 50% f-glucan with 50%
maltodextrin as carrier; Sichuan Synlight Biotech Ltd., Chengdu,
China). Five weeks later, half of the piglets were injected
intraperitoneally with LPS at 80 pg/kg body weight (17). The other
half was injected with the same amount of sterilized saline. Within 4 h
after the injection of LPS or normal saline, the piglets were fasted with
free access to water before blood and intestinal samples were collected
(18, 19) (Appendix Figure 1). The piglets were initially fed with the
first-phase diet for the first 14 days, and then transitioned to the
second-phase diet for the ensuing 21 days. The basal diet (Table 1) was
formulated according to the National Research Council 2012
(NRC2012).

2.2 Blood and intestinal sample collection

The piglets were given intravenous injections of 4% pentobarbital
sodium solution after being given LPS or saline injections for 4 h.
15 mL of blood was collected from the jugular vein. Among them,
5 mL was placed for a routine blood test and flow cytometry after
0.5 h, and the other 10 mL was stained at 4°C for 4 h. The serum was
centrifuged (3,500 g, 10 min) and separated in a 1.5 mL centrifuge
tube and stored at —80°C. The digest was obtained from the colon. The
ileum was cut longitudinally with scissors, and the digest and mucus
in the intestinal cavity were washed with pre-cold saline. Furthermore,
2 cm intestinal segments were washed with pre-cold saline to remove
the digesta before being fixed in a formalin fixation solution.

2.3 Piglet growth performance and
diarrhea scores

The piglets’ health status and daily feed intake for each replicate
were monitored throughout the entire experiment. For the aim of
calculating ADG (average daily gain), ADFI (average daily feed
intake), and F/G (feed/gain), body weight was measured every week,
and feed intake was noted every day. The diarrhea rate and diarrhea
score were calculated according to Equation 1 and Equation 2 below,
and the piglets’” feces were scored during the test period using the
following criteria: 0 for normal, solid feces; 1 for soft, looser than
normal feces, mild diarrhea; 2 for moderately diarrhoeic feces; 3 for
liquid, severely diarrhoeic feces (20).

Diarrhea rate

number of piglets with diarrhea /
= . . x100%
(number of total piglets x days of experlment)

Diarrhea score = sum of fecal scores / number of total piglets (2)

2.4 White blood cell counts and subsets of
complete blood T cells counts

Blood was collected and placed into 5mL Ethylenediamine
Tetraacetic Acid collection tubes. Complete blood counts were
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TABLE 1 Composition and nutrient level of the basal diet (air-dry basis).

First-phase Second-phase

diet diet
Items Content, % Content, %
Corn 8.7% 25.00 32.42
Extruded corn 30.53 30.00
Soybean meal (46%) 8.55 10.10
Soy protein concentrate 8.00
Fermented soybean meal 8.00
Whey powder 8.00 5.00
Fish meal 6.00 5.00
Soybean oil 2.00 2.00
Sucrose 2.00
Glucose 5.00 3.00
Limestone powder 0.20 0.20
Calcium formate 0.60 0.60
Dicalcium phosphate 0.50 0.40
Choline chloride 0.10 0.10
Antioxidant 0.05 0.05
Citric acid 0.80 0.80
Zinc oxide 0.20 0.02
Salt 0.40 0.40
Lysine 98% 0.62 0.55
DL-Methionine 0.09 0.07
Threonine 0.25 0.20
Tryptophan 98% 0.06 0.04
Premix’ 1.00 1.00
Antifungal Agent
(Dimethyl Fumarate) 0.05 0.05
Nutrient level®
DE MJ/kg 14.63 14.55
CP, % 19.01 18.16
Ca, % 0.79 0.70
TP, % 0.65 0.60
AP, % 0.42 0.38
Lys, % 1.35 1.19
Met + Cys, % 0.39 0.35
Thr, % 0.79 0.71
Trp, % 0.22 0.18

"The premix provided the following per kilogram of the diet: VA 6450 IU, VD, 2250 IU, VE
251U, VK 3 mg, VB, 1.8 mg, VB,, 0.026 mg, riboflavin 8 mg, folic acid 0.9 mg, biotin 4.5 mg,
niacin 24 mg, pantothenic acid 20 mg, Zn 80 mg, Fe 150 mg, Cu 10 mg, Mn 4 mg, I 0.6 mg,
Se 0.5 mg, Co 0.8 mg.

“Nutrient levels were calculated values.

performed using a Siemens hemology analyzer (Munich, Germany).
Another 0.5 mL of blood sample was added to 5 mL of lysis buffer and
incubated for 10 min. The reaction was stopped by diluting the lysis
buffer with 10 mL of PBS. The cells were centrifuged at 4°C, and the
pellet was resuspended in phosphate buffered saline. The following
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antibodies were used for flow cytometric analysis: anti-pig CD3 (PE,
BD Biosciences, San Jose, CA, USA), anti-pig CD4 (PerCP-Cy5.5, BD
Biosciences, San Jose, CA, USA), and anti-pig CD8 (Alexa 647, BD
Biosciences, San Jose, CA, USA). Primary antibodies were diluted at
1:20 in PBS, after which 50 puL was added to the resuspension samples,
and the mixtures were incubated for 30 min at room temperature.
Cells were washed twice in PBS with 2% BSA and immediately
analyzed on a FlowJo™ Software v10.8.1 (BD Life Sciences, USA). A
total of 100,000 leukocytes were collected, and absolute cell counts
were calculated directly by FlowJo Software.

2.5 Inflammatory cytokine content in
plasma and ileal mucosa

The concentrations of proinflammatory cytokines in plasma and
ileal mucosa were determined using porcine ELISA kits (TNF-a
[tumor necrosis factor-a], REF: CSB-E16980; IL-1f [interleukin-1f],
REF: CSB-E06782; IL-6, REF: CSB-E06786; sIgA [secretory
immunoglobulin A], REF: CSB-E06786; Cusabio Biotech Co., Ltd.,
Hubei, China; NO [Nitric Oxide], REF: A013-2-1 Nanjing Jiancheng
Bioengineering Institute, Nanjing, China).

2.6 Measurement of ROS in the ileum by
hydroacetylene fluorescence

After being quickly frozen in liquid nitrogen, the ileal tissue was
washed with cold saline and was embedded for cryosectioning. Frozen
sections (8-10 pm) were stained with ROS (reactive oxygen species)
staining solution at 37°C for 30 min in a light and humidified
chamber. Stained sections were assessed using fluorescence
microscopy. The fluorescence quantification was performed using
Caseviewer on three fields per section and five sections per animal.

2.7 Histological evaluation

Histological evaluation was conducted according to the following
procedures: The ileal and colon specimens were dehydrated,
embedded in paraffin, cut into slices, and stained with hematoxylin
and eosin after being fixed for 24 h. The degree of monocyte or
neutrophil infiltration, histomorphology injury, intestinal epithelial
cell dysplasia, or erosion was measured using Image-Pro Plus software
to evaluate the morphological changes in the intestine. The histological
evaluation result was divided into four grades: grade 1 (normal
morphology scored 1-3); grade 2 (slight morphological injury scored
4-6); grade 3 (moderate morphological damage scored 7-9); and
grade 4 (severe morphological damage scored 10-12).

2.8 Quantitative real-time PCR (qRT-PCR)

RNA extraction and RT-qPCR were performed according to a
previous study (21). Briefly, total RNA was isolated from the ileal
mucosa with the RNeasy Kit (Accurate Biotechnology [Hunan] Co.,
Ltd.) in accordance with the instructions provided by the
manufacturer. Then, by utilizing a PrimeScript RT reagent kit with a
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gDNA Eraser (Accurate Biotechnology [Hunan] Co., Ltd.), the RNA
was reverse transcribed into cDNA. The SYBR Green Premix Pro Taq
HS qPCR Kit (Accurate Biotechnology [Hunan] Co., Ltd.) was used
for qQRT-PCR, which was carried out with the employment of a
LightCycle 480 real-time PCR system (Roche Diagnostics, Germany).
The relative expression of each gene in the ileal mucosa was calculated
by the 2744°T method, with B-actin serving as the internal reference.
Appendix Table 1 contains all primer sequences.

2.9 Western blotting measurement

The ileum tissue’s total protein was extracted using Radio
Immunoprecipitation Assay (Beyotime Institute of Biotechnology),
which was then stored at —80°C for further study. Following the
measurement of total protein concentration with Bicinchoninic acid
assays (Beyotime Institute of Biotechnology), Sodium Dodecyl Sulfate
PolyAcrylamide Gel Electrophoresis separation, and transfer to PVDF
membranes for western blotting. After being blocked for at least an
hour, the membrane was incubated with primary antibodies for an
entire night. p-NF-kB p65 (1:500; REF:3033S; Cell Signaling
Technology, USA), NF-kB p65 (1:1000; REF:6956S; Cell Signaling
USA), p-IkB (1:500; REF: 9246S; Cell Signaling
Technology, USA), IkB (1:1000; REF: 4814S; Cell Signaling
Technology, USA), B-actin (1:1000; REF: 4970S; Cell Signaling
Technology, USA) were used as primary antibodies. After a 2-h

Technology,

incubation period with the goat anti-mouse or rabbit IgG (H + L)
secondary antibody (1:5,000, Abiowell, Hunan, China), imprinting
was detected by chemiluminescence. Using Image Lab software, the
protein content was normalized to B-actin.

2.10 Microbial diversity analysis

The microbial diversity of the colon was investigated following
previously described procedures (22). The 16S V3 + V4 specific
primers were used to extract and amplify bacterial DNA from colonic
contents. Paired-end sequencing was carried out on the Illumina
HiSeq 2,500 platform (Illumina, San Diego, California). Using
Uchime' and Cutadapt v.1.9.1, raw tags were assembled and filtered to
produce clean data. Based on UPARSE (v7.0.1001) (23), sequences
were grouped into the same OTU (operational taxonomic units) at a
97% similarity level. Through OTUs (Chaol, Shannon, and Simpson),
alpha diversity and richness were calculated to analyze the complexity
of species diversity for a sample. The differences in bacterial
composition between groups were graphically displayed using the
partial least squares discriminant analysis, which was carried out in
the R language package “mixOmics” The PICRUSt (Phylogenetic
Investigation of Communities by Reconstruction of Unobserved
States) software” was additionally utilized to predict the function of
the microflora. The assembled HiSeq sequences obtained in this study
were submitted to the NCBI's Sequence Read Archive (SRA, no.
PRJNA899839).

1 http://www.drive5.com/usearch/manual/uchime_algo.html

2 http://picrust.github.com
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2.11 Short-chain fatty acids analysis

The quantitative analysis of SCFAs (short chain fatty acids) was
performed by gas chromatography in line with previous research (22).
Briefly, the frozen digest was thawed and approximately 1.00 g of the
sample was weighed. The samples were thoroughly mixed with ddH,O
before centrifugation at 10,000 g for 10 min to obtain the supernatant.
Metaphosphoric acid (25% w/v) was supplemented to the extracts at
a ratio of 1:9. The supernatant was subjected to SCFA analysis after
centrifugation at 10,000¢ using an Agilent 7890A (Agilent
Technologies, Santa Clara, CA, USA).

2.12 Statistical analysis

For comparisons between two groups, the data on the growth
performance and diarrhea scores were analyzed using two-tailed
t-tests (SPSS Inc., Chicago, IL, USA). The other data were analyzed
using two-factor analysis of variance (SPSS Inc., Chicago, IL, USA) for
a two x two factorial design with diet (0 or 200 mg/kg B-glucan),
immunological challenge (saline or LPS) and their interactions as
sources of variation. Tukey’s test was used to evaluate the difference
between treatment groups, and p < 0.05 was used as the criterion for
significance of the difference. 0.05 <p <0.10 was considered a
significant trend. Where there was a significant trend for interaction,
data were further analyzed using one-way ANOVA with Duncan’s
multiple range tests. Correlations between bacterial abundance (at the
general level) and proinflammatory cytokine levels in plasma and ileal
mucosa SCFA levels were evaluated by Spearman’s correlation test
using the R language package ‘Pheatmap’

3 Results

3.1 Effect of p-glucan on growth
performance and diarrhea in weaned
piglets

There was no significant difference in F:G between the groups
from day 1 to 28 (p > 0.05). Dietary supplementation with p-glucan
significantly increased the final body weight of piglets. Moreover, such
supplementation significantly increased the ADG and ADFI of piglets
(0.001 < p < 0.01; Table 2). In comparison to the control group, the
f-glucan group had lower diarrhea scores on days 2, 3, 5 and 6 after
weaning, and had lower diarrhea scores and rate on day 5 after
weaning (0.01 < p < 0.05; Figures 1A,B).

3.2 Effect of f-glucan on LPS-induced
acute inflammation in weaned piglets

Intestinal inflammation in piglets was induced by intraperitoneal
injection of LPS for 4 h, including an increase in leukocytes and the
percentage of monocytes, eosinophils, basophils and CD8+ T cells in
the whole blood and a decrease in the ratio of CD4+/CD8+ T cells
(p<0.05; Figures 2A,D-EH,I). Dietary supplementation with
f-glucan could attenuate the increase in lymphocytes, eosinophils, and
CD8+ T cells after the LPS challenge (p < 0.001; Figures 2A,E,H).
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3.3 Effect of f-glucan on intestinal damage
in LPS-induced piglets

Tleal and colonic tissue images stained with H&E showed
significant tissue damage in LPS-treated piglets, including crypt loss,
leukocyte infiltration and intestinal epithelial erosion. However, the
addition of p-glucan significantly reduced these signs of damage
(Figures 3A,B). LPS significantly increased ileal and colonic histological
scores, which were significantly reduced by B-glucan supplementation
(p <0.001; Figures 3C,D). LPS and dietary f-glucan supplementation
exerted no significant effect on ROS levels (p > 0.05; Figure 3E).

TABLE 2 Dietary supplementation with p-glucan on the growth
performance of piglets.

10.3389/fvets.2025.1533872

3.4 Effect of f-glucan on secretion of
serum and mucosal cytokines, slgA, and
NO

LPS treatment significantly increased the levels of the cytokines
IL-6 in the ileal mucosa (0.01 < p <0.05; Figure 4B) and IL-1B
(0.01 < p < 0.05; Figure 4F), sIgA (0.001 < p < 0.01; Figure 4H), and
NO (p <0.001; Figure 4I) in the serum. B-glucan supplementation
significantly rescued the LPS-induced increase in serum IL-1B
(0.01 < p < 0.05; Figure 4F) and NO levels (0.001 < p < 0.01; Figure 41)
and protected the piglet from intestinal inflammation.

3.5 Effect of p-glucan on mRNA and
protein expression of NF-kB signaling
pathway in ileal mucosa

Treatment with LPS significantly increased the mRNA expression
of NF-kB (nuclear factor kappa-B) (0.01 < p <0.05; Figure 5A),
MYD88 (myeloid differentiation factor 88) (0.001 <p <0.01;
Figure 5A), TLR-2 (Toll-like receptor-2) (0.01 < p < 0.05; Figure 5A),
IL-1P, IL-6 and TNF-a (0.01 < p < 0.05; Figure 5B) and the protein
expression of phosphorylated NF-xB (0.01 < p < 0.05; Figure 5D) and
IkB (inhibitor of nuclear factor kappa-B) (0.05 < p < 0.1; Figure 5E).
The mRNA expression of NF-kB, MYD88 (0.05 < p < 0.1; Figure 5A)
and IL-6 (0.01 < p < 0.05; Figure 5B) of the NF-xB signaling pathway
was reduced by supplementation of p-glucan after LPS treatment.

3.6 Gut microbiota profiling

The colonic microbial community of the piglets with different
treatments was evaluated by a 16S rDNA phylogenetic method with
OTUs >97% similarity. There was no significant difference between
dietary p-glucan and LPS treatments in the abundance or uniformity
(Appendix Table 2) of the colonic microflora. However, PLS-DA
(Partial Least Squares Discriminant Analysis) (Figure 6A) at the OTU
level revealed clear segregation and differences in microbiota
composition between the four groups. Firmicutes, Bacteroidetes,
Actinobacteria, Proteobacteria and Spirochetes were the dominant
flora in the colons of piglets in each group. The relative abundance of

Parameter
and period
(days)
Initial body weight

6.63 6.65 0.159 0.960
(kg)
19 Days body 10.60 11.37 0.210 0.067
weight (kg)
Final body weight 19.62 21.54 0.367 0.006
(kg)
ADG (g/d)
1-19 208.86 248.20 5.966 0.001
20-39 450.75 508.58 13.054 0.023
1-39 33291 381.73 8.007 0.001
ADFI (g/d)
1-19 356.49 424.45 11.222 0.001
20-39 854.40 929.39 30.396 0.225
1-39 608.08 682.51 17.317 0.028
Feed:gain ratio (F/G)
1-19 1.71 1.72 0.028 0.908
20-39 1.90 1.83 0.050 0.475
1-39 1.83 1.79 0.036 0.568

CON, basic diet without p-glucan; GLU, basic diet with 200 mg/kg f-glucan.
Data were expressed as means (n = 12).
-~ CON
- GLU

Diarrhoea score

1.2 3 4 5 6 7 8 9
Days post-weaning

FIGURE 1

Significance was presented as *p < 0.05, **p < 0.01, and ***p < 0.001.

B
1.5+
-~ CON
-+ GLU
2 *
© 1.0
©
o
<]
<
H
© 0.5+
[=]
0.0 T T T T T T T T

©-u

1. 2 3 4 5 6 7 8
Days post-weaning

Dietary supplementation with B-glucan alleviate diarrhea of piglet. (A) Diarrhea score. (B) Diarrhea rate. Data were expressed as means + SEM (n = 12).
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FIGURE 2
Dietary supplementation with p-glucan alleviate LPS-induced inflammation of piglet. (A—F) Blood cell composition. (G—I) Lymphocyte subsets
composition. Data were expressed as means + SEM (n = 6). Significance was presented as *p < 0.05, **p < 0.01, and ***p < 0.001.

the bacterial communities was examined at the phylum and genus
level (Figure 6C) (Appendix Table 3). Compared to piglets fed a basal
diet, p-glucan supplementation reduced the abundance of
Synergistetes at the phylum level (0.01 < p < 0.05). The top 30 genera
were selected for comparison. Agathobacter and Subdoligranulum had
higher abundances after the addition of B-glucan (0.01 < p < 0.05).
LEfSe (The linear discriminant analysis effect size) method
(Figures 61),1) was used to examine the composition of gut microbes.
In the GLU group (B-glucan supplementation group), Prevotella,
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Faecalibacterium, Subdoligranulum, Prevotella-2 and Eubacterium
emerged as dominant species.

3.7 Function and metabolism of intestinal
microbiota

The PICRUST software was used to predict the role of the
microbial communities, and the outcomes were compared to
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FIGURE 3

Dietary supplementation with g-glucan alleviate LPS-induced intestinal histological changes of piglet. (A,C,D) The H&E staining of the ileal and colon
morphology of piglet. (B,E) The fluorescent micrographs of ROS (red) and DAPI (blue) staining of ileal. Data were expressed as means + SEM (n = 6)
Significance was presented as *p < 0.05, **p < 0.01, and ***p < 0.001
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Dietary supplementation with p-glucan decreased the content of pro-inflammatory cytokines and NO of LPS-challenged piglet in plasma and ileal
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recognized metabolic pathways (Figures 7A,B). At KEGG level
3, the function of microbial genes involved in starch and sucrose
metabolism, porphyrin and chlorophyll pathways were
significantly reduced in the LPS group compared to the control
group, while the function of microbial genes involved in steroid
hormone biosynthesis was significantly increased. The Glu-LPS
group (p-glucan supplementation and LPS treatment group)
showed significantly lower gene function in the sugar transport
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system, phenylalanine, tyrosine and tryptophan biosynthesis and
significantly higher gene function in the starch and sucrose
metabolism pathways compared to the LPS group. The majority
of the alterations were connected to the metabolism of carbon,
starch, and addition, dietary p-glucan
supplementation increased the levels of butyric acid and valeric
acid in the colon, which further validated the above results
(Figures 7D,E).

sucrose. In
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Dietary supplementation with B-glucan inhibited the NF-kB signaling in ileal tissues of piglet. (A,B) The mRNA relative expression of NF-xB, MYD88,
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of protein bands. Data were expressed as means + SEM (n = 3). Significance was presented as *p < 0.05, **p < 0.01, and ***p < 0.001.

3.8 The correlation between the differential
bacteria and the examined indices

The gut microbiota is involved in the regulation of host
immunity. Therefore, the correlation between the levels of
pro-inflammatory cytokines in serum and ileal mucosa was
analyzed, the levels of SCFA in the colon and the abundance of
colonic microorganisms. Spearman correlation analysis
(Figure 8) was performed on the gut flora of weaned piglets at the
genus level using R software. Acetate content was positively
correlated with Agathobacter, Blautia, Prevotella_9 and
Faecalibacterium and negatively correlated with Ruminococcacea

and Muribaculaceae. Propionate content correlated positively
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with Prevotella_9. Butyrate content was negatively correlated with
Ruminococcus_I. Isovalerate content was positively correlated
with Ruminococcaceae_NK4A214_group, Treponema_2 and
Faecalibacterium. Plasma IL-6 was positively correlated with
Alloprevotella, Streptococcus

Prevotellaceae_ NK3B31_group and negatively correlated with

Phascolarctobacterium, and
Clostridium_sensu_stricto_I. The content of sIgA in ileal mucosa
was positively correlated with Muribaculaceae, Ruminococcaceae_
UCG-005, Rikenellaceae_RC9_gut_group and Ruminococcaceae_
UCG-008. IL-1p in ileal mucosa was positively correlated
and

with  Firmicutes, Ruminococcaceae_NK4A214_group

Christensenellaceae_R-7_group  and correlated

with Prevotella_9.

negatively
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Discussion

The small intestine is the main digestive and absorptive
organ, as well as the largest immune and barrier organ in the
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body (24). The results of this study indicate that feeding f-glucan
can enhance piglet immunity, alleviate intestinal damage after

10

LPS challenge, and promote piglet growth through modulating
gut microbiota composition and metabolism. Intraperitoneal
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injection of LPS, which is commonly used to induce intestinal
inflammation in piglets (25, 26), and the composition of
lymphocyte subsets, often regarded as an effective indicator to
determine whether the body is producing inflammation (27). In
this study, LPS was injected intraperitoneally to induce intestinal
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inflammation in piglets. The results showed a significant
decrease in the CD4*/CD8'T cell ratio and a significant increase
in the number of neutrophils and lymphocytes in the blood of
piglets, indicating the successful establishment of a piglet
inflammation model.
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Intestinal morphology is one of the key indicators of intestinal
health (28). LPS challenge can induce morphological changes in
the intestine, including villus shedding, vacuolization and necrosis
of intestinal epithelial cells (20, 29, 30). In this study, LPS caused
intestinal epithelial erosion, villous atrophy, and monocyte and
lymphocyte infiltration in the ileum and colon of piglets, but the
addition of B-glucan reduced the histopathological scores of the
ileum and colon tissues in piglets. Cytokines IL-1 {3, IL-6, and

Frontiers in Veterinary Science

TNF-a are involved in the occurrence of intestinal inflammation
(31). Previous studies have shown that supplementation of feed
with B-glucan reduces the TNF-a concentration in plasma of
LPS-attacked piglets (32). Our current study revealed that LPS
challenge significantly increased the levels of IL-6 in the ileal
mucosa and IL-1 B in serum of piglets, whereas supplementation
with B-glucan reduced the levels of IL-1 f in serum. In addition,
NO produced by the body under normal conditions activates
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protective inflammatory pathways, which regulates the host
response to exogenous pathogens, but overproduction of NO leads
to its accumulation under abnormal conditions and can induce
oxidative stress (33). In the current study, serum NO levels were
significantly higher in LPS-treated piglets, whereas p-glucan
significantly reduced serum NO levels. These results suggest that
glucan may inhibit intestinal inflammation by mediating
inflammatory factors.

The TLR/NF-kB signaling pathway is crucial for both innate
and adaptive immune responses, and NF-kB is a major target of
the inflammatory response (34). Activation of Toll like receptors
leads to the production of IL-1 B, IL-6, and TNF-«, which
participate in the immune response of bacteria and pathogens (35,
36). Studies have shown that pectin supplementation attenuates
endotoxin attacks by inhibiting Toll-like receptor activation (20,
37). This study indicates that LPS exposure increased the mRNA
expression levels of NF-kB, TLR-2, TLR-4, MYD88, IL-1§, IL-6
and TNF-a in piglet ileal mucosa as well as the protein expression
of p-NF-xB and p-IkB
supplementation with f-glucan reduced the mRNA expression of

levels in ileal tissue. Dietary
NF-kB and inflammatory cytokines, while having no effect on
NEF-kB protein expression. This might be attributed to the fact that
B-glucan could reduce NF-kB mRNA expression either by
inhibiting the DNA-binding activity of NF-kB or by inhibiting
IKKbeta kinase activity (38, 39). However, due to the influence of
post-translational transcriptional regulatory mechanisms of
proteins or stress-induced compensatory mechanisms, -glucan
reduced the LPS-induced NF-kB mRNA expression but had no
significant effect on protein levels (40, 41). This result is consistent
with previous reports in that f-glucan supplementation effectively
suppressed the elevated TLR-4 mRNA expression caused by LPS
treatment (42). These findings suggest that p-glucan may inhibit
LPS-induced inflammation by suppressing TLR/NF-kB activation.
Microorganisms mediate gastrointestinal metabolism,
mucosal inflammation, and immune processes in the body,
affecting gastrointestinal diseases such as inflammatory bowel
disease and colorectal cancer (2, 43, 44). Indeed, the ecological
imbalance of gut microbiota can lead to host immune dysfunction,
and regulating the composition of gut microbiota can affect gut
immunity (10). Some studies have shown that p-glucan feeding
alters the cecal microbiota of rats by increasing the abundance of
Bifidobacteria and Lactobacillus (32). Hence, we hypothesized that
f-glucan supplementation may influence the microbiota
composition in the piglet colon following LPS challenge. 16S
rRNA analysis of colonic digest revealed that piglets administered
with B-glucan had significantly altered gastrointestinal microbiota
after LPS treatment, according to the current study. LPS challenge
reduced the abundance of Ruminococcus_1 and Subdoligranulum,
whereas fB-glucan increased the relative abundance of beneficial
bacteria such as Prevotella, Agathobacter, Faecalibacterium,
Prevotella_9 and Subdoligranulum. P-glucan supplementation
restored the colonic microbial community after LPS challenge.
We used PICRUST?2 to examine the functional characteristics
of the gut microbiota. The LPS challenge significantly lowered
the functions of starch and sucrose metabolism, porphyrin and
chlorophyll  metabolism, and  manno-oligosaccharide
phosphorylation. In contrast, supplementing with f-glucan

significantly improved the processes of tyrosine, starch, and
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sucrose metabolism. Thus, B-glucan supplementation may aid in
regulating abnormal intestinal flora function brought on by LPS
and maintaining intestinal homeostasis during weaning. In
addition, we discovered that the most of the characteristically
predicted changes in biological functions were associated with
sugar metabolism, including the metabolism of starch, sucrose,
and carbon. There was a significant increase in propionate and
butyrate concentrations after f-glucan supplementation, which
could be due to B-glucan promoting the development of
microbial fermentation processes associated with an increased
abundance of certain butyrate-producing bacteria, such as
Subdoligranulum and Prevotella-9. Previous studies have shown
that SCFAs can promote the maturation of the gastrointestinal
tract, improve intestinal barrier function, and regulate body
immunity, thereby reducing diarrhea rates and improving piglet
growth performance (45-47). Correlation analysis revealed that
the impact of f-glucan on the gut flora of piglets was strongly
related to changes in the composition of SCFAs and inflammatory
cytokines, and that enhancing the composition of the gut flora
and its metabolites improved the gut function and growth
performance of the host.

These findings indicate that p-glucan can enhance piglet
immunity, alleviate intestinal damage after LPS challenge, and
promote piglet growth by affecting gut microbiota composition
and metabolism.
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