
Frontiers in Veterinary Science 01 frontiersin.org

Investigating the role of 
environmental factors in the 
French highly pathogenic avian 
influenza epizootic in 2022–2023
Maryem Ben Salem 1*, Mathieu Andraud 1, Stéphanie Bougeard 1, 
Virginie Allain 1, Morgane Salines 1, Rodolphe Thomas 1, 
Audrey Schmitz 2, Legrand Saint-Cyr 3, Karine Fiore 3, 
Sophie Le Bouquin 1 and Axelle Scoizec 1

1 Epidemiology, Animal Health and Welfare Unit (EpiSaBe), Ploufragan-Plouzané-Niort Laboratory, 
ANSES, Ploufragan, France, 2 Avian and Rabbit Virology, Immunology and Parasitology Unit (VIPAC) 
and French National Reference Laboratory for Avian Influenza, Ploufragan-Plouzané-Niort 
Laboratory, ANSES, Ploufragan, France, 3 Social Sciences, Economics and Society Department 
(DISSES), ANSES, Maisons-Alfort, France

Introduction: The recurring epizootics of highly pathogenic avian influenza 
(HPAI) in France have been associated with changes in the epidemiological 
landscape, such as higher frequency of detections in wild birds and introductions 
into backyard farms. This highlights the need for a deeper understanding of the 
factors that drive the spread of HPAI, particularly environmental ones, which, 
unlike other factors, are still understudied.

Methods: In this study, we examined various farm and environmental variables 
around the 2022–2023 outbreak sites in France to unravel potential common 
traits among detected outbreaks. From August 2022 to March 2023, 397 poultry 
farms were infected, including different species and production types. For 
each outbreak, the farm characteristics and variables related with their direct 
environment within a 2 km radius were collected. Based on the Gower distance, 
accounting for qualitative and quantitative variable, clusters were identified 
using k-medoid partitioning algorithm. A random forest analysis was further 
used to hierarchize the relative role of each variable in the clustering process, to 
assess the importance of the farm structural and environmental conditions on 
the outbreak occurrence. To disentangle the impact of environmental factors 
from intrinsic herd characteristics, the method was applied twice: first, using the 
whole dataset including the farm characteristics and environmental variables 
(first scenario); second, accounting exclusively for the environmental variables 
(second scenario).

Results: Overall, farm variables such as farm type were crucial in the clustering 
process, overpassing most of the environmental factors, although the distance 
from “particular risk zones” and the coastline were also important. However, 
the clusters obtained with the second scenario that counts only for the 
environmental variables, remained consistent with the first scenario.

Discussion: This shows a non-negligible impact of environmental conditions on 
the probability of viral introduction in poultry herds. This study used an innovative 
approach to explore how HPAI dynamics can be influenced by external factors, 
which could help in the design of risk zones at the national level.
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1 Introduction

Avian influenza is an infectious disease that affects primarily wild 
birds and poultry (1). Depending on the characteristics of each virus 
strain involved, the disease can be either low or highly pathogenic (1, 
2). The highly pathogenic form is extremely severe and is associated 
with subtypes H5 and H7 (1, 2), which were responsible for more than 
31 million deaths among both poultry and wild birds and the culling 
of 448 million poultry birds in 114 countries between 2005 and April 
2023 (1). Highly pathogenic avian influenza (HPAI) not only causes 
significant economic losses to the poultry industry worldwide, but 
also impacts the wild bird populations, and numerous mammal 
species. More than 48 mammal species were reported to be infected 
between 2020 and 2023 including minks, sea lions, dogs, cats and 
bears (1–6). Recent outbreaks among 695 dairy herds and a detection 
of a H5N1 case in pigs in the United States of America confirms the 
non-negligible risk of crossing the species barrier (7–9). These 
findings raise concerns regarding the zoonotic potential of HPAI and 
the risk of a new global pandemic (1, 5, 7–10).

Since its initial emergence in 1996 in Southern China, the HPAI 
A/Goose/Guangdong/1/1996 (GsGD) A(H5N1) virus lineage has 
evolved into numerous strains and spread globally (11). In 2023, it was 
identified in 81 countries worldwide, with the European continent 
being heavily affected (5, 10, 12). In 2022 alone, Europe declared 
82.7% of global avian influenza infections, highlighting its crucial role 
as a hotspot of virus transmission (10). While severe epizootics due to 
recurring HPAI A(H5Nx) clade 2.3.4.4b virus introductions by wild 
migratory birds (13–15) have been affecting Europe since 2014, the 
2021–2022 epizootic was considered the most substantial with 6,707 
HPAI outbreaks, in both poultry and wild birds, followed by 2022–
2023 epizootics, accounting for 5,514 outbreaks (16).

When considering the economic impact of HPAI epizootics on 
the European poultry sector, France stands out as one of the most 
affected countries, given its significant role as a producer and exporter 
of poultry products (15, 17–19). Over the past few years, a notable 
shift has been observed in the French HPAI epidemiological context. 
Historically, in 2016–2017 and 2020–2021, most outbreaks occurred 
in south-western France, a region with a distinct poultry industry, 
known for its high-density of duck farms, specifically involved in the 
production of “foie gras,” and extensive outdoor farming practices (15, 
20, 21). Flock density was identified as a major explanatory factor for 
these epidemiological situations (15, 19). In addition, the specific 
structural dynamics of the “foie gras” industry include frequent duck 
movements between different sites (20). Access to outdoor areas 
further increases the risk of virus introduction into farms, due to 
potential direct contact with migratory and commensal wild birds 
visiting these open spaces (22, 23). These factors combined altogether 
result in a complex epidemiological landscape marked by a high risk 
of HPAI introduction and spread. Despite improvements in on-farm 
biosecurity, and reinforced legislation impairing outdoor poultry 
rearing during at-risk periods, major epizootics still occurred in 
2021–2022 and 2022–2023, revealing important changes in HPAI 
dynamics in the country (24). Unlike the previous ones, these 
epizootics were not limited to the “foie gras” industry in south-
western France, but extended for the first time to western and central-
western regions, affecting a wider range of production sectors. These 
included other duck production (meat and breeding), turkey 
production, and chicken production (15). In the western region, this 

change in epizootic size and the variety of affected species was 
attributed to both the size of farms and the diversity of production 
types in the region (15). A striking difference compared to the past 
was the increase in sporadic detections of HPAI viruses on farms, in 
backyards, and in captive holdings all over France (24). Moreover, 
there was an upward trend in the number of detections in the wild 
bird population (24). These levels of infection and spread are 
unprecedented compared to previous outbreaks and indicate a 
substantial shift in transmission dynamics, with an endemic trend 
among local wildlife.

The shift in epidemiological behaviour observed in the last two 
epizootics, and especially the apparent endemicity of H5N1 in wild 
bird populations and their interaction with domestic poultry, raises 
questions about the potential role of environmental factors in the 
introduction and transmission processes in poultry production units. 
Despite being well discussed in the literature for their role in the 
introduction and spread of HPAI (22), the environmental 
characteristics surrounding HPAI infected farms remain poorly 
evaluated. In this context, using data collected during the winter HPAI 
epizootic of 2022–2023  in France, our study aims to investigate 
common traits related to farm characteristics and environmental 
contexts, through a clustering approach, and to analyse the relative 
contribution of these factors in cluster building using a random forest 
methodology. This article first examines potential clusters among the 
outbreaks following two scenarios, including different combinations 
of variables, and then goes on to evaluate the contribution of the 
different variables in the clustering process.

2 Materials and methods

2.1 HPAI poultry outbreak data

The dataset was obtained from the General Directorate for Food 
of the French Ministry of Agriculture, Food Sovereignty and Forestries 
for the period from August 2022 to June 2023. An outbreak was 
defined as at least one HPAI-infected bird within a poultry farm, 
detected through PCR methods. The following characteristics of 
infected farms were extracted and used in the analysis: province, 
municipality, geographic coordinates (World Geodetic System), farm 
type (commercial, backyard, and captive), species, production type, 
date of initial suspicion, and outbreak identification number. The 
different farm types, species, and production types are detailed in 
Table 1.

2.2 Environmental variables data

In our study, we  refer to the factors external to the farm as 
“environmental factors.” Twelve variables were selected to describe the 
surroundings of outbreak locations (Table  1). To account for 
favourable wind conditions, surroundings were limited to a 2 km 
buffer around each outbreak location. This allows infection to spread 
up to twice the distance estimated in the work of Ssematimba et al. 
(25), where the deposition of contaminated dust was evaluated to be at 
its best around 0.45 km and decreased significantly beyond 1 km. 
Similar tendency was observed for the model predicting the 
probability of infection that drops sharply beyond 1 km (25).
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TABLE 1 Description of variables used in the analysis of HPAI outbreaks in France in 2022–2023.

Category Variable Description Modalities (abbreviates) and definitions

Analysis Name

HPAI poultry outbreaks 

variables
Scenario A

Type Farming topology in the poultry sector Commercial (CMMF): farms with commercial activities

Backyard (BCKY): farms with no commercial activities. Birds are raised for private 

consumption /convenience. Backyard farms need to be registered. They are registered 

at provincial level if the number of birds exceeds 250; otherwise, registration at the 

municipality level is sufficient

Captive (CPTV): birds other than chickens, turkeys, guinea fowls, ducks, geese, 

quails, pigeons, pheasants, and partridges that are raised or kept in captivity for 

breeding, meat or table egg production, supplying game birds for restocking or 

hunting purposes, as well as for shows, races, exhibitions, competitions, or sale

Production type Types and objectives of production sites Decoy ducks (DCYD): ducks used for hunting. They serve as a decoy to attract wild 

birds

Starter phase (STRP): The first phase of chick rearing after hatching

Game birds farm (GMBF): birds raised to be released for hunting activities or species 

conservation

Fattening (FTTN): intensive rearing phase for meat production

Future laying hens (FTLH): pullets intended for laying hens

Rearing period (RRNP): preparatory phase before assisted-feeding

Laying hens (LYNH): adult laying hens used for egg production

Assisted-feeding (GAVA): assisted-feeding phase (ducks and geese) for foie gras 

production

Future breeders (FTRB): birds selected to be breeding stock

Breeders (BRDR): Adult birds used for reproduction and genetic line continuation

Species Species in which avian influenza was detected Turkey (TRKY)

Duck (DUCK)

Gallus gallus (GLLG)

Multi-species without ducks or geese (MLT-SP CSWITHTW)

Multi-species with ducks or geese (MLT-SP CSWITHWT)

other (OTHR)

(Continued)
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Category Variable Description Modalities (abbreviates) and definitions

Analysis Name

Environmental variables Scenarios A & B

Nb. Farms Number of poultry farms in the outbreak surroundings within a 

2 km radius of each HPAI outbreak location

Nb. Farms +W Number of ducks or geese farms in the outbreak surroundings 

within a 2 km

Nb. Farms - W Number of farms not including ducks or geese in the outbreak 

surroundings within a 2 km

Dist. Case Minimum distance from preceding outbreaks within a 7-day period 

for each new notification

Dist. Coast Minimum distance to the coastline

Dist. Water Surf. Minimum distance between each HPAI outbreak location and water 

surfaces

Nb. Water Surf. Number of water surface features that exist within the 2 km around 

each HPAI outbreak location

Water Surf. Cover Water coverage percentage within the 2 km buffer around each HPAI 

outbreak

Dist. Roads Minimum distance between each HPAI outbreak location and roads

Nb. Roads Number of roads that intersect the 2 km buffer around each case of 

HPAI

Road Length Total length of roads that intersect the 2 km buffer around each case 

of HPAI

Dist. To PRZ Category of the minimal distance between the outbreak and any 

particular risk zone (PRZ) municipality Three possible category: 

“Inside,” “Neighbouring,” and “Outside”

Both HPAI poultry outbreak variables and environmental variables are included. For each variable, the table lists its category, analysis scenario, name (as used in the graphs), description, modalities, and abbreviates (as used in the figures and Supplementary material).

TABLE 1 (Continued)
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2.2.1 Poultry sector-related variables
The density and closeness of poultry farms may present a risk 

regarding HPAI introduction into susceptible production sites. Eight 
variables were considered in this category: the number of poultry 
farms in the outbreak surroundings within a 2 km radius of each 
HPAI outbreak location, the number of duck or geese farms in the 
outbreak surroundings within a 2 km, the number of farms not 
including ducks or geese in the outbreak surroundings within a 2 km, 
the minimum distance from preceding outbreaks within a 7-, 10-, 14-, 
21- and 28-day period for each new notification. The number of 
poultry farms in the outbreak surroundings within a 2 km radius of 
each HPAI outbreak location was calculated using a database that lists 
all farms in France, along with their geographical locations. Following 
the same method, within a 2 km-radius from outbreak locations, the 
numbers of farms hosting and not hosting ducks or geese were 
counted. Finally, the minimum distance from preceding outbreaks 
within different time windows (7, 10, 14, 21, and 28 days) for each new 
notification were calculated. For the two outbreaks for which there 
was no detection in the previous 7 days in France, a fictitious high 
distance of 1,000 km, beyond the borders of France, was defined, 
considering introduction through wild birds or other routes, such as 
avian or bird trade.

2.2.2 Water-related variables
Water surfaces represent favourable environments for 

migratory and commensal birds that could potentially interact 
with poultry farm animals. Four variables were considered to 
analyse the presence of water surfaces in the farm neighbourhood. 
The minimum distance to the coastline was first evaluated for each 
infected farm. This variable reflects the risk related to migratory 
and non-migratory wild shorebirds visiting or residing close to the 
seashore. The remaining three variables reflect the risk related to 
both inland visiting migratory wild birds and the commensal wild 
water bird population: the minimum distance between each HPAI 
outbreak location and water surfaces; the number of water surface 
features; and the water coverage percentage within the 2 km buffer 
around each outbreak. The BD TOPAGE® database, a publicly 
available resource, was used for data on the hydrographic entities 
in the country.1

2.2.3 Road infrastructures
Anthropogenic factors may also play a role in the transmission 

process. To analyse whether a relationship could be  established 
between the outbreak occurrence and the transit of vehicles (live 
animals, rendering plants, etc.), three variables were considered: the 
minimum distance between each HPAI outbreak location and roads, 
the number of roads within a 2 km buffer around each HPAI outbreak 
location, and their total lengths. These variables were considered as a 
proxy for human-mediated indirect transmission through animal 
movements between farms (truck transit), dead bird removal, feed 
delivery, etc. Road infrastructure data were taken from the ROUTE 
500® database.2 For this analysis, only national and local roads 
were considered.

1 https://www.sandre.eaufrance.fr

2 https://geoservices.ign.fr/

2.2.4 Proximity to particular risk zones
The particular risk zones (PRZs) are zones associated with a 

higher risk of HPAI introduction via wild and migratory birds. Their 
definition is based on the presence of wetlands and migration 
corridors (22, 26). These zones are defined in regulations at the 
municipality level.3 To explore the link between proximity to a 
particular risk zone (PRZ) municipality and HPAI outbreaks, 
we calculated the minimum distance between each outbreak and PRZ 
municipalities. We defined three categories to classify the outbreaks: 
“Inside” for outbreaks located in a PRZ municipality; “Neighbouring” 
for outbreaks at a distance of less than 2 km from a PRZ municipality; 
and “Outside” for outbreaks more than 2 km away from a 
PRZ municipality.

2.3 Description of the epizootic

To describe the first wave of the 2022–2023 epizootic in terms of 
number of outbreaks, the distribution of outbreak type, and affected 
species, a descriptive analysis was conducted. All analyses were carried 
out using Rstudio, version R-4.2.2 (27). French boundaries and 
administrative regions (level 1) were downloaded from the GADM4 
database.

2.4 Cluster analysis

To identify potential clusters of HPAI outbreaks having similar 
characteristics and to investigate their association with the different 
variables, particularly environmental ones, a cluster analysis using a 
two-step approach was followed.

2.4.1 Cluster identification
The Gower distance method was applied to measure similarity 

and dissimilarity between observations in our mixed dataset (i.e., 
numeric, nominal, ordinal) (28). Afterwards, the partitioning around 
medoids method was employed to distribute the dataset in K distinct 
clusters, where the groups of individuals share common patterns (29). 
The number K of clusters was defined through visual inspection of the 
silhouette plot that evaluates the appreciation of the closeness of each 
point to a neighbouring cluster (30). To visualise the potential clusters, 
the t-distributed stochastic neighbour embedding (t-SNE) method 
was used as a technique to represent complex data in a lower-
dimensional space (31).

2.4.2 Variable contribution in the clustering 
process

The random forest algorithm was used to identify explanatory 
variables that best discriminate clusters (considered as categorical 
dependent variable) (32, 33). This choice of a non-parametric learning 
method was driven by the different formats of our explicative variables 
(i.e., numeric, nominal, and ordinal) (32). The dataset was split into 
training and test sets, with 60% allocated to the training set and 40% 

3 https://www.legifrance.gouv.fr

4 https://gadm.org/
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to the test set. A random forest model was trained on the training set 
to assess the importance of different variables. Hyperparameters were 
kept at their default values, as their variation did not significantly 
affect the random forest outcomes.

This algorithm builds a number of decision trees (by default 500 
trees are used) based on a bootstrap sample of the training set 
[approximately 63% of the data points are used to train each tree, leaving 
the remaining 37% for out-of-bag (OOB) evaluation] and a selection of 
variables and observations (34, 35). By using a majority voting system, 
it then aggregates the predictions of all trees to determine the class of the 
next example (34). Model performance was evaluated using OOB error 
estimates and predictions on the test set using a confusion matrix. The 
OOB error is a measure that evaluates global model quality (34). Once 
a tree is trained on its bootstrap sample (the 63% of data), the associated 
37% OOB data is used to test the tree. Predictions made on the OOB 
data provide an independent evaluation of the tree’s performance, 
without using the data it was trained on. It indicates the percentage of 
well-classified observations among the OOB samples (32). The mean 
decrease in accuracy represents the average reduction in the model’s 
accuracy resulting from the removal of a given variable and is generally 
used to hierarchize the importance of the different factors (36). A 
substantial decrease in the accuracy error indicates a more important 
variable in the correct prediction of classes (34, 36, 37).

The entire cluster analysis process, including both cluster 
identification and the evaluation of variable participation in the 
clustering, was done based on two scenarios. The first scenario, 
hereafter, referred to as scenario A, included all variables (i.e., intrinsic 
farm characteristics along with environmental variables) to design 
potential clusters of infected farms sharing similar characteristics. The 
second scenario (scenario B), the process was repeated focusing 
exclusively on environmental variables to evaluate whether they could 
be discriminant to identify potential critical zones of transmission. 
This entire process aimed to evaluate the specific role of environmental 
factors in the clustering (32).

3 Results

3.1 Description of the epizootic

The 2022–2023 epizootic was characterised by two waves over two 
distinct periods. The first wave affected all of mainland France, with a 
high number of outbreaks in western France (Figure 1, orange). This 
first wave was followed by a separate, second wave that rapidly and 
quite intensively affected a restricted area in south-western France 
(Figure 1, light blue). A total number of 486 outbreaks were reported 
during the epizootic as a whole. Given the differences between the two 
waves, this work will focus on the first wave starting from August 2022 
to March 2023. During the first wave, 397 outbreaks of HPAI were 
reported in France, with a peak in early December 2022 (Figure 1B, 
orange). A high number of outbreaks was observed in north-western 
France (Figure 1A, orange). In this analysis, 396 outbreaks were taken 
into account as one observation was incomplete (one production type 
not documented). The outbreaks mainly affected commercial farms 
(312 farms representing 78.7%), but also backyard flocks (69 backyard 
flocks representing 17.4%). The remaining outbreaks concerned 
captive holdings (15 captive holdings representing 3.8%). Among the 
affected species, ducks were the most commonly reported species (186 
representing 46.96%), followed by Gallus gallus—referring to broilers 
and laying hens—(89 representing 22.47%). Multi-species farms with 
ducks or geese (47 representing 11.8%) and turkeys (46 representing 
11.6%) were also affected.

3.2 Cluster analysis

3.2.1 Cluster identification
In both scenario A and B, the outbreaks were distributed in two 

clusters sharing more than 75% similarity (300 out of 396 outbreaks 
were classified similarly) (Figures 2A,B; Supplementary Figure 1).

FIGURE 1

Distribution of HPAI outbreaks in poultry in France from August 2022 to June 2023 illustrated as follows: (A) Geographical distribution; (B) Temporal 
distribution. Two waves can be seen: from August 2022 to March 2023 (397 cases, orange) and from May to June 2023 (89 cases, light blue).
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When taking into account both farm characteristics and 
environmental variables (scenario A), the major cluster, hereafter 
referred to as cluster A1, included 313 outbreaks and was 
essentially composed of commercial duck production farms, 
followed by Gallus gallus and turkey production sites (Figure 2A, 
blue-green dots; Supplementary Figure 2). The second cluster 
referred to as cluster A2, (Figure  2A, dark orange dots; 
Supplementary Figure  2) included 83 outbreaks mainly in 
backyard flocks hosting multiple species, including ducks or 
geese. Analysis of the environmental variables for each cluster 
revealed specific features. For example, the closeness in time and 
space between cases was found to be different: distances between 
outbreaks within 7 days were lower in cluster A1 than in cluster 
A2 (Figure 3). Only distances between outbreaks within 7 days 
were thereafter considered, as the results for other time-windows 
tested were very stable over longer durations (data not shown).

Moreover, the number of neighbouring farms within a 2 km 
radius was also higher, reaching a maximum of 57 farms in cluster A1, 
while at most 11 farms were identified in cluster A2 (Figure 4).

This difference was higher when considering the presence of ducks 
or geese farms in the neighbourhood. Interestingly, 85% of the outbreaks 
in cluster A1 were located outside PRZ municipalities, with just 10.9% of 
the outbreaks inside PRZ municipalities (Figure 3). Cluster A2 consisted 
exclusively in sporadic cases, 33.7% of which were located within or in the 
neighbourhood of PRZ (Figure 3; Supplementary Figure 2). Additional 
information about the environmental variables for scenario A is shown in 
Supplementary Figure 3.

In scenario B, despite the absence of farm characteristic variables, 
two distinct clusters were also found (Supplementary Figure 1). The 
results were highly consistent with scenario A in terms of descriptive 
environmental variables. However, a difference was found concerning 
proximity to PRZs. While cluster A2 was composed of farms located 

FIGURE 2

Geographical distribution of clusters and associated cluster plots applied to HPAI outbreaks data in poultry in France from August 2022 to March 2023. 
For each scenario (A: farm characteristics and environmental variables; B: environmental variables), the left side of the figure represents the 
geographical distribution of the clusters observed using the k-medoids clustering method. The right side represents the cluster plot of k-medoids 
obtained using the t-distributed stochastic neighbour embedding (t-SNE) method applied to HPAI outbreaks data.
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inside and outside PRZ municipalities in scenario A, the results of 
scenario B showed a strong dichotomy in the clustering process based 
on this feature (Figure 5).

Cases in the main cluster, referred to as cluster B1, were located 
almost exclusively outside PRZ municipalities (98.2%), while the 
second cluster, referred to as cluster B2, was mainly in PRZ 
municipalities (84%) (Figure 5). The cluster B1 accounted for 327 
outbreaks (Figure 2B, blue-green), with 83% matching with cluster 
A1 in scenario A. Again, outbreaks from the main cluster (B1) were 
relatively close to each other, with a median minimum distance of 
7.2 km for successive outbreaks over 7 days (Figure 5). Cluster B2 
consisted exclusively in outbreaks located within (84%) or in the 
neighbourhood of PRZ, with sporadic geographically separated 
outbreaks (Figure 5) (average distance 92 km). The number of farms 
in the surroundings of outbreak locations remained higher in cluster 
B1, as in scenario A, but the difference tended to be slighter, with a 
median of seven farms in cluster B1 and three in cluster B2 (Figure 6).

The outbreaks in cluster B2 (Figure 2, dark orange) were closer to 
the coastline, with a median distance of 29 km (Figure 5). Additional 
information about the environmental variables for scenario B is 
shown in Supplementary Figure 4.

3.2.2 Variable contribution in the clustering 
process

Out of bag (OOB) errors obtained for both scenarios A and B 
indicated good quality models and satisfactory predictive capacity (OOB 

<2%). For scenario A, the study of variable importance through the mean 
decrease in accuracy highlighted the importance of farm type. In 
decreasing order of importance, species, number of neighbouring farms, 
and minimum distance between successive outbreaks over 7 days were 
also important (Figure 7). For scenario B, the mean decrease in accuracy 
confirmed that the distance to PRZ municipalities was the most important 
variable (Figure  7). The impact of distance to coastline, number of 
neighbouring farms housing ducks or geese, and the minimum distance 
between successive outbreaks over 7 days was also demonstrated, but to 
a lesser extent. For both scenarios A and B, variables related to roads seem 
to be among the least important (Figure 7).

4 Discussion and conclusion

Our study described the HPAI outbreaks between August 2022 
and March 2023, with an emphasis on farm characteristics and 
environmental features in the surroundings of outbreak locations. 
To this end, two nested hypotheses were designed and analysed 
sequentially, through the development of an original approach. The 
objective was to draw common traits from individual data with no 
prior knowledge of their interactions or epidemiological 
relationships, accounting for both qualitative and quantitative 
variables. Clusters were identified using the Gower distance and 
k-medoid partitioning algorithm in order to qualify infected farms 
according to their intrinsic and environmental characteristics. A 

FIGURE 3

Descriptive statistics for three environmental variables in scenario A, reflecting the category of the distance to particular risk zones (Dist. To PRZ), the 
distance between outbreaks within 7 days (Dist. Case), and the distance between cases and coastline (Dist. Coast).
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random forest analysis was used in a second phase to rank the 
relative role of each variable in the clustering process.

In the present study, two scenarios were presented. The first 
includes all available variables, i.e., related with the farm 
characteristics and their direct environment. The second focuses 
exclusively on environmental variables, excluding farm 
characteristics. It came out a third scenario, with only farm 
characteristics in, would also be relevant. However, the analysis 
(data not shown) suggested eight clusters as the optimal number of 
classes, with no rationale behind. This was likely due to an 
overfitting of data, given the three explanatory variables, as 
confirmed by forcing the number of clusters to 2 in the clustering 
algorithm. Indeed, such forcing led to an overlap of the clusters with 
the first scenario including all the variables. This confirms the 
importance of the farm types and species in the infectious process 
as evidenced by the random forest analysis.

Adding environmental variables to the analysis allowed the 
algorithm to identify the optimal number of clusters as 2, with 
different geographical expansion. One cluster was limited to the 
north-western region, affecting different species, including ducks, 
Gallus gallus, and turkeys. This region already experienced an 

epizootic in 2021–2022, but with different timing since a first wave 
was described beforehand in the south-western region (9), resulting 
in a high risk period across the country. In 2022–2023, only 
sporadic and isolated cases were described in the poultry sector 
before the introduction in the north-western region. Overall, more 
sporadic introductions took place during the 2022–2023 Avian 
Influenza season, probably due to higher HPAI prevalence among 
wild birds. In south-western France, the significant change in duck 
farm density right in the heart of duck production zone, under the 
framework of the “plan Adour”—consisting in preventively 
emptying farms during at-risk period in highly densely duck 
production areas—could explain why this region did not experience 
large outbreaks in winter 2022–2023 (15, 24).

Another particularity of the two last epizootics is the diversity 
of affected species, with a higher proportion of infections in Gallus 
gallus when compared with historical data, where duck farms were 
almost exclusively infected (15). This change is probably the result 
of regional differences in terms of farm composition in the south-
west, which has a higher concentration of duck farms, but might 
also reflect a shift in the epidemiological characteristics, especially 
in terms of transmission and receptivity among the different species 

FIGURE 4

Descriptive statistics for three environmental variables in scenario A, reflecting the category of the number of neighbouring farms within a 2 km (Nb. 
Farms), the number of neighbouring farms hosting ducks or geese (Nb. Farms +W), and the number of neighbouring farms not hosting ducks or geese 
(Nb. Farms −W).
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(15). Accounting for environmental variables, along with farms 
characteristics, made it possible to identify farm types and species 
as the main drivers in the clustering process. Although the role of 
commercial duck farms in the different epizootics was very well 
documented (15, 20, 21, 24), this result shows that considering only 
the species and farm type for targeted surveillance and outbreaks 
management could be  misleading if the farm environment is 
ignored. A short distance to preceding cases within a 7-day time-
window was found to be pivotal to clusters definition, suggesting 
transmission from one to the next, which could have different 
origins, such as equipment sharing, common staff or visitors, or 
airborne transmission. This could be linked to the particular aspects 
of this type of production and the farms’ localisation in high-
density farm regions (19, 21). The role of high-density farm regions 
was also documented in other European country, such as the 
Netherlands (38). These factors, in addition to the inherent high 
receptivity of ducks to HPAI viruses, increase farm susceptibility 
(22). The second cluster also highlighted farm type as discriminant, 
with backyard farms mainly involved. Poultry are also likely to 
be  exposed to a high risk of introduction through wild birds, 
especially when they are located near PRZs and the coastline (22) 
where migratory birds are more likely to pass by. Although water 
surfaces were not pointed out as pivotal in our analysis, wetlands 

used by migratory birds could also influence the occurrence of 
outbreaks in both poultry and wild birds (39). These water body 
factors might nevertheless be underestimated, as they are mostly 
embedded within PRZs, making it difficult to clearly identify their 
actual role in the infection dynamics. The infectious pressure 
associated with wild birds was relatively high during 2022–2023 
epizootics, which explains the increased number of cases among 
backyard farms (24).

Combining environmental and farm features helped to 
disentangle two independent groups of farms sharing similar 
characteristics. Could environmental variables alone be sufficient 
to characterise the cases? Running the analysis with these variables 
only, ignoring all intrinsic farm characteristics, allowed us to 
retrieve two clusters sharing 75% similarity with those described 
above. The percentage of similarity increased to 83% when 
considering the largest cluster in the western region. While variables 
indicating highly dense regions and potential connectivity, such as 
the number of duck farms around the outbreak site and the 
minimum distance between outbreaks within a period of 7 days, 
were unsurprisingly important, the distance to PRZs and the 
coastline were the most decisive ones. These two factors are signs of 
potential contact with wild and migratory birds, suggesting a 
potential role of environmental factors in the dynamics of HPAI 

FIGURE 5

Descriptive statistics for three environmental variables in scenario B, reflecting the category of the distance to particular risk zones (Dist. To PRZ), the 
distance between outbreaks within 7 days (Dist. Case), and the distance between cases and coastline (Dist. Coast).
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through direct or indirect contact with wild birds (22). In our study, 
variables related to roads were not found to be determinant in the 
clustering process, as opposed to previous studies in Asia (40). This 
difference might be  explained by the different context and 
road  infrastructure, but also by the dissimilarity in the roads 
considered (40). Only national and local roads were included in our 
study, while Islam et al. (40) accounted for motorways, which were 
significantly associated with outbreaks (40). As our goal was to 
focus on the immediate environment of farms, limiting ourselves to 
a radius of 2 km, we deemed the inclusion of motorway network 
irrelevant. However, it could be interesting to study traffic more 
deeply and not just consider roads as a static variable, ignoring 
traffic and the volume of animals passing by. Algorithms identifying 
the movements of animals along the different roads could be a more 
accurate proxy of the importance of each road in the surroundings 
of the farms (41).

This study aimed to describe outbreaks beyond the typical farm 
characteristics, by also examining their close environment. 
We successfully identified environmental factors as being able to 
discriminate between two groups of cases in France between 
August 2022 and March 2023. The data used in the present study 
consisted uniquely in farm and environmental characteristics, 

along with outbreak detection times. These data did not allow to 
distinguish primary and secondary outbreaks. Combining 
epidemiological phylogenetic analyses data would be necessary for 
reconstruction of transmission trees (42). However, our analyses 
of the common traits among the different outbreaks highlighted 
notably the relevance of PRZs definition in relation with the risk 
of viral introduction on farms. Although PRZs often include 
coastlines, cases were also detected close to coastlines that were not 
in PRZs, explaining the importance of distance to coastlines in the 
clustering process. This finding reinforces the need to identify risk 
zones, which were found to be highly discriminant. Considering 
the national scale, and reproducing the analysis using the full 
dataset of poultry production sites, could help to update the 
definition of HPAI risk zones, according to French legislation. 
However, further improvements are still possible, specifically by 
considering the status of the neighbouring farms (empty or 
occupied), information which was not available at the time of this 
study. Including meteorological data considering wind speed and 
direction could also be  interesting to further assess the risk of 
air-borne transmission.

In addition, when considering the epizootic as a whole, 
including outbreaks at the start of May 2023 located in the 

FIGURE 6

Descriptive statistics for three environmental variables in scenario B, reflecting the category of the number of neighbouring farms within a 2 km (Nb. 
Farms), the number of neighbouring farms hosting ducks or geese (Nb. Farms +W), and the number of neighbouring farms not hosting ducks or geese 
(Nb. Farms −W).
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southwest and north of France, our method did not seem to be able 
to explain the epizootic in the same way. This finding suggests that 
different mechanisms were probably involved in the epizootic’s 
second wave, pointing out the need for additional studies. A 
possible way to further investigate these factors would be to use our 
approach by including additional variables. Some potential variables 
could be those collected during the epidemiological investigation 
of the outbreaks or variables that reflect socio-economic factors 
susceptible to influence disease dynamics.

While studies using clustering analyses to tackle HPAI dynamics 
exist, they tend to evaluate epidemiological spatio-temporal clusters using 
K-function, SatScan, and kernel density estimation notably in Bangladash, 
Denmark, and Egypt (43–45). A study focusing on risk factors and not 
spatio-temporal dynamics using hierarchical clustering on principal 
components analysis was described in South-Korea (46). Following this 
direction, the methodology used here proposes to also focus on the 
common patterns between outbreaks rather than the spatio-temporal 
dynamics. It represents an innovative approach in the field of veterinary 
epidemiology, and, to our knowledge, has only been used by Oehm et al. 
(37) to characterise antibody status with regard to Fasciola hepatica or 
Ostertagia ostertagi, two parasites affecting dairy cows. This methodology 
seems promising as it offers a wide spectrum of applications, not only for 
HPAI but also for other animal health issues.
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FIGURE 7

Heat map of the importance of variables for each scenario (scenario A: farm characteristics and environmental variables; Scenario B: environmental 
variables) using the mean decrease in accuracy. The different variables labels are detailed in Table 1.
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SUPPLEMENTARY FIGURE 1

Optimal number of clusters in each scenario: A. Scenario A with farm 
characteristics and environmental variables; B. Scenario B with only 
environmental variables.

SUPPLEMENTARY FIGURE 2

Descriptive statistics for the farm characteristics in the two clusters of scenario 
A, as obtained by the partitioning around medoids method. For the farm 
characteristics plots, abbreviations were used as follows: Farm type: 
commercial (CMMF), backyard (BCKY), and captive (CPTV); Production types: 
decoy ducks (DCYD), starter phase (STRP), game birds farm (GMBF), fattening 
(FTTN), future laying hens (FTLH), rearing period (RRNP), laying hens (LYNH), 
assisted-feeding (GAVA), future breeders (FTRB), breeders (BRDR); Species: 
Turkey (TRKY), Duck (DUCK), Gallus gallus (GLLG), Multi-species without ducks 
or geese (MLT-SP CSWITHTW), Multi-species with ducks or geese (MLT-SP 
CSWITHWT), and other (OTHR).

SUPPLEMENTARY FIGURE 3

Descriptive statistics for environmental variables in scenario A that addresses 
water surfaces and roads (Dist. Water Surf., Nb. Water Surf., Water Surf. 
Cover, Nb. Roads, Road Length and Dist. Roads).

SUPPLEMENTARY FIGURE 4

Descriptive statistics for environmental variables in scenario B that addresses 
water surfaces and roads (Dist. Water Surf., Nb. Water Surf., Water Surf. Cover, 
Nb. Roads, Road Length and Dist. Roads).

References
 1. Swayne DE, Sims L, Brown I, Harder T, Stegeman A, Abolnik C, et al. Strategic 

challenges in the global control of high pathogenicity avian influenza. Rev Sci Tech. 
(2023) 89:–102. doi: 10.20506/rst.SE.3563

 2. Niqueux É, Flodrops M, Allée C, Lebras M-O, Pierre I, Louboutin K, et al. 
Evaluation of three hemagglutinin-based vaccines for the experimental control of a 
panzootic clade 2.3.4.4b A(H5N8) high pathogenicity avian influenza virus in mule 
ducks. Vaccine. (2023) 41:145–58. doi: 10.1016/j.vaccine.2022.11.012

 3. Briand F-X, Beltrame M, Guillemoto C, Busson R, Pigeyre L, Beven V, et al. Highly 
pathogenic avian influenza A(H5N1) clade 2.3.4.4b virus infection in captive bears 
(Ursus thibetanus) and in captive and wild birds, France, 2022. Ger J Vet Res. (2024) 
4:77–81. doi: 10.51585/gjvr.2024.1.0077

 4. Briand F-X, Souchaud F, Pierre I, Beven V, Hirchaud E, Hérault F, et al. Highly 
pathogenic avian influenza A(H5N1) clade 2.3.4.4b virus in domestic cat, France, 2022. 
Emerg Infect Dis. (2023) 29:1696–8. doi: 10.3201/eid2908.230188

 5. Huang P, Sun L, Li J, Wu Q, Rezaei N, Jiang S, et al. Potential cross-species 
transmission of highly pathogenic avian influenza H5 subtype (HPAI H5) viruses to 
humans calls for the development of H5-specific and universal influenza vaccines. Cell 
Discov. (2023) 9:58. doi: 10.1038/s41421-023-00571-x

 6. Plaza PI, Gamarra-Toledo V, Euguí JR, Lambertucci SA. Recent changes in patterns 
of mammal infection with highly pathogenic avian influenza A(H5N1) virus worldwide. 
Emerg Infect Dis. (2024) 30:444–52. doi: 10.3201/eid3003.231098

 7. CDC. (2024). Current H5N1 bird flu situation in dairy cows. Avian influenza bird 
flu. Available online at: https://www.cdc.gov/bird-flu/situation-summary/mammals.
html. (Accessed December 4, 2024)

 8. Ly H. Highly pathogenic avian influenza H5N1 virus infections of dairy cattle and 
livestock handlers in the United States of America. Virulence. (2024) 15:2343931. doi: 
10.1080/21505594.2024.2343931

 9. USDA. (2024). Federal and state veterinary agencies share update on HPAI 
detections in Oregon backyard farm, including first H5N1 detections in swine. Available 
online at: https://www.aphis.usda.gov/news/agency-announcements/federal-state-
veterinary-agencies-share-update-hpai-detections-oregon. (Accessed December 
4, 2024)

 10. WHO. (2023). Ongoing avian influenza outbreaks in animals pose risk to humans. 
Available online at: https://www.who.int/news/item/12-07-2023-ongoing-avian-
influenza-outbreaks-in-animals-pose-risk-to-humans (Accessed September 22, 2023)

 11. Kandeil A, Patton C, Jones JC, Jeevan T, Harrington WN, Trifkovic S, et al. Rapid 
evolution of A(H5N1) influenza viruses after intercontinental spread to North America. 
Nat Commun. (2023) 14:3082. doi: 10.1038/s41467-023-38415-7

 12. Caliendo V, Lewis NS, Pohlmann A, Baillie SR, Banyard AC, Beer M, et al. 
Transatlantic spread of highly pathogenic avian influenza H5N1 by wild birds from 
Europe to North America in 2021. Sci Rep. (2022) 12:11729. doi: 
10.1038/s41598-022-13447-z

 13. Adlhoch C, Baldinelli F, Fusaro A, Terregino C. Avian influenza, a new threat to 
public health in Europe? Clin Microbiol Infect. (2022) 28:149–51. doi: 
10.1016/j.cmi.2021.11.005

 14. Adlhoch C, Fusaro A, Gonzales JL, Kuiken T, Melidou A, Mirinavičiūtė G, et al. Avian 
influenza overview April–June 2023. EFSA J. (2023) 21:e08191. doi: 10.2903/j.efsa.2023.8191

 15. Lambert S, Durand B, Andraud M, Delacourt R, Scoizec A, Le Bouquin-Leneveu S, 
et al. Two major epidemics of highly pathogenic avian influenza virus H5N8 and H5N1 in 
domestic poultry in France, 2020-2022. Transbound Emerg Dis. (2022) 69:3160–6. doi: 
10.1111/tbed.14722

 16. Adlhoch C, Fusaro A, Gonzales JL, Kuiken T, Mirinavičiūtė G, Niqueux É, et al. Avian 
influenza overview September–December 2023. EFSA J. (2023) 21:e8539. doi: 
10.2903/j.efsa.2023.8539

 17. Delpont M, Guinat C, Guérin J-L, Le Leu E, Vaillancourt J-P, Paul MC. Biosecurity 
measures in French poultry farms are associated with farm type and location. Prev Vet Med. 
(2021) 195:105466. doi: 10.1016/j.prevetmed.2021.105466

 18. Guinat C, Comin A, Kratzer G, Durand B, Delesalle L, Delpont M, et al. Biosecurity 
risk factors for highly pathogenic avian influenza (H5N8) virus infection in duck farms, 
France. Transbound Emerg Dis. (2020) 67:2961–70. doi: 10.1111/tbed.13672

 19. Guinat C, Nicolas G, Vergne T, Bronner A, Durand B, Courcoul A, et al. Spatio-
temporal patterns of highly pathogenic avian influenza virus subtype H5N8 spread, France, 
2016 to 2017. Eur Secur. (2018) 23:1700791. doi: 10.2807/1560-7917.ES.2018.23.26.1700791

https://doi.org/10.3389/fvets.2025.1541019
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/articles/10.3389/fvets.2025.1541019/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fvets.2025.1541019/full#supplementary-material
https://doi.org/10.20506/rst.SE.3563
https://doi.org/10.1016/j.vaccine.2022.11.012
https://doi.org/10.51585/gjvr.2024.1.0077
https://doi.org/10.3201/eid2908.230188
https://doi.org/10.1038/s41421-023-00571-x
https://doi.org/10.3201/eid3003.231098
https://www.cdc.gov/bird-flu/situation-summary/mammals.html
https://www.cdc.gov/bird-flu/situation-summary/mammals.html
https://doi.org/10.1080/21505594.2024.2343931
https://www.aphis.usda.gov/news/agency-announcements/federal-state-veterinary-agencies-share-update-hpai-detections-oregon
https://www.aphis.usda.gov/news/agency-announcements/federal-state-veterinary-agencies-share-update-hpai-detections-oregon
https://www.who.int/news/item/12-07-2023-ongoing-avian-influenza-outbreaks-in-animals-pose-risk-to-humans
https://www.who.int/news/item/12-07-2023-ongoing-avian-influenza-outbreaks-in-animals-pose-risk-to-humans
https://doi.org/10.1038/s41467-023-38415-7
https://doi.org/10.1038/s41598-022-13447-z
https://doi.org/10.1016/j.cmi.2021.11.005
https://doi.org/10.2903/j.efsa.2023.8191
https://doi.org/10.1111/tbed.14722
https://doi.org/10.2903/j.efsa.2023.8539
https://doi.org/10.1016/j.prevetmed.2021.105466
https://doi.org/10.1111/tbed.13672
https://doi.org/10.2807/1560-7917.ES.2018.23.26.1700791


Ben Salem et al. 10.3389/fvets.2025.1541019

Frontiers in Veterinary Science 14 frontiersin.org

 20. Bauzile B, Sicard G, Guinat C, Andraud M, Rose N, Hammami P, et al. Unravelling 
direct and indirect contact patterns between duck farms in France and their association 
with the 2016–2017 epidemic of highly pathogenic avian influenza (H5N8). Prev Vet Med. 
(2022) 198:105548. doi: 10.1016/j.prevetmed.2021.105548

 21. Guinat C, Artois J, Bronner A, Guérin J-L, Gilbert M, Paul MC. Duck production 
systems and highly pathogenic avian influenza H5N8 in France, 2016–2017. Sci Rep. (2019) 
9:6177. doi: 10.1038/s41598-019-42607-x

 22. ANSES. (2022). AVIS de l’Agence nationale de sécurité sanitaire de l’alimentation, de 
l’environnement et du travail relatif à un retour d’expérience sur la crise influenza aviaire 
hautement pathogène 2020–2021 (1ère partie) Saisine n° 2021-SA-0022, Anses. 2021, 79 p.

 23. Delpont M, Blondel V, Robertet L, Duret H, Guerin J-L, Vaillancourt J-P, et al. 
Biosecurity practices on foie gras duck farms, Southwest France. Prev Vet Med. (2018) 
158:78–88. doi: 10.1016/j.prevetmed.2018.07.012

 24. Scoizec A, Niqueux E, Schmitz A, Grasland B, Palumbo L, Huneau-Salaün A, et al. New 
patterns for highly pathogenic avian influenza and adjustment of prevention, control and 
surveillance strategies: the example of France. Viruses. (2024) 16:101. doi: 10.3390/v16010101

 25. Ssematimba A, Hagenaars TJ, de Jong MC. Modelling the wind-borne spread of 
highly pathogenic avian influenza virus between farms. PLoS One. (2012) 7:e31114. doi: 
10.1371/journal.pone.0031114

 26. DGAL. (2016). Arrêté du 16 mars 2016 relatif aux niveaux du risque épizootique 
en raison de l’infection de l’avifaune par un virus de l’influenza aviaire hautement 
pathogène et aux dispositifs associés de surveillance et de prévention chez les volailles 
et autres oiseaux captifs - Légifrance. Available online at: https://www.legifrance.gouv.
fr/jorf/id/JORFTEXT000032320450/ (Accessed February 17, 2025)

 27. Posit Team. RStudio: integrated development environment for R. Boston, MA: 
Posit Software, PBC (2023).

 28. Gower JC. A general coefficient of similarity and some of its properties. Biometrics. 
(1971) 27:857–71. doi: 10.2307/2528823

 29. Kaufmann L, Rousseeuw P. Clustering by means of medoids In: Statistical data 
analysis based on the L_1-norm and related methods clustering by means of medoids. 
Amsterdam: North-Holland (1987). 405–16.

 30. Rousseeuw PJ. Silhouettes: a graphical aid to the interpretation and validation of cluster 
analysis. J Comput Appl Math. (1987) 20:53–65. doi: 10.1016/0377-0427(87)90125-7

 31. van der Maaten L, Hinton G. Visualizing data using t-SNE. J Mach Learn Res. 
(2008) 9:2579–605.

 32. Andraud M, Bougeard S, Chesnoiu T, Rose N. Spatiotemporal clustering and 
random Forest models to identify risk factors of African swine fever outbreak in 
Romania in 2018–2019. Sci Rep. (2021) 11:2098. doi: 10.1038/s41598-021-81329-x

 33. Breiman L, Friedman JH, Olshen RA, Stone CJ. Classification and regression trees. 
New York: Chapman and Hall/CRC (1984).

 34. Breiman L. Random forests. Mach Learn. (2001) 45:5–32. doi: 10.1023/A:1010933404324

 35. Janitza S, Hornung R. On the overestimation of random forest’s out-of-bag error. 
PLoS One. (2018) 13:e0201904. doi: 10.1371/journal.pone.0201904

 36. Grillo M, Schiaparelli S, Durazzano T, Guglielmo L, Granata A, Huettmann F. 
Machine learning applied to species occurrence and interactions: the missing link in 
biodiversity assessment and modelling of Antarctic plankton distribution. Ecol Process. 
(2024) 13:56. doi: 10.1186/s13717-024-00532-6

 37. Oehm AW, Springer A, Jordan D, Strube C, Knubben-Schweizer G, Jensen KC, 
et al. A machine learning approach using partitioning around medoids clustering 
and random forest classification to model groups of farms in regard to production 
parameters and bulk tank milk antibody status of two major internal parasites in 
dairy cows. PLoS One. (2022) 17:e0271413. doi: 10.1371/journal.pone.0271413

 38. Boender GJ, Hagenaars THJ, Bouma A, Nodelijk G, Elbers ARW, de Jong MC, et al. 
Risk maps for the spread of highly pathogenic avian influenza in poultry. PLoS Comput 
Biol. (2007) 3:e71. doi: 10.1371/journal.pcbi.0030071

 39. Si Y, de Boer WF, Gong P. Different environmental drivers of highly pathogenic 
avian influenza H5N1 outbreaks in poultry and wild birds. PLoS One. (2013) 8:e53362. 
doi: 10.1371/journal.pone.0053362

 40. Islam A, Munro S, Hassan MM, Epstein JH, Klaassen M. The role of vaccination 
and environmental factors on outbreaks of high pathogenicity avian influenza H5N1 in 
Bangladesh. One Health. (2023) 17:100655. doi: 10.1016/j.onehlt.2023.100655

 41. Cardenas NC, Valencio A, Sanchez F, O’Hara KC, Machado G. Analyzing the 
intrastate and interstate swine movement network in the United States. Prev Vet Med. 
(2024) 230:106264. doi: 10.1016/j.prevetmed.2024.106264

 42. Briand F-X, Niqueux E, Schmitz A, Martenot C, Cherbonnel M, Massin P, et al. 
Multiple independent introductions of highly pathogenic avian influenza H5 viruses 
during the 2020–2021 epizootic in France. Transbound Emerg Dis. (2022) 69:4028–33. 
doi: 10.1111/tbed.14711

 43. Ahmed SSU, Ersbøll AK, Biswas PK, Christensen JP. The space–time clustering of 
highly pathogenic avian influenza (HPAI) H5N1 outbreaks in Bangladesh. Epidemiol 
Infect. (2010) 138:843–52. doi: 10.1017/S0950268810000178

 44. Elsobky Y, Eltholth M, Abdalla E, Eissa N, Hadad G, Nayel M, et al. Spatio-
temporal dynamics and risk cluster analysis of highly pathogenic avian influenza 
(H5N1) in poultry: advancing outbreak management through customized regional 
strategies in Egypt. Open Vet J. (2024) 14:2911–23. doi: 10.5455/OVJ.2024.v14.i11.20

 45. Kjær LJ, Hjulsager CK, Larsen LE, Boklund AE, Halasa T, Ward MP, et al. 
Landscape effects and spatial patterns of avian influenza virus in Danish wild 
birds, 2006–2020. Transbound Emerg Dis. (2022) 69:706–19. doi: 
10.1111/tbed.14040

 46. Koh K-Y, Ahmad S, Lee J, Suh G-H, Lee C-M. Hierarchical clustering on principal 
components analysis to detect clusters of highly pathogenic avian influenza subtype 
H5N6 epidemic across south Korean poultry farms. Symmetry. (2022) 14:598. doi: 
10.3390/sym14030598

https://doi.org/10.3389/fvets.2025.1541019
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://doi.org/10.1016/j.prevetmed.2021.105548
https://doi.org/10.1038/s41598-019-42607-x
https://doi.org/10.1016/j.prevetmed.2018.07.012
https://doi.org/10.3390/v16010101
https://doi.org/10.1371/journal.pone.0031114
https://www.legifrance.gouv.fr/jorf/id/JORFTEXT000032320450/
https://www.legifrance.gouv.fr/jorf/id/JORFTEXT000032320450/
https://doi.org/10.2307/2528823
https://doi.org/10.1016/0377-0427(87)90125-7
https://doi.org/10.1038/s41598-021-81329-x
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1371/journal.pone.0201904
https://doi.org/10.1186/s13717-024-00532-6
https://doi.org/10.1371/journal.pone.0271413
https://doi.org/10.1371/journal.pcbi.0030071
https://doi.org/10.1371/journal.pone.0053362
https://doi.org/10.1016/j.onehlt.2023.100655
https://doi.org/10.1016/j.prevetmed.2024.106264
https://doi.org/10.1111/tbed.14711
https://doi.org/10.1017/S0950268810000178
https://doi.org/10.5455/OVJ.2024.v14.i11.20
https://doi.org/10.1111/tbed.14040
https://doi.org/10.3390/sym14030598

	Investigating the role of environmental factors in the French highly pathogenic avian influenza epizootic in 2022–2023
	1 Introduction
	2 Materials and methods
	2.1 HPAI poultry outbreak data
	2.2 Environmental variables data
	2.2.1 Poultry sector-related variables
	2.2.2 Water-related variables
	2.2.3 Road infrastructures
	2.2.4 Proximity to particular risk zones
	2.3 Description of the epizootic
	2.4 Cluster analysis
	2.4.1 Cluster identification
	2.4.2 Variable contribution in the clustering process

	3 Results
	3.1 Description of the epizootic
	3.2 Cluster analysis
	3.2.1 Cluster identification
	3.2.2 Variable contribution in the clustering process

	4 Discussion and conclusion

	References

