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Avian pathogenic Escherichia coli (APEC) causes colibacillosis in poultry, which is 
a very important disease worldwide. Despite well-documented genomic traits and 
diversity of APEC, its epigenomic characteristics are less understood. This study utilized 
the high throughput and long-read capabilities of Oxford Nanopore Technology 
(ONT) to elucidate the genome structures and methylation modifications of three 
E. coli isolates of avian origin: one intestinal isolate from a healthy wild bird and 
two systemic isolates from clinically affected chickens. Three complete genomes, 
each comprising a single chromosome and multiple plasmids were assembled. 
Diverse virulence-associated genes, antimicrobial resistance genes, mobile genetic 
elements plasmids and integrons were characterized from the genomes. Despite 
a limited sample size, our whole genome sequencing (WGS) data highlighted 
significant genomic diversity among the E. coli strains and enriched repertoire 
of gene clusters related to APEC pathogenicity. From the epigenetic analysis, 
multiple methylation modifications, including three N5-methylcytosine (5mC), 
eight N6-methyladenine (6mA) and two N4-methylcytosine (4mC) modification 
motifs were identified within all three isolates. Furthermore, common GATC and 
CCWGG methylation motifs were predominantly distributed within regulatory 
regions, suggesting a role in epigenetic transcription regulation. This study opens 
the avenue for future research into pathogenesis, diagnostic and therapeutic 
strategies of APEC considering epigenetic analysis.
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1 Introduction

Escherichia coli, a Gram-negative microorganism, is commonly found in the intestine of 
chickens as a normal inhabitant and has beneficial physiological impacts in growth and 
development (1, 2). However, some strains commonly called as avian pathogenic E. coli 
(APEC) can cause a wide variety of pathologies in poultry, such as omphalitis, salpingitis, 
peritonitis, airsacculitis, perihepatitis, and pericarditis, which are collectively called 
colibacillosis (3). Colibacillosis is a leading cause of increased mortality and morbidity as well 
as decreased egg quality and meat production, resulting in significant economic losses in 
poultry worldwide, which has negative influences on both productivity and animal welfare. 
The problem has been increasing in recent years due to changes in husbandry practices and 
strict legislation for antimicrobial use (4).

While many virulence factors have been identified in APEC isolates, no single gene or set 
of genes has been found to exclusively distinguish pathogenic from non-pathogenic avian 
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E. coli isolates (5, 6). It is suggested that APEC isolates usually possess 
large, conjugative virulence plasmids belonging to the IncF 
incompatibility group (7, 8). APEC isolates harbor diverse 
combinations of virulence-associated genes (VAGs) involved in 
bacterial toxicity, adhesion, invasion, iron acquisition, antimicrobial 
resistance, survival, and metabolism under stress (9, 10). An additional 
complication is that clinical APEC isolates from colibacillosis cases 
exhibit remarkable genetic diversity, both across countries and within 
individual flocks or outbreaks (6, 11). The genetic heterogeneity and 
complexity are a major hindrance for the prevention of the disease by 
vaccination (12).

Despite extensive studies at the genomic level, the epigenomic 
characteristics of APEC remain underexplored. Bacteria have three 
common types of DNA methylation which are N6-methyladenine 
(6mA), N4-methylcytosine (4mC), and C5-methylcytosine (5mC). 
The methylation patterns are catalyzed by methyltransferase (MTase) 
enzymes that use S-adenosyl methionine to add a methyl group to the 
target DNA bases position (13, 14). MTase can couple with cognate 
restriction endonucleases to form RM (Restriction-Modification) 
systems in bacteria to safeguard host DNA sequences by cleavage and 
digestion of unmodified foreign DNAs but protecting their own 
methylated DNA. In addition to the RM system, bacteria also possess 
orphan methyltransferases that lack a corresponding restriction 
enzyme, such as the Dam family and the cell cycle-regulated CcrM 
methyltransferase (14, 15). There is emerging evidence that DNA 
methylation has roles in regulating signals of transcription, cell cycle 
control, new strand DNA repair and replication, phase variation and 
virulence expression (13, 16–18). Adenine methylation causes changes 
in DNA structure and influence DNA-protein interaction. In E. coli, 
methylation of GATC sites located in the consensus RNA polymerase 
binding region can repress transcription of Tn10 transposase while 
activating transcription of dnaA by modifying interactions with 
regulatory proteins (19).

Deciphering the complete genome of pathogens is crucial for 
pathogenomics and virulome analysis to facilitate the development of 
effective vaccines and treatments. The challenges in plasmid genetic 
analysis and reconstruction arise when using short-read sequencing 
data due to rearrangements driven by recombination, architecture of 
repetitive elements including transposable elements (TEs), variations 
in gene copy numbers, and high sequence diversity (20). Furthermore, 
traditional sequencing technologies often cannot detect DNA 
methylation directly, limiting our understanding of epigenetic 
modifications in bacteria (13). However, Nanopore sequencing, a 
third-generation approach, offers long reads spanning repetitive 
regions, enabling complete plasmid structure determination, rapid 
turnaround time for timely analysis, real-time sequence analysis, and 
facilitating resistant gene detection. It is also a powerful technology 
for the detection of DNA modifications by measuring changes in ionic 
current as DNA molecules pass through nanopores (21). Compared 
with Pacific Biosciences (PacBio) (22), Oxford Nanopore Technologies 
base-calling systems can detect all three types of modification with 
equal efficiency. Therefore, nanopore sequencing is regarded as a 
valuable tool for comprehensive plasmid characterization and 
bacterial DNA methylation analysis (23–25). The R10.4.1 flow cell 
from ONT demonstrates exceptional modal accuracy exceeding 99%, 
providing superior performance in the detection of insertions, 
deletions, and homopolymer regions across a range of read lengths 
(26, 27).

In this study, we performed whole genome sequencing analysis of 
three E. coli isolates from varying clinical background, using ONT to 
decode their genomic and epigenomic profiles. In addition to detailed 
characterization of genetic traits of isolates such as genes, plasmids, 
virulence factors, antimicrobial resistance (AMR) genes, their 
methylome properties were investigated, which is not well understood 
in E. coli from poultry.

2 Materials and methods

2.1 Escherichia coli isolates and DNA 
extraction

The E. coli strains EC-O119H4 and EC-O117H42 were isolated 
from the liver and yolk sac of a 10-day-old chicken. The primary 
symptoms observed in the bird were anorexia, dry feet, and pasty 
vent. A mortality rate of approximately 30% was observed in the 
flock. The third isolate EC-O153H30 was obtained from the 
intestine with a cloacal swab from a healthy migratory wild bird 
(common greenshank). The pure culture of all the isolates were 
stored at −80°C in a glycerol solution until further processing. 
Afterwards, subculture was made on MacConkey agar plates and 
incubated at 37°C overnight. A single bacterial colony was picked 
and inoculated into Luria-Bertani (LB) broth, which was then 
incubated overnight at 37°C. The genomic DNA was extracted using 
MiniBEST Bacterial Genomic DNA Extraction Kit (TakaRa Bio Inc., 
Shiga, Japan) in accordance with the manufacturer’s instructions 
for sequencing.

2.2 Antimicrobial susceptibility test

The antimicrobial susceptibility test was done to assess the 
phenotypic sensitivity of E. coli isolates against several antibiotics 
using disk diffusion method. Briefly, the inoculums of the isolates 
were spread onto agar plates, antibiotics disks were placed, and 
incubated under aerobic conditions at 37°C for 24 h. The diffusion 
diameters were evaluated in accordance with the guidelines provided 
by the Clinical and Laboratory Standards Institute (CLSI) and 
categorized as resistant (R), susceptible (S), or intermediate (I).

2.3 Nanopore sequencing, assembly, and 
annotation

A library was constructed by ligation sequencing kit V14 
SQK-LSK114 and whole-genome sequencing was performed on the 
ONT MinION platform with R10.4.1 flowcell FLO-MIN114 (Oxford 
Nanopore Technologies, UK, R10.4.1 FLO-MIN114). The raw signal 
in POD5 formed was basecalled using Dorado 0.8.0 with the SUP 
model named dna_r10.4.1_e8.2_400bps_sup@v5.0.0. Both simplex 
and duplex reads were basecalled. The simplex reads were used as the 
input for genome assembly. Flye 2.9.2 (28) was used for assembling 
the EC-O119H4 and EC-O153H30 strains, while Unicycle 0.5.1 (29) 
was employed for the EC-O117H42 strain. The raw assemblies were 
polished in three consecutive rounds with the simplex reads, followed 
by three additional rounds of polishing with duplex reads using Racon 

https://doi.org/10.3389/fvets.2025.1541964
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Wang et al.� 10.3389/fvets.2025.1541964

Frontiers in Veterinary Science 03 frontiersin.org

1.5.0 (30). The closed genomes were annotated using the Prokaryotic 
Genome Annotation Pipeline (PGAP).

2.4 Bioinformatics analysis

Multilocus sequence typing (MLST) was performed using MLST 
2.2.31 and serotypes were identified by SerotypeFinder v.2.0.2 (31). 
Presence of AMR genes was identified using AMRFinderPlus v3.12.8 
(32). The virulence genes were predicted using Diamond against the 
Virulence Factors Database (VFDB)2 (33). Only hits with at least 90% 
query and subject cover and identity 60%, along with e-values of 1e-5, 
were classified as virulence factors. Plasmid replicon types were 
identified using PlasmidFinder v2.1.6 (34). Escherichia genus strain 
phylotyping was performed with ClermonTyping 24.02 (35). Genovi 
was employed to generate visual maps of circular chromosome and 
plasmids (36). Genetic structure maps were generated using 
SnapGene® software version 7.2.

2.5 Epigenetic analysis

In order to profile the epigenetic information in the E. coli strains, 
both Dorado 0.8.0 and Hammerhead 0.2.0 (37) were utilized. The 
modification proportion at each genomic site was determined using 
methylation models 4mC_5mC@V2 and 6mA@V2, which are 
compatible with the dna_r10.4.1_e8.2_400bps_sup@v5.0.0 in Dorado. 
The generated modBAM files then were profiled with modkit 0.4.13 
with functions “pileup” and “find_motifs.” In addition, the basecalled 
reads were processed with Hammerhead to locate potential 
modification sites, which were subsequently input into Meme 5.5.7 
(38) for motif enrichment analysis. For metagene analysis, the 
modification distribution within gene body and upstream and 
downstream 200 bp were conducted by R script.

3 Results

3.1 Genome assembly, annotation, and 
serotypes of Escherichia coli strains

The ONT successfully generated three complete bacterial genome 
assemblies, with sequencing reads ranging from 295,955 to 562,655 
and N50 values between 5,091 and 7,962. All three genomes were 
assembled into a single circular chromosome measuring 4.77 to 5.07 
mb, along with varying numbers of plasmids ranging from 6.67 to 
158 kb in length (Table 1; Figure 1).

Among two strains obtained from diseased chicken, EC-O119H4 
from the liver, was classified as ST117 and belonged to the phylogenetic 
group F and the serotype O119:H4. The other strain, EC-O117H42, 
isolated from the yolk sac, was identified as the O117:H42 serotype, 
classified as ST2207, and assigned to the phylogenetic group A.

1  https://github.com/tseemann/mlst

2  http://www.mgc.ac.cn/VFs/

3  https://github.com/nanoporetech/modkit

The EC-O119H4 genome consisted of 5,126 protein-coding 
sequences (CDS), 90 tRNA genes and 22 rRNA genes. It contained five 
plasmids, with the largest pEC-O119H4-D-IncF identified as a hybrid 
IncFIB/IncFIA/IncFII replicon was characterized by the presence of 
repB, repA, and RNAI-FII sequences. This plasmid includes 180 
coding sequences and has a GC content of 50.25% (Table  1). 
Additionally, two plasmids with the Col156 replicon and one with the 
IncI2 replicon were identified.

The EC-O117H42 genome encoded 4,987 protein-coding 
sequences (CDS), 87 tRNA genes, and 22 rRNA genes. Along with an 
IncFII plasmid, three additional plasmids were found, carrying 
replicons IncI1, IncY, and IncI2 (Table 1).

The intestinal E. coli strain EC-O153H30, was classified into 
serotype O153:H30, and belonged to the phylogenetic group F and 
sequence type ST12280. The chromosome contains 4,480 protein-
coding sequences (CDS), 85 tRNA genes, and 22 rRNA genes 
(Table 1). Notably, two plasmids in CE-O153H30 did not produce any 
identifiable amplicons.

3.2 Virulence-associated genes profiles

In the chromosome of EC-O119H4, P fimbriae genes 
papBCDEFGIJK, type I fimbriae genes fimABCDEFGHI, curli fiber 
genes cgsDEFG and csgCDEFG, common pilus genes yagVWXYZ/
ecpEDCBA, ykgK/ecpR and chemotaxis genes cheBDRWYZ for 
adherence were found. Likewise, heme uptake genes, chuASTUVWXY, 
yersiniabactin siderophore genes fyuA, irp2, ybtAETQU, and 
enterobactin siderophore genes entABCDEFS, fes, fepBCDEG were 
also identified (Supplementary Table S1). Additionally, the genome 
harbored genes associated with toxins (pic), invasion (ibeBC, ompA), 
colanic acid production (ugd), oxidative pentose phosphate metabolic 
pathway gene (gnd) and type VI secretion system.

The EC-O117H42 chromosome also contained well-known 
virulence factors, including type I fimbriae (fim family), curli fibers 
(csg genes and cgs genes), and the common pilus (yag/ecp genes 
cluster) for colonization (Supplementary Table S1). Additionally, 
ibeBC and ompA for invasion, and enterobactin system for iron 
uptake, ugd for the synthesis of UDP-glucuronic acid and gnd for 
6-phosphogluconate dehydrogenase were found. Compared to 
EC-O119H4 isolate, this strain lacks P fimbriae, yersiniabactin system 
and heme transport system.

The intestinal E. coli isolate EC-O153H30 features a chromosome 
that includes common type 1 fimbriae (fim cluster) and ompA, 
facilitating adhesion. Furthermore, it contains other prevalent 
virulence factors distinct from the two clinical strains, including a type 
III secretion system and the K1 capsule (kpsCDEGMSTU), which 
contributes to anti-phagocytic activity. Concerning iron utilization, it 
encodes the biosynthesis of enterobactin (ent genes, fes, fep genes) and 
heme absorption (chu cluster) (Supplementary Table S1).

In the IncF plasmid of the EC-O119H4, many genes linked to 
APEC virulence, including salmochelin siderophore system iroBCDE, 
increased serum survival gene iss, iron transport genes sitABCD, 
arginine deiminase operon arcAC and aerobactin uptake genes 
iucABCD/iutA were found (Supplementary Figure S1). In contrast, 
while EC-O117H42 also possesses an IncF plasmid, it does not 
contain any virulence genes. The EC-O153H30 isolate lacks the large 
IncF plasmid, which is a low-copy number conjugative plasmid 
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ranging in size from 45 to 200 kb, typically containing aerobactin iron 
acquisition systems and factors for serum survival.

3.3 Genotypic and phenotypic 
antimicrobial resistance

In EC-O119H4 strain, the AMR genes, including lnu(F), 
aadA2, aac(3)-IId, blaTEM-1 are located on the IncF plasmid 
between positions 89 and 98 kb, flanked by an IS26 transposase 
and an IS1 family transposase (Supplementary Figure S1). 
Antimicrobial susceptibility test showed that the EC-O119H4 was 
resistant to amoxicillin, enrofloxacin, tilmicosin, whereas 
susceptible to florfenicol, kanamycin, ciprofloxacin, 
chloramphenicol. The resistance phenotype for amoxicillin 
correlates well with the resistance genotype blaTEM-1 (beta-
lactam resistance). Likewise, the SNPs in gyrA and parC that 
confer resistance to fluoroquinolones correlates with phenotypic 
resistance to enrofloxacin. Nonetheless, lnu(F), aadA2, aac(3)-IId 
as well as cyaA_S352T and glpT_E448K, do not show a direct 
correlation with resistance phenotypes for tilmicosin. This may 
be because many antimicrobial resistance (AMR) proteins can 
reduce antibiotic susceptibility to some extent but not enough to 
surpass clinical breakpoints. Additionally, an isolate may acquire 
or lose resistance to an antibiotic through mutational processes, 
such as the deletion of a porin required for the antibiotic to 
penetrate the cell. The EC-O119H4 isolate harbors a class 1 
integron that carried genes lnu(F), aadA2, flanked by IS26 
transposase (Supplementary Figure S1). The BLAST search 

reveals this class 1 integron had high sequence identity (>99.9%) 
and 100% coverage with plasmid p13C1065T-2 integron from 
Hong Kong (GenBank accession number: CP019261.1), and a 
Salmonella typhimurium strain plasmid from Guangdong 
(GenBank accession number: AP027789.1).

Similarly, EC-O117H42 was also found to carry multiple 
resistance genes, including ESBL-producing blaCTX-M-55, 
aminoglycoside O-phosphotransferase aph(6)-Id and aph(3″)-Ib, 
amino acid substitution in parC and gyrA associated with quinolone 
resistance, tetracycline resistance gene tet(A), sulfonamide resistance 
sul2, fosfomycin resistance fosA3. Plasmid pAPEC-O117H42-B 
contains antimicrobial resistance genes, including dfrA14, floR, 
aph(3′)-Ia, qnrS1, arr-2, blaTEM-1, aph(6)-Id, aph(3″)-Ib, sul2, 
aac(3)-IId, lnu(F), aadA2, and tet(A), which confer resistance to 
trimethoprim, phenicol, aminoglycosides, quinolones, rifampin, beta-
lactam antibiotics, sulfonamides, and tetracycline (Table  1). 
Susceptibility testing results indicated that EC-O117H42 was resistant 
to all tested antibiotics, including amoxicillin, enrofloxacin, florfenicol, 
kanamycin, tiamulin, ciprofloxacin, and chloramphenicol, 
demonstrating a direct correlation with the resistance genotypes. It 
contains a class 1 integron that carries the genes lnu(F) and aadA2, 
demonstrating 99.96% sequence identity and 100% coverage with the 
class 1 integron of pEC-O119H4-D-IncF.

The intestinal E. coli strain EC-O153H30 harbors three AMR 
genes located on its chromosome, including blaCTX-M-15, qnrS1, and 
tet(B) (Table 1). These genes are responsible for resistance to beta-
lactams, quinolones, and tetracyclines, respectively. Additionally, the 
EC-O153H30 strain has three mutation sites in glpT [448: E-K], cyaA 
[352: S-T], and uhpT [350: E-Q]. The antimicrobial susceptibility 

TABLE 1  Overview of genome assembly, genomic features of Escherichia coli strains EC-O119H4, EC-O117H42, EC-O153H30.

Genomic 
traits

EC-O119H4 EC-O117H42 EC-O153H30

Chromosome Plasmid Plasmid-
IncF

Chromosome Plasmid Chromosome Plasmid

GenBank 

accession no.

CP162393 CP162394, 

CP162395, 

CP162396, 

CP162398

CP162397 CP172331 CP172332, CP172333, 

CP172334, CP172335

CP172336 CP172337, 

CP172338

Size (bp) 5,067,238 6,670, 12,360, 

11,394, 60,653

158,031 4,772,837 122,178, 122,007, 

68,683, 57,243

4,832,895 44,831, 

48,547

GC content (%) 50.78 56, 50.33, 49.67, 

42.31

50.25 50.71 48.68, 51.56, 52.29, 

42.25

50.66 48.56, 44.9

No. of coding 

sequence

4,841 6, 11, 11, 77 180 4,568 135, 132, 80, 72 4,480 65, 69

No. of RNAs tRNA (90), rRNA 

(22)

– – tRNA (87), rRNA 

(22)

– tRNA (85), rRNA 

(22)

–

tRNA (1)

Replicon – Col156, −

Col156, 

IncI2(Delta)_1

IncFIA, IncFIB, 

IncFII

– IncI1, IncY, IncFII, 

IncI2

– –

Antimicrobial 

resistance 

(AMR) genes

cyaA [S352T], gyrA 

[S83L], glpT 

[E448K], parC [S80I]

– aac(3)-IId, 

aadA2, 

blaTEM-1, 

lnu(F)

blaCTX-M-55, 

tet(A), aph(6)-Id, 

aph(3″)-Ib, sul2, 

fosA3, parC [S80I], 

gyrA [S83L]

dfrA14, floR, aph(3′)-Ia, 

qnrS1, arr-2, blaTEM-1, 

aph(6)-Id, aph(3″)-Ib, 

sul2, aac(3)-IId, lnu(F), 

aadA2, tet(A)

blaCTX-M-15, 

qnrS1, tet(B), glpT 

[E448K], cyaA 

[S352T], uhpT 

[E350Q]

–
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testing revealed that EC-O153H30 exhibited resistance to tetracyclines 
and cefpodoxime, which aligns with its genotype.

3.4 Description of methylome profiles in 
Escherichia coli strains

The methylated positions across the genome were detected using 
ONT sequencing. The EC-O119H4 strain has one conserved 5mC 
modification motifs CCWGG, and three conserved 6mA modification 
motifs GATC, GGANNNNNNGTG, and CACNNNNNNTCC 
(Figure 2A). Three modification types were identified in the genome 
of EC-O117H42 isolate, comprising 5mC modifications within 
CCWGG motif, 6mA modification residues within GATC, 
AGGNNNNCCT, RTAGNNNNNCTT motifs, and 4mC-modified 
cytosines. In EC-O153H30, 6mA is present in GATC, 
GGAGNNNNNRGC motifs, with 5mC methylated in motif CCWGG 
and 4mC methylated in motif GCYNNNNNCTCC. Notably, 99% of 
available sites are modified, which aligns with RM (Restriction-
Modification) protection against cleavage by cognate 
restriction endonucleases.

To assess the distribution of 6mA, 5mC, and 4mC sites across the 
genome, we quantified the modification motifs in 5,000 bp regions in 
the chromosome and in 1,000 bp regions in the plasmids. Among the 
13 methylation motifs identified in the three strains, GATC and 
CCWGG are shared by all and exhibit the most extensive distributions 
in each strain (Figure 2A). Each strain has over 20,000 GATC motifs 
and more than 10,000 CCWGG motifs, with GATC motifs being 
more prevalent than CCWGG motifs on the chromosome 
(Figures  2A–C; Supplementary Figures S2, S3). Compared to 
EC-O119H4, the strains EC-O117H42 and EC-O153H30 exhibit 4mC 

modification motifs at lower levels (Figure 2A). EC-O119H4 exhibits 
higher methylation levels for all identified motifs compared to 
EC-O117H42 and EC-O153H30 (Figure  2A). Other identified 
methylated motifs show variability among different strains and appear 
to be  uniquely possessed by specific E. coli strains (Figure  2; 
Supplementary Figures S2, S3).

Among the three E. coli isolates, only EC-O119H4 was found to 
contain the IncF plasmid, which is potentially promising candidate 
associated with higher pathogenicity of E. coli isolates in poultry (8, 
10). Therefore, the EC-O119H4 strain was further analyzed for its 
methylation patterns. A metagene analysis of 6mA and 5mC density 
for its entire genome (including both chromosome and plasmids), the 
IncF plasmid, and the selected important 18 VAGs, and AMR genes 
was performed (Supplementary Table S2) on the IncF plasmid across 
three regions: the 200 bp upstream region (USR), the coding sequence 
(CDS), and the 200 bp downstream region (DSR). The methylated 
5mC and 6mA displayed a modest density within gene bodies, 
regardless of whether the genes were located on plasmids or the 
genome (Figures 3, 4). A moderate decrease in GATC frequency was 
observed near the transcriptional start sites (TSSs) of genomic genes, 
whereas this trend was not evident in plasmid genes (Figure 3A). The 
analysis of 18 important genes on plasmid showed that both 6mA and 
GATC motifs were significantly decreased at the transcriptional start 
sites (TSSs) and termination sites (TESs) (Figure 4A). An increase in 
5mC frequency was observed at the transcriptional start sites (TSS) 
across the genome, plasmid, and the 18 key genes within the plasmid, 
while no signs of the CCWGG motif are detected (Figures 3B, 4B). It 
was also found that the 3′ downstream regions of the total genomic 
genes exhibited hypermethylation for both 5mC and 6mA (Figure 3), 
while hypomethylation was observed for 6mA and GATC in 18 key 
genes within the plasmid (Figure 4A).

FIGURE 1

The circular genome map of EC-O119H4 (A), EC-O117H42 (B), and EC-O153H30 (C). The circular genome of E. coli including chromosomes and 
plasmids visualized using GenoVi. From the innermost circles, Circle 1 shows the GC skew (G−C/G+C). The value is plotted as the deviation from the 
average GC skew of the entire sequence. Circle 2 shows the GC content, plotted using a sliding window. Circles 3 and 4 illustrate the coding 
sequences; 3 is negative, 4 is positive. The vertical bars near circles 3 and 4 represent corresponding RNA, with orange indicating tRNA and pink 
indicating rRNA. The chromosomes and plasmids are shown not to scale.
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4 Discussion

Escherichia coli isolates from poultry exhibit a significant genomic 
plasticity and complexity. In this study, we  utilized Nanopore 
Sequencing technology to analyze the comprehensive genomic and 
epigenomic traits in E. coli from systemic organs of a diseased chicken. 
Additionally, an intestinal isolate from a healthy wild bird was 
included to compare poultry E. coli isolates with those from a 
significantly different environment.

The diverse set of virulence genes suggests that the E. coli 
strains included in this study are well-equipped to mediate 
adherence, invasion and survival inside host cells, sequestering 
iron ions for colonization and growth, resistance to serum 
bactericidal activity, biofilm formation, contributing to its 
pathogenicity in avian hosts. The pathogenicity of APEC strains 
appears to be  closely linked to plasmid-encoded genes such as 
iroN, ompT, hlyF, iutA, and iss (10), as well as the number and 
combination patterns of VAGs (39, 40). One of the common 
patterns in the virulence genotype of APEC strains reported so far 
is the presence of large IncF or ColV plasmids that harbor multiple 
genes responsible for three key functions: serum survival/
complement resistance (iss and episomal ompT), iron acquisition 
(iucD, iutA, iroN, and sitA), and secretion (episomal/chromosomal 
ompT, hlyF, tsh, and cva/cvi). Chromosomal genes that show 
differential distribution between APEC and nonpathogenic E. coli 
such as papC, papA, papG, fimC, tia, and ibeA are primarily 
associated with the adhesion and invasion of E. coli into host cells 
(41). However, no single set of virulence genes is exclusively 
responsible for causing colibacillosis (6, 42, 43). Variations in 13 
genes, including yciC, group_2364 (ISKpn28), iroE, iroN, iroB, fes, 
btuD, iss, group_180 (ISKpn28), ompD, ompT, group_6989 
(hypothetical protein), and hlyF, as well as SNPs in three different 
genes identified through genome-wide association study GWAS, 
appear to be associated with pathogenicity in APEC isolates (6).

The conserved motifs detected in different E. coli lineages can 
vary. The reference E. coli has been found to have 6mA at 39,872 
GATC sites, 337 AAGANNNNNCTC sites, and 337 
GAGNNNNNTCTT sites (44). A total of 49,311 6-methyladenine 
(6mA) residues including GATC, ACCACC, CCACN8TGA(T/C), 
TCAN8GTGG, CTGCAG, and 1,407 putative 5-methylcytosine 
(5mC) residues including CCWGG were identified in the whole 
genome of hemolytic uremic syndrome (HUS)-associated E. coli 
O104:H4 (45). Among the three methylation types in E. coli, 4mC 
occurs less frequently than 6mA and its function largely remains 
unclear (46, 47). Methylation by 5mC has been linked to Tn3 
transposition and the expression of ribosomal proteins during the 
stationary phase, emerging as roles in virulence and host adaptation 
(48–50). Methylation of 6mA can induce transcriptional changes in 
response to various growth stages and environmental stimuli, 
depending on clock-like controls and switch-like controls, where 
transcription is regulated by the binding of transcription factors or 
RNA polymerase according to DNA methylation pattern (19, 51). In 
E. coli, genes associated with virulence traits can be regulated by DNA 
adenine methylation, as shown earlier with pap pilus family and 
phase-variable autotransporter protein gene agn43 (19). Our data 
suggest that 6mA methylation may be associated with gene expression 
and their relationship are complex, depending on sequence context. 
Similarly, Casselli et al. also observed apparent reduction in m6A 
frequency near the start and end coordinates. Although there was no 
direct correlation detected between m6A distribution and 
transcriptome altering in Borrelia burgdorferi, Casselli et al. suggested 
only a subset of m6A modifications may have meaningful implications 
for gene expression changes (52), which is consistent with our 
perspective. It has been reported that the distribution of 
N6-methyladenine impacts gene expression and functionality in 
Aeromonas veronii and Helicobacter pylori (53). Notably, unmethylated 
motifs are particularly enriched in the promoters of functionally 
related genes especially transcriptional regulators, compared to 

FIGURE 2

DNA modification within three E. coli strains determined by ONT sequencing (A) and DNA methylome across E. coli EC-O119H4 chromosome and 
plasmids (B–E). Box plots (B) and frequency distribution (C) show the relative methylation levels of 5mC and 6mA motifs per 5 k bin size in the 
chromosome. Box plots (D) and frequency distribution (E) illustrate the relative methylation levels of 5mC and 6mA motifs for each 1 k bin size in the 
plasmids.
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methylated motifs, highlighting their potential involvement in 
regulatory processes (15). Interestingly, 6mA and 5-methylcytosine 
(5mC) exhibit opposite trends near the transcriptional start sites of 
key plasmid genes, suggesting their independent roles in regulating 
gene expression. This observation aligns with similar phenomena 
reported in fungi (54). However, the 5mC mentioned here does not 
correspond to the well-documented CCWGG motif but involves other 
5mC sequences that remain to be fully explored. In the 3′ downstream 
regions near termination sites, 6mA displays hypermethylation across 
the genome, whereas key plasmid genes show hypomethylation of 
6mA. This indicates that downstream regions of genes with 6mA may 
also contribute to the regulation of plasmid gene expression. The 
methylation of 6mA appears to be context-dependent with respect to 
sequence specificity. Although this study highlights the potential roles 
of 6mA and 5mC in epigenetic regulation of transcription, further 
experiments, such as deletion of the restriction-modification (RM) 

system and RNA sequencing (RNA-seq), are required to validate the 
impact of methylation on virulence gene expression in 
future investigations.

Several reports suggest that DNA methylation plays a critical role 
of regulating bacterial gene expression and virulence, enabling 
adaptation to the harsh environmental changes and modulating the 
interaction with the host (14, 55). Specifically, DNA methylation 
regulates various genes, structures, and processes associated with 
pathogenesis, such as virulence, host colonization, biofilm formation, 
adhesins, pili, iron transport proteins (56, 57). The essential role of 
DNA adenine methylase (Dam) in gene expression and cellular 
adhesion in uropathogenic E. coli (UPEC) was confirmed through 
comparative analysis of Dam mutants (58). The posttranslational 
methylation of flagellin of Salmonella Typhimurium facilitates adhesion 
to host cell surface and host infection (59). Fur and Dam compete at 
the −10 transcriptional element to finely tune the expression of type VI 

FIGURE 3

DNA methylation patterns of genes bodies (top panel) and at the gene start and end sites within 200 bp (bottom panels) in GATC motifs and total 6mA 
(A), CCWGG motifs and total 5mC (B). Deep Blue and orange lines refer to the genes that are sourced from entire genome both the chromosome and 
plasmids of EC-O119H4 isolate. The light blue and purple colors represent all genes solely from pEC-O119H4-D-IncF plasmid.
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secretion system (T6SS) of enteroaggregative E. coli (60). Recent studies 
highlight that bacteria can alter the epigenotype and gene expression 
profiles of host cells, significantly contributing to pathogenesis (61–63). 
Bacterial-induced epigenetic disruptions can influence host cell 
functions, either enhancing host defense mechanisms or facilitating 
pathogen persistence. Moreover, recent research has identified a link 
between DNA methylation and multiple antimicrobial resistance (64). 
The relative positioning of DNA methylation may also provide insights 
into its functional role. A decrease in GATC frequency near TSSs in the 
genomic genes of E. coli in this study indicated that reduced GATC 
motifs primarily originate from the chromosome. However, when 
analyzing 18 important genes on plasmid, we found that both 6mA and 
GATC motifs were significantly decreased at the transcriptional start 
sites (TSSs) and termination sites (TESs) which indicates that only a 

crucial and small portion of genes on the IncF plasmid possess 
hypomethylated promoter regions. This key subset of genes on plasmid 
was associated with virulence and antimicrobial resistance (AMR). The 
decrease at the transcriptional start sites of key genes may implicate the 
epigenetic regulation of transcription associated with GATC. The 
hypermethylation of the 3′ downstream regions of the total genomic 
genes for both 5mC and 6mA, and in contrast the hypomethylation for 
6mA and GATC in 18 key genes within the plasmid suggests that the 
methylation of upstream and downstream gene regions for 5mC and 
6mA may collaborate to regulate gene expression, and methylation of 
6mA is context-dependent on the sequence. In the actual study, no 
functional analysis was performed corelating methylation with the 
pathogenic potential of E. coli isolates, however the observed genetic 
and epigenetic factors may open the avenues for future studies to 

FIGURE 4

The metagene analysis of 18 virulence-associated genes and antimicrobial resistance genes (shown in Supplementary Table S2) in the pEC-O119H4-D-
IncF plasmid per 40-bp bin size. The average GATC motifs and total 6mA across all gene bodies (top panel) and at the gene start and end sites within 
200 bp (bottom panels) (A). Arrows indicate a clear reduction in m6A frequency near the start and end coordinates. The average CCWGG motifs and 
total 5mC across all gene bodies (top panel) and at the gene start and end sites within 200 bp (bottom panels) (B).
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investigate the potential contribution of DNA modifications on 
bacterial pathogenesis and the chromatin-based regulation of defense 
genes as well as in proposing polyvalent vaccines, drugs, and diagnostic 
tools by targeting key invasive strategies, such as immune evasion, iron 
acquisition, adherence, and toxin production, to prevent 
bacterial infections.
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