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The tall and short traits of chickens are significant indicators for evaluating their 
growth and development. Tall chickens have longer growth cycles, allowing them 
to accumulate sufficient nutrients and resulting in superior meat quality. This 
study aims to investigate the tall and short traits of Baicheng Fatty chickens and 
to identify relevant candidate genes. A total of 25 Baicheng Fatty chickens were 
selected for this research, where whole genome resequencing was performed 
on all samples to uncover genetic variations influencing tall and short traits. 
Additionally, transcriptome sequencing was conducted on 15 of these chickens to 
identify important genes affecting these traits through combined analysis. Using 
methods such as population genetic structure analysis, principal component 
analysis (PCA), linkage disequilibrium analysis (LD), runs of homozygosity (ROH) 
analysis, as well as genetic differentiation index (FST) and nucleotide diversity 
(θπ), a total of 1,019 candidate genes were identified through whole genome 
resequencing analysis. Gene Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) enrichment analyses were performed on these candidates. 
From the transcriptome data, 253 differentially expressed genes (DEGs) were 
identified, including 229 upregulated and 24 downregulated genes. GO and 
KEGG enrichment analyses were conducted on these differential genes, and a 
protein–protein interaction network for the DEGs was constructed. Through the 
combined analysis of whole genome resequencing and transcriptome data, six 
intersecting genes were identified: KLF15, NRXN1, LOC107050638, MHCY11, HAO1, 
and BORCS6. KEGG enrichment analysis revealed significant involvement in the 
Glyoxylate and Dicarboxylate Metabolism pathway, Peroxisome pathway, Carbon 
Metabolism, and Cell Adhesion Molecules (CAMs) pathway. These genes may 
influence the growth and developmental patterns of skeletal structures, though 
their regulatory mechanisms require further investigation. This study provides 
new insights for further research into the genetic mechanisms underlying chicken 
skeletal development and growth, as well as potential molecular markers for 
poultry breeding.
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1 Introduction

The Baicheng Fatty chicken is a local breed from the Aksu region 
of Xinjiang, known for its excellent meat quality, cold resistance, 
tolerance to rough feeding, and strong disease resistance (1–4). Based 
on their leg type, Baicheng Fatty chickens can be divided into two 
types: high-legged and short-legged. The high-legged Baicheng Fatty 
chicken has a larger body size, longer legs, and is adapted to complex 
terrain, demonstrating strong mobility and foraging abilities (5). The 
short-legged Baicheng Fatty chicken, on the other hand, has shorter 
legs and a compact body, typically with higher meat quality and better 
feed conversion rates.

Current research primarily focuses on the overall production 
performance and genetic diversity of Baicheng Fatty chickens (6–10), 
but the genetic mechanisms of leg traits remain underexplored, 
especially the genetic basis of high and short leg traits. Studies show that 
skeletal development plays a crucial role in the growth of poultry, 
particularly the development of leg bones, which directly impacts the 
mobility and production performance of poultry (11–14). Bone marrow, 
as a key site for skeletal development, is not only a hematopoietic tissue 
but also the source of mesenchymal stem cells required for bone growth. 
Mesenchymal stem cells in bone marrow can differentiate into 
osteoblasts, playing a crucial role in bone formation and remodeling (15).

Currently, research on the genetic mechanisms of leg traits in 
chickens is scarce, particularly regarding the genetic control of high 
and short legs in Baicheng Fatty chickens, which remains unclear 
(16–18). Wang et al. (6) conducted a systematic study on the dwarf 
gene in Xingyi short-legged chickens, finding that the traits of short 
and high legs are controlled by a pair of alleles on an autosome, with 
short legs being dominant over high legs. However, this study was 
limited to the role of a single gene and did not reveal the molecular 
mechanisms at the regulatory network level. Recent studies have 
shown that the expression levels of growth factors such as GH and 
IGF-1, and their receptor genes, are closely related to skeletal 
development in chickens (19). Moreover, transcriptomic research 
indicates that genes from families such as collagen type COL and BMP 
play important roles in skeletal development (20).

Despite this, there are still the following limitations in the 
systematic research on high and short leg traits in Baicheng Fatty 
chickens: (a) a lack of variation site screening at the whole-genome 
level; (b) an inability to clarify the key gene expression patterns related 
to skeletal development in bone marrow tissue; (c) a lack of in-depth 
analysis of the regulatory networks. This study integrates whole-
genome resequencing data and bone marrow transcriptome data to 
systematically screen candidate genes related to the high and short leg 
traits of Baicheng Fatty chickens from both genomic and transcriptomic 
perspectives. The goal is to reveal the molecular regulatory network of 
this trait, providing scientific evidence for the conservation and genetic 
improvement of the Baicheng Fatty chicken breed.

2 Materials and methods

2.1 Experimental animals and sample 
preparation

The experiment was conducted under uniform rearing 
conditions, with standardized feeding and immunization protocols, 

and free access to water. The tall-legged and short-legged traits of 
Baicheng Fatty chickens were observed. A total of 25 Baicheng Fatty 
chickens, aged 18 months (12 with tall legs and 13 with short legs), 
bred by Xinjiang Jinyou Native Animal Husbandry Co., Ltd., were 
selected for the study. Eighteen months was chosen because by this 
age, the chickens’ bones are fully developed, making it an ideal time 
to study skeletal maintenance and potential degenerative changes. 
At this stage, the bones are stable but have not yet begun to 
deteriorate, providing a key window to examine how genetic and 
environmental factors influence leg traits. In accordance with the 
guidelines of the Institutional Animal Care and Use Committee of 
Xinjiang Agricultural University (Approval No.: 2021099), bone 
marrow samples were collected from the femurs of all 25 chickens. 
The chickens were used for whole genome resequencing (all 25), 
with 15 selected for transcriptome sequencing. Of the 15 chickens 
chosen for transcriptome sequencing, 7 were males (4 with tall legs 
and 3 with short legs) and 8 were females (4 with tall legs and 4 with 
short legs). The samples were quickly placed in liquid nitrogen and 
stored at −80°C for future use. The experiment took place in 
November 2023 at the experimental base of Xinjiang 
Agricultural University.

2.2 Whole genome resequencing

2.2.1 DNA extraction and basic data processing
Genomic DNA was extracted from the 25 samples using the 

phenol-chloroform method. The concentration and purity of the DNA 
samples were assessed using a NanoDrop  2000 microvolume UV 
spectrophotometer. Gel electrophoresis was employed to evaluate the 
integrity and degradation of the DNA samples, providing a 
comprehensive assessment of DNA quality. After passing the quality 
inspection, the samples were sent to Beijing Baimake Biotechnology 
Co., Ltd. for library construction and paired-end sequencing. To 
ensure the accuracy of subsequent analyses, the raw sequencing data 
were quality-controlled using Fastp software. The filtered clean data 
were aligned to the chicken reference genome (Gallus_gallus.GRCg7b.
genome.fa) using BWA (11), sorted with the sort command in 
Samtools, and duplicates were removed with Picard. Subsequently, 
statistical analysis of the sorted BAM files was performed using 
Qualimap software (12). The Genome Analysis Toolkit (GATK) was 
utilized for whole genome variant detection. The filtering criteria for 
population SNPs included: exclusion of SNPs with a minor allele 
frequency below 5%, removal of loci with a missing rate greater than 
10%, and exclusion of SNPs with a p-value less than 1e-5 in Hardy–
Weinberg equilibrium tests. SNPs were annotated using 
ANNOVAR software.

2.2.2 Population genetic analysis

2.2.2.1 Principal component analysis (PCA)
VCF files were converted to PLINK format using VCFtools 

v0.1.17, and PCA was performed using PLINK v1.90 (13). The results 
were visualized with the R package ggplot2.

2.2.2.2 Linkage disequilibrium (LD)
LD at varying distances was assessed by calculating r2 values using 

software such as PLINK, with the LD coefficient represented by r2 and 
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the distance corresponding to half of the maximum r2 value defined 
as the LD decay distance (14).

2.2.2.3 Runs of homozygosity (ROH) analysis
Genotype data were quality-controlled using PLINK to remove 

low-quality variants. A fixed-size sliding window was applied to scan 
the chromosomes for contiguous homozygous SNPs. ROH segments 
were identified and recorded based on predefined thresholds. 
Specifically, the following parameters were used for ROH detection: 
the minimum length of ROH segments was 100 kb, each ROH was 
required to include at least 10 SNPs, the minimum density of 
homozygous SNPs within a segment was set to 10, each sliding 
window contained at least 50 SNPs, a maximum of 1 heterozygous 
SNP was allowed per window, and the maximum gap between 
homozygous SNPs within the window was 100 SNPs.

2.2.2.4 Joint analysis of genetic differentiation index (FST) 
and nucleotide diversity (θπ)

The FST value reflects the degree of population differentiation, with 
values ranging from 0 to 1. When FST is between 0 and 0.05, it indicates 
low genetic differentiation between populations. A value between 0.05 
and 0.15 suggests moderate differentiation, while values from 0.15 to 
0.25 indicate a relatively high level of differentiation. FST values greater 
than 0.25 are considered to represent substantial genetic differentiation 
between populations (15). In this study, FST values for each sliding 
window were calculated using VCFtools with a window size of 40 kb 
and a step size of 20 kb. The intersection of the top 1% of FST results 
and the top 1% of π ratio results was taken as the selected regions.

2.2.2.5 GO enrichment and KEGG pathway analysis of 
genes in selected regions

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) enrichment analyses were conducted using 
DAVID.1 Subsequently, the enrichment results were visualized using 
the online plotting software WeiShengXin.2

2.3 Transcriptome sequencing

2.3.1 RNA extraction and library construction
Total RNA was extracted from 15 chicken bone marrow samples 

(divided into two groups: tall-legged group with 8 samples and short-
legged group with 7 samples) according to the manufacturer’s 
instructions for TRIzol Reagent (Life Technologies, California, USA). 
RNA concentration and purity were measured using a NanoDrop 2000 
(Thermo Fisher Scientific, Wilmington, DE, USA). RNA integrity was 
assessed with the RNA Nano 6000 Kit on an Agilent Bioanalyzer 2100 
system (Agilent Technologies, CA, USA). After passing the quality 
inspection, 1 μg of total RNA from each sample was used for library 
construction. Sequencing of the libraries was performed on the 
Illumina NovaSeq platform by Beijing Baimake Biotechnology Co., 
Ltd. The resulting clean reads were aligned to the chicken reference 
genome (Gallus_gallus.GRCg7b.genome.fa) using Hisat2 (2.0.4) to 

1 https://david.ncifcrf.gov/

2 http://www.bioinformatics.com.cn/

obtain positional information of reads on the reference genome (16). 
The aligned reads were then assembled using StringTie (17) to 
reconstruct the transcriptome for subsequent analysis. Based on the 
positional information aligned to the genome, read counts for each 
transcript were calculated, and gene expression levels were quantified 
using FPKM values.

2.3.2 Differential expression gene data 
enrichment analysis

2.3.2.1 Selection of DEGs
DEGs were identified based on the count values across samples 

using differential analysis software. For groups with biological 
replicates, DESeq2 software was employed for differential analysis; for 
groups without biological replicates, edgeR software was used. The 
selection criteria for DEGs included a Fold Change (FC) ≥ 1.5 and a 
p-value <0.01. The Fold Change represents the ratio of expression 
levels between two samples (or groups). The False Discovery Rate 
(FDR) was calculated to assess the significance of the differences based 
on the adjusted p-values. To facilitate comparisons, the Fold Change 
values were log-transformed (log2FC), where a larger absolute value 
of log2FC and a smaller FDR indicate more pronounced differences 
between the two groups.

2.3.2.2 GO enrichment analysis
The differential expression genes were functionally annotated 

using the GO database, and statistical classification was performed at 
the secondary classification level. For each group of DEGs, enrichment 
analyses for biological processes, molecular functions, and cellular 
components were conducted using the ClusterProfiler package with 
hypergeometric testing. The resulting GO nodes from the enrichment 
analyses were visualized, and a Directed Acyclic Graph (DAG) was 
generated using topGO.

2.3.2.3 KEGG enrichment analysis
The KEGG annotation results for the DEGs were classified 

according to pathway types in KEGG. Through KEGG annotation 
analysis, metabolic pathways related to the target genes were identified, 
elucidating the sources of phenotypic differences from biochemical 
and metabolic perspectives. The enrichment results were visualized 
using ClusterProfiler.

2.3.2.4 Protein–protein interaction network
The sequences of the differential genes were aligned to the 

genomes of relevant species, with their predicted protein–protein 
interaction (PPI) relationships obtained from the STRING database 
(18).3 The PPI networks of these differential genes were then visualized 
using Cytoscape (19).

2.4 Candidate gene screening

Intersection analysis was performed on the genes obtained from 
resequencing and transcriptome sequencing, combining data from the 

3 http://string-db.org/
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GeneCards database and relevant literature to clarify the functions of 
intersecting genes. KEGG enrichment analysis was conducted using 
DAVID (see text footnote 1), and a Venn diagram was created to 
visualize the enrichment results with the online plotting software 
WeiShengXin (see text footnote 2). A protein interaction network 
diagram for the intersecting genes was constructed using the STRING 
database. Candidate genes related to the tall and short traits of 
Baicheng Fatty chickens were identified.

3 Results

3.1 Identification of candidate genes for tall 
and short traits using whole genome 
resequencing

3.1.1 Genome data description
After quality control and alignment, the BAM files of 25 samples 

from the Baicheng Fatty chickens breed were statistically analyzed 
using Qualimap software. The alignment rate of clean reads from all 
samples to the reference genome was 99.50%, with an average 
sequencing depth of 11.36× and an average Q30 score of 92.79%. A 
total of approximately 1014.00 Mb of clean reads was obtained, 
generating about 302.52 Gbp of clean data (Supplementary Table 1).

3.1.2 Whole genome genetic variation detection
A total of 28,897,168 SNP loci were identified through variation 

detection, with 5,518,574 SNPs remaining after filtering. Tall-legged 
chickens and short-legged chickens were found to have 14,335,980 
and 14,561,188 SNP loci, respectively. The distribution of the 5,518,574 
identified SNPs across the chromosomes indicated varying degrees of 
distribution on each chromosome (Figure 1A). The highest number 
of distributed SNPs was found on chromosome 1, followed by 
chromosome 2. Chromosomes 10, 11, 12, and 13 exhibited a similar 
distribution of SNPs. Annotation analysis revealed that SNPs are 
predominantly distributed across various genomic regions. The largest 
proportion, 39.28%, is found in the TRANSCRIPT region, followed 
closely by INTRON at 35.26%. The UPSTREAM and DOWNSTREAM 
regions account for 9.25 and 9.21%, respectively. The INTERGENIC 

region represents 3.87%, while SNPs in the EXON region make 
up 2.03%. Smaller proportions are found in the 3’ UTR (0.76%), 5’ 
UTR (0.20%), SPLICE_SITE_REGION (0.12%), SPLICE_SITE_
ACCEPTOR (0.01%), and SPLICE_SITE_DONOR (0.01%) 
(Figure 1B).

3.1.3 Population genetic structure analysis

3.1.3.1 Principal component analysis (PCA) and linkage 
disequilibrium (LD)

We conducted a population structure analysis, and the PCA 
results indicated that the tall-legged and short-legged groups could 
be clearly separated in terms of genetic structure (Figure 2A). For all 
SNPs, we calculated the LD, revealing that when the LD coefficient 
dropped to half of its maximum value, the tall-legged group (G_
group) showed LD at 150 kb (R2 = 0.11), while the short-legged group 
(D_group) displayed a quicker decay at the same distance (R2 = 0.01) 
(Figure 2B).

3.1.3.2 ROH analysis
By comparing the number of individual ROH segments and their 

coefficients of variation in the tall and short-legged groups, 
we observed differences in genetic diversity and inbreeding levels 
between the two groups. Statistical analysis revealed that the short-
legged group had an average of 198.4 ± 124.4 ROH segments, 
indicating significant variation in ROH numbers among individuals. 
Most individuals exhibited fluctuations around this average of 198.4, 
with a coefficient of variation of 62.73%. In contrast, the tall-legged 
group had an average of 132.7 ± 25.44 ROH segments, suggesting a 
certain degree of variation as well, but to a lesser extent; most 
individuals fluctuated around 132.7 with a coefficient of variation of 
19.17% (Supplementary Table 2 and Figure 3A). Further analysis of 
the relationship between the number of homozygous segments 
(NROH) and the total length of homozygous segments (SROH) 
provided insights into the distribution characteristics of homozygous 
segments across different populations. We  found that as NROH 
increased, data points for both the D_group and G_group showed a 
trend of increasing SROH, indicating a positive correlation between 
SROH and NROH (Figure 3B).

FIGURE 1

(A) Chromosomal distribution of SNPs. (B) SNP Annotation classification statistics.
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3.1.4 Selection signal analysis

3.1.4.1 Identification of selection signals using FST and θπ 
ratios

Selection signal analysis was conducted using FST and π ratio, with 
the intersection of the top 1% FST (Supplementary Table 3) and the 
top  1% π ratio results identified as selected regions. This analysis 
revealed a total of 460 selected regions, which annotated 1,019 
candidate genes (Figure 4).

3.1.4.2 Annotation and functional enrichment of 
candidate genes

GO enrichment and KEGG pathway analyses of the selected 
regions in tall and short chickens were performed using DAVID and 
KOBAS websites. The GO enrichment analysis identified 44 GO 

terms, predominantly associated with processes such as Notch 
binding, G protein-coupled serotonin receptor activity, GABAergic 
synapse, and immune response (Figure 5A). The KEGG enrichment 
analysis identified a total of 24 pathways, primarily enriched in the 
WNT signaling pathway, PPAR signaling pathway, metabolic 
pathways, gap junction, and Notch signaling pathway (Figure 5B).

3.2 Identification of DEGs associated with 
tall and short traits using transcriptome 
sequencing

3.2.1 Transcriptome data description
Transcriptome sequencing was performed on bone marrow 

tissue samples from 15 Baicheng Fatty chickens, including 8 

FIGURE 2

(A) PCA results: the orange circles represent the tall-legged chickens (G_group), and the green triangles represent the short-legged chickens (D_
group). (B) LD analysis: the black curve represents the tall-legged chickens (G_group), and the red curve represents the short-legged chickens (D_
group).

FIGURE 3

(A) Total number of ROH. The left side of the figure represents the short-legged chickens (D_group), and the right side represents the tall-legged 
chickens (G_group). (B) Relationship between NROH and SROH. The y-axis represents NROH, ranging from 0 to 500; the x-axis represents SROH, 
ranging from 0 to 900. The figure contains two sets of data, represented by different shapes and colors: red circles for the short-legged chickens (D_
group) and blue triangles for the tall-legged chickens (G_group).
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tall-legged and 7 short-legged individuals. A total of 94.94 Gb of 
clean data was obtained, with each sample yielding at least 5.98 Gb 
of data. The Q30 base percentage was above 94.59%, and the GC 
content was consistently above 50.44%. Clean reads for each sample 
were aligned to the designated reference genome, with mapping 
efficiency ranging from 92.13 to 95.33%, indicating that the 
sequencing data met the requirements for subsequent analysis 
(Supplementary Table 4).

3.2.2 Analysis of differentially expressed gene 
selection results

The number of DEGs in each comparison group is illustrated in a 
bar chart (Figure 6A), and the differential expression is visualized in 
a volcano plot (Figure 6B). A total of 253 DEGs were identified, with 
229 genes upregulated and 24 genes downregulated. Genes exhibiting 
similar expression patterns may have analogous functions. A 
hierarchical clustering analysis was performed on all identified DEGs 
to cluster genes with the same or similar expression patterns across 
different samples, displayed through a heatmap (Figure  6C). This 
clustering allows for the identification of potentially related functions 
based on known functions of the clustered genes.

3.2.3 GO and KEGG enrichment analysis of 
differential genes

In this study, GO database was utilized to functionally annotate 
the DEGs, and statistical classification was performed at the 
secondary classification level. The GO annotation system 
encompasses three primary branches: Biological Process, 
Molecular Function, and Cellular Component. A total of 34 GO 
terms were identified in the enrichment analysis, primarily 
associated with Cellular Process, Metabolic Process, Developmental 
Process, Cellular Anatomical Entity, and Binding Activity 
(Figure 7A). To determine the GO terms significantly enriched 
compared to the overall genomic background, we employed the 
ClusterProfiler software to conduct enrichment analysis for 
Biological Processes, Molecular Functions, and Cellular 
Components using hypergeometric tests for each group of 
differential genes. The enrichment results were visualized to 
represent the GO nodes. The significance of functional pathways 
was assessed based on the q-value, where smaller q-values indicate 
greater significance. Using topGO, a Directed Acyclic Graph 
(DAG) was generated to intuitively display the enriched GO nodes 
of the DEGs and their hierarchical relationships. The branches in 

FIGURE 4

Visualization of selected gene regions in tall-legged and short-legged chickens.
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FIGURE 5

(A) GO functional enrichment analysis of selected genes in tall and short chickens. (B) KEGG pathway enrichment analysis of selected genes in tall and 
short chickens.

FIGURE 6

(A) Bar chart of differential gene statistics. The x-axis represents different sets of DEGs, with blue indicating all DEGs, orange representing upregulated 
genes, and green representing downregulated genes. The y-axis represents the number of DEGs. (B) Volcano plot of DEGs in comparison groups. 
(C) Heatmap of differentially expressed gene clustering. The x-axis represents the sample names and the clustering results of the samples, while the 
y-axis represents the differentially expressed genes and their clustering results. Each column corresponds to a different sample, and each row 
corresponds to a different gene. The color scale indicates the expression level of genes across the samples.
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the DAG represent containment relationships, with the functional 
scope narrowing from top to bottom. The five most significantly 
enriched GO terms from each comparison group were selected as 
primary nodes, showcasing their associated GO terms 
(Supplementary Figure 1).

DEGs were annotated in KEGG, and the results were categorized 
according to the types of pathways within KEGG. Among these 
pathways, Metabolism represented the largest category (Figure 7B). 
The KEGG enrichment analysis revealed significant associations with 
pathways such as the TGF-beta signaling pathway, ECM-receptor 
interaction, Adherens junction, PPAR signaling pathway, and 
Glycerolipid metabolism (Figure 7C). Additionally, through KEGG 
annotation, metabolic pathways relevant to the target genes were 
identified from biochemical metabolic pathways, helping to elucidate 
the underlying causes of phenotypic differences 
(Supplementary Figure 2).

A protein–protein interaction (PPI) network for the DEGs was 
constructed using the STRING database. This database contains 
predicted and experimentally validated PPI data across multiple 
species, including both direct physical interactions and indirect 
functional associations. By aligning the DEGs with proteins in the 
database, homologous proteins were identified, and interaction pairs 
were established. The PPI network was visualized using Cytoscape 
software (Figure 7D), facilitating the prediction of interactions among 
genes and narrowing down the critical gene set, thus providing reliable 
candidates for subsequent functional studies.

3.3 Candidate gene selection

An intersection analysis was conducted between the genes 
identified from resequencing and the DEGs, resulting in the 
identification of six key genes: LOC107050638, MHCY11, KLF15, 
HAO1, NRXN1, and BORCS6 (Figure  8A). A protein–protein 
interaction (PPI) network was constructed using the STRING 
database. Although the proteins displayed may not have direct 
interactions, this analytical approach aids in screening and identifying 
potential key genes, providing a foundation for further experimental 
validation (Figure 8B). KEGG analysis revealed that these candidate 
genes were primarily enriched in pathways related to Glyoxylate and 
dicarboxylate metabolism, the Peroxisome pathway, Carbon 
metabolism, and Cell adhesion molecules (CAMs) pathway 
(Figure 8C).

4 Discussion

The genomic and transcriptomic technologies are developing so 
fast that poultry genetic trait studies have deeply reached an 
unprecedented depth. In this study, we  integrated whole-genome 
resequencing and transcriptomic sequencing data to investigate the 
genetic structural differences and molecular mechanisms underlying 
these two leg-length phenotypes (high-legged and short-legged) in 
Baicheng Fatty chickens.

FIGURE 7

(A) GO annotation classification statistics of DEGs. (B) KEGG classification of DEGs. (C) KEGG enrichment bubble chart of DEGs. (D) Protein–protein 
interaction network of DEGs. Each circle represents a protein, with a simplified molecular structure diagram inside the circle, and the edges represent 
interaction relationships.
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4.1 Analysis of population genetic structure

In this study, two-dimensional PCA analysis revealed substantial 
genetic differences between the high-legged and short-legged groups. 
This finding is consistent with the results of Nie et  al. (21), who 
identified strong genetic differentiation in chicken populations with 
different leg types through whole-genome resequencing. Wang et al. 
(22) demonstrated that domestication and selection acted on genomic 
regions associated with leg type, followed by the selection of regions 
under differential pressures, leading to genetic differentiation between 
leg type groups. Similar patterns of differentiation have been reported 
in other poultry breeds. For instance, Liu et  al. (23) conducted a 
genomic-level population structure analysis, which revealed 
significant genetic differences between populations exhibiting distinct 
body size traits, as confirmed by phenotype analysis. Beijing oil 
chickens with different body size traits were identified, and a genome-
wide association study (GWAS) was performed to pinpoint several 
candidate loci associated with weight and body size. These findings 
provide valuable insights into the genetic basis of body size traits 
in local chicken breeds.

LD analysis demonstrated that the decay rate in the short-legged 
group (R2  = 0.01) was significantly faster than that in the high-
legged group (R2  = 0.11). Sheng et  al. (24) studied hybrid 
populations between Chinese local chickens and commercial 
broilers, finding significant LD differences in genomic regions 
associated with growth traits among populations with different 

growth types. This difference is often a consequence of long-term 
selection acting on the genomic architecture, which aligns with the 
faster LD decay observed in the short-legged group. Their findings 
suggest that changes in LD patterns are associated with selective 
constraints on growth-related genes, providing important insights 
into the genetic basis of the high-legged and short-legged 
phenotypes. Rubin et al. (25) showed that different intensities of 
artificial selection on genomic regions during domestication led to 
distinct LD patterns, with LD decaying more rapidly near regions 
under strong selection. This supports the hypothesis that short-
legged individuals may have experienced stronger selection 
pressure, resulting in more rapid LD decay. Additionally, their 
research elucidates how these selection patterns influence genome 
evolution, offering theoretical support for the mechanisms 
responsible for the creation of different phenotypic traits in chickens.

ROH analysis revealed variation in population genetic diversity. The 
short-legged group exhibited a higher number of ROH (198.4 ± 124.4) 
and a greater coefficient of variance (62.73%). Studies by Peripoll et al. 
(26) highlighted that increased levels of ROH often indicate selective 
pressure or bottleneck effects within a population. According to their 
research, the length distribution and number of ROH can reflect a 
population’s genetic history, and greater variation in the number of 
ROH suggests more intense artificial selection. This is consistent with 
the elevated ROH number (198.4 ± 124.4) and coefficient of variation 
(62.73%) observed in the short-legged group, suggesting stronger 
selection events in this group compared to the high-legged group.

FIGURE 8

(A) Intersection of resequenced genes and DEGs. The green circle represents the resequenced genes, with a total of 1,013 genes. The blue circle 
represents the differentially expressed genes (DEGs), with a total of 247 genes. The overlapping area represents the intersection of the two, with a total 
of 6 genes. (B) Protein–protein interaction network of the intersected genes. Each circle represents a protein, with a simplified molecular structure 
diagram inside the circle, and the edges represent interaction relationships. (C) KEGG pathway enrichment analysis of the intersected genes. Each data 
point represents a pathway, with color and size indicating its significance level and the number of genes involved.
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4.2 Key genes and the analysis of their 
regulatory network

Through integrated analysis, this study identified six potential 
candidate genes, among which KLF15, HAO1, and NRXN1 are 
particularly well-studied. KLF family transcription factors play a 
crucial role in skeletal muscle development. Zhang et  al. (27) 
demonstrated that the KLF family member Siha promotes skeletal 
muscle atrophy via the classical Wnt/β-catenin signaling pathway 
in chickens, suggesting that other KLF family members may also 
be pivotal in muscle development. KLF15, a member of the KLF 
family, regulates skeletal muscle development by associating with 
PPARδ to control lipid metabolism, which is essential for normal 
skeletal muscle function (28). Jung et al. (29) reported that KLF15 
is a key molecule linking ER stress to metabolic regulation, 
influencing tissue growth and development by mediating amino 
acid and lipid metabolism. Their findings provide a molecular 
mechanism for understanding the role of KLF15 in myogenesis. 
Additionally, recent studies have shown that KLF15 is involved in 
regulating the growth plate of bones (30).

The primary impact of the HAO1 gene on skeletal development 
appears to be through its involvement in regulating the tricarboxylic 
acid cycle. Kimura et al. (31) used an HAO1-deficient mouse model 
to reveal the significant role of this gene in energy metabolism. 
Johnsson et  al. (32) found a strong correlation between skeletal 
growth rate and HAO1 gene expression. These differences in energy 
metabolism may contribute to the phenotypic variations between the 
two sexes of chickens, specifically in those with extreme obesity, high-
leg, and short-leg traits.

The potential role of NRXN1 in skeletal development has been 
more recently discovered. Gong et  al. (33) reported that PRC2 
modulates chondrocyte differentiation, while Wang et  al. (34) 
demonstrated that NRXN1 regulates bone synthesis through calcium 
signaling pathways. These studies uncover the molecular mechanisms 
behind the high-legged and short-legged phenotypes.

4.3 Signaling pathways and their regulation 
of cell fate determination

KEGG analysis showed that the significant genes identified were 
predominantly enriched in metabolic-related pathways. Zhang et al. 
(35) found that the Glyoxylate and Dicarboxylate Metabolism pathway 
is strongly linked to skeletal growth, regulating energy metabolism to 
influence the proliferation and differentiation of growth plate 
chondrocytes. Buchert et  al. (36) showed that the Cell Adhesion 
Molecules (CAMs) pathway is critical in regulating skeletal 
development through the interaction between chondrocytes and the 
extracellular matrix.

The Peroxisome pathway, recently studied for its significance in 
skeletal development, was also enriched in our analysis. Wang et al. 
(37) demonstrated that this pathway affects bone growth by regulating 
lipid metabolism and oxidative stress response. Yin et al. (38) further 
provided evidence that disrupting the Peroxisome pathway leads to 
skeletal development defects. These findings correspond to the 
observed variations in metabolic pathways between the high-legged 
and short-legged chickens in this study.

4.4 Importance and potential applications 
of the research

The results of this study have both theoretical significance and 
practical value for poultry breeding. By identifying key genes and 
pathways associated with leg-type traits, this study provides insights into 
the molecular mechanisms underlying poultry skeletal development. It 
also enhances the understanding of the relationships between these 
traits when compared with previous QTL-mapping studies, such as 
those by Wang et al. (37), which are essential for optimizing poultry 
breeding strategies. Selection breeding based on functional genomics 
has been shown to improve breeding efficiency significantly (39).

Furthermore, the candidate genes identified in this study can 
be  applied in molecular marker-assisted selection (MAS). As 
demonstrated by Moniruzzaman et al. (40), MAS not only increases 
breeding efficiency but also improves selection accuracy, which is 
crucial for the protection and development of local chicken varieties, 
such as Baicheng oil chicken. Prior studies (41) have shown that 
combining genomic and transcriptomic data allows for more accurate 
breeding value predictions.

This research methodology and analytical framework can 
be applied to other poultry breeds, offering an integrative approach to 
identifying the genetic underpinnings of complex traits (42, 43). 
Future studies should validate these candidate genes to provide more 
reliable molecular tools for poultry breeding. Additionally, functional 
validation experiments are needed to confirm the specific roles of 
these genes in the development of leg-type traits in Baicheng oil 
chickens, and gene editing approaches could be employed in future 
studies to further elucidate their functions.

5 Conclusion

This study identified a total of 28,897,168 SNP loci through 
whole-genome resequencing and uncovered 253 DEGs using 
transcriptome sequencing. Combined analysis revealed six key genes: 
KLF15, LOC107050638, MHCY11, HAO1, NRXN1, and BORCS6. 
Among these, KLF15 is highlighted as a critical gene associated with 
growth traits, potentially playing an important role in the regulation 
of skeletal muscle growth in chickens.
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