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Porcine reproductive and respiratory syndrome virus (PRRSV) remains a significant 
challenge to the swine industry, resulting in substantial productivity and, consequently, 
economic losses. This study aimed to quantify the impact of PRRSV outbreaks in 
sow farms on nursery mortality using causal inference methods. The study design 
followed a retrospective observational approach, where PRRSV epidemic status in 
source sow farms was the exposure, and nursery mortality (percentage of dead pigs 
in the first 60 days post-weaning) was the outcome. Causal inference techniques 
were employed to estimate the effect of the exposure (PRRSV epidemic status) 
on the outcome (nursery mortality). Data from a Midwestern US swine production 
system comprising 2,592 lots of pigs, representing approximately 5 million pigs 
marketed between January 2021 and December 2022, were analyzed. A causal 
diagram was constructed to visualize the relationship between PRRSV epidemic 
exposure and nursery mortality, while controlling for potential confounding 
factors including season, average parity at farrow, and sow farm Mycoplasma 
hyopneumoniae status. Four analytical approaches were employed: univariate 
and multivariable regression models, propensity score matching, and a doubly 
robust method. The results indicated that PRRSV epidemic lots had higher nursery 
mortality compared to non-epidemic lots, regardless of the modeling approach used. 
The doubly robust method provided the most accurate estimates, offering lower 
mortality differences and narrower confidence intervals. This study demonstrated 
the application of causal inference methods on swine data to measure the impact 
of PRRSV on swine nursery mortality, which is an approach commonly used 
in other epidemiology areas but not well explored in veterinary epidemiology. 
The findings highlight the importance of employing causal inference models in 
veterinary epidemiology to improve the accuracy of disease impact assessments 
in field conditions, with potential applications in studying other pathogens or 
disease-related factors in livestock production.
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1 Introduction

Porcine reproductive and respiratory syndrome virus (PRRSV) is 
one of the major pathogens in the global swine industry in terms of 
economic impact and productivity losses as it affects the health and 
performance across all pig ages and phases of production (1). Despite 
PRRSV being present in the U.S. since the late 1980s, the economic 
impact of PRRSV outbreaks in the U.S. was estimated to 
be approximately $664 million per year (2). In Europe, one study 
demonstrated an impact of €126 per breeding animal in Dutch sow 
farms (3).

The impact of PRRSV outbreaks in sow farms is well described 
in the literature, where multiple authors have described the 
reproductive impact characterized by increased number of 
abortions, pre-natal losses (i.e., stillbirth and mummified fetuses), 
and weak born suckling piglets, leading to increased pre-weaning 
mortality, and lower weaning weight (1). Similarly, PRRSV 
increases swine post-weaning mortality and reduces average daily 
weight gain.

When measuring the impact of PRRSV on the post-weaning 
growth performance, mortality is a key performance indicator (KPI) 
of swine operations. Mortality also relates to other performance 
indicators that allow to measure whether pig populations are reaching 
their genetic potential. However, swine mortality is a multifactorial 
problem. Thus, understanding webs of causal factors influencing post-
weaning mortality requires applying a comprehensive analytical 
approach to reveal the role of any specific factor of interest 
on mortality.

Despite numerous studies focusing on swine pre-weaning 
mortality, fewer studies targeting the post-weaning causes of 
mortality have been reported (4). Multiple experimental and 
observational studies have been reported in a literature review on 
the impact of PRRSV on swine post-weaning mortality (2, 4–14). 
While traditional regression models are often used, causal 
inference methods such as doubly robust estimation may provide 
more accurate effect estimates under complex 
confounding structures.

Causal inference analysis overcomes the limitations when 
investigating such a complex outcome as swine mortality, as it 
addresses the potential confounding relationships using a causal 
diagram approach (15), and implements the correct adjustment of the 
background factors accordingly (16). One of the most common 
methods for controlling such confounders is based on propensity 
scores (17, 18).

Causal inference models applied to observational data are 
common in human medicine studies as some experimental studies 
may be difficult to conduct in humans (19). Despite the application of 
causal inference models in observational data not being a common 
practice in veterinary epidemiology (20), guidelines for conducting 
such approach in the veterinary epidemiology realm are available (16, 
19, 21, 22) and conducted it to data collected under field conditions 
(23–25).

Therefore, the objective of this study was to describe the process 
of implementing causal inference concepts to swine data to measure 
the impact of sow farm PRRSV outbreaks on the downstream nursery 
mortality of cohorts weaned during the epidemic phase of infection 
and compare regression and causal inference methods to estimate 
PRRSV impact on mortality.

2 Materials and methods

2.1 Overview

This retrospective cohort study utilized data from 2,649 lots, 
representing approximately 5 million pigs, marketed between 
January 2021 and December 2022 from a midwestern US swine 
production system (Iowa Select Farms, Iowa Falls, IA). Breeding-to-
market data were imported, cleaned, and integrated, creating a 
consolidated master table. After assessing the completeness of the 
data, lots with incomplete information were removed if information 
for any of the variables was missing. Productivity and health 
information was combined in the final master table for the 
remaining 2,592 eligible lots, utilizing a data management process 
previously described (41). The information available in the master 
table was analyzed implementing regression and causal inference 
methods to measure the impact of PRRSV outbreaks occurring in 
sow farms on the downstream nursery mortality of the progenies 
weaned within the first 16 weeks post-break.

2.2 Study design

This was a retrospective cohort study where the lots (n = 2,592) of 
pigs were the observational units. STROBE-Vet statement (46) for 
reporting observational studies was used to report the information in 
this manuscript. The observational unit was defined as one lot of pigs 
marketed from a growing site at one point in time (n = 2,592), where 
lots of pigs may have originated from a single or multiple sow farm(s). 
The exposure of interest was PRRSV epidemic infection in source sow 
farms. For the purpose of this study, an epidemic PRRSV status was 
defined as the 16 weeks after a reported PRRSV outbreak in breeding 
herds (12). The outcome was defined as the nursery mortality of the 
lot, expressed as the proportion of pigs that died during the first 
60 days of the post-weaning phase, and calculated as a percentage of 
the total number of pigs placed. Lots were not included in this study 
when originating from multiple sow farms with different statuses for 
PRRSV or Mycoplasma hyopneumoniae. Lots with known lateral 
introduction of PRRSV in the growing phase (i.e., post-weaning 
phase) were not excluded from the analysis and were further 
considered as a variable in the model.

This study aimed to compare the nursery mortality (outcome) of 
pig lots weaned from PRRSV sow farms with two different PRRSV 
statuses (exposure), classified as epidemic or non-epidemic. 
Pre-weaning phase information consisted of productivity and health 
data from the sow farms, which was collected and integrated with the 
lots` closeout performance report, thus providing retrospective 
information from breeding-to-market for each of the 2,592 study 
pig lots.

A panel of five swine experts was formed within Iowa State 
University to discuss the information from the master table and to 
build a causal diagram (26, 27) illustrating the relationship between 
PRRSV status in sow farms and the nursery mortality, i.e., the 
exposure and outcome, respectively. Variables were selected based 
on biological plausibility, and factors identified as important but not 
available in the dataset were represented as unobserved in the 
diagram. Thereafter, the variables identified as potential 
confounders in the causal diagram were then utilized in five 
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different analytical approaches to estimate the effect of the exposure 
on the outcome.

2.3 Data characteristics

The following definitions describe the variables involved in 
the relationship between the effect of PRRSV outbreak in sow 
farms on the downstream nursery mortality of the weaned lots of 
pigs. The data utilized as the exposure, outcome, and the 
remaining variables controlled in this relationship are provided 
in Table 1.

2.3.1 Exposure variable
The pig lots were classified into two observational categories based 

on their PRRSV status at the time of weaning from sow farms: 
“Epidemic” for pigs lots weaned during the first 16 weeks of a PRRSV 

outbreak in the sow farm source and “non-Epidemic” for those 
weaned after that period (≥ 17 weeks).

2.3.2 Outcome variable
Nursery mortality was the outcome of interest in this study and 

represented the percentage of dead pigs during the initial 60 days of 
the post-weaning phase for each pig lot. A Shapiro–Wilk test, through 
a univariate analysis, was conducted to verify if the distribution of the 
outcome was normalized, and the log-transformed nursery mortality 
was used in further analysis.

2.3.3 Conditional variables
The other variables involved in the relationship between the 

aforementioned exposure and outcome were proposed through 
the causal diagram and were classified as either ancestors of 
exposure, ancestor of outcome, or ancestor of both (Table  1). 
Variables identified as ancestor of both exposure and outcome 

TABLE 1 Description of the variables demonstrated on the causal diagram.

Variable name Classification Type Category Description

Nursery mortality

 Outcome

Continuous Continuous variable Proportion of pigs dead based on the pigs placed in

PRRSV status

 Exposure

Categorical Epidemic Pig lot classification according to sow farm PRRSV 

status at weaningNon-epidemic

M. hyopneumoniae status

 Confounder

Categorical Endemic Lots` classification according to sow farm M. hyo 

status at weaningNegative

Average parity at farrowa

 Confounder
Categorical 3.0 farrows Average litter parity of the lots at weaning

3.8 farrows

4.2 farrows

4.9 farrows

Season
Confounder 

Categorical January–March Months when pigs were weaned:

January–March (1st)

April–June (2nd)

July–September (3rd)

October–December (4th)

April–June

July–September

October–December

Sow source

 Ancestor of exposure

Discrete 47 sow farms Sow farm originating the lots of pigs.

PRRSV nursery outbreak

 Ancestor of outcome

Categorical PRRSV break Classification according to PRRSV outbreak in the 

post-weaning phaseNo break

Stocking weight
 Mediator

Continuous ~15 lbs. Average stocking weight of the lots at placement

Pre-wean mortality
 Mediator

Continuous ~14% Average pre-weaning mortality of the lots

Average weaning age
 Mediator

Continuous ~20 days Average stocking weight of the lots at placement

Other diseases

 Unobserved

– – Other diseases occurring in the pre-weaning phase

*      Type of the variable. aAverage number of farrows per group category.
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simultaneously refer to confounders (28), which are factors that 
need to be  adjusted to estimate the correct total effect of the 
exposure on the outcome.

2.4 Causal diagram

Prior to conducting the statistical analyses to measure the effect 
of PRRSV outbreaks on nursery mortality, a causal diagram was made 
by a panel of five experts at Iowa State University and Iowa Select 
Farms to illustrate and inform which factors are involved in the 
possible causal relationships between the impact of PRRSV epidemic 
flows from sow farms on the downstream nursery mortality of weaned 
lots. For this purpose, the DAGitty web interface (29) was utilized to:

 (1) Create the visual representation of the direct acyclic graph 
(DAG) represented in Figure 1, where the possible pathways 
between the exposure and outcome were illustrated.

 (2) Assess the potential direct and total effect of the exposure on 
the outcome.

 (3) Identify the minimum sufficient set to be  adjusted before 
measuring the total effect of PRRSV on nursery mortality.

On the causal diagram (Figure 1), the exposure is represented by 
the  symbol and refers to sow farms facing during the epidemic 
phase of a PRRSV outbreak. The symbol for the outcome nursery 
mortality is , and factors are represented by  which are 
denoted as confounders as they cause the exposure and outcome 
simultaneously. The pathways represented by  indicate a causal 

pathway, while  is a potential biasing pathway (backdoor) that 
needs to be blocked.

The direct effect of exposure on the outcome is represented by a 
single arrow linking PRRSV epidemic flows (exposure) directly to 
downstream nursery mortality (outcome). All other indirect arrows 
intermediating the pathways between exposure and outcome are 
denoted as indirect paths, where mediator variables were present. As 
mentioned above, the total effect and direct effect refer to the overall 
effect of the exposure accounting for all mediators, and the effect 
refers to the remaining impact without the mediators.

The DAG constructed in this study identified the following 
variables as potential confounders in the relationship between PRRSV 
epidemic lots and nursery mortality: season (time of the year when 
lots were weaned), average parity at farrow (average parity of the sows 
that farrowed and weaned piglets), and sow farm Mycoplasma 
hyopneumoniae status (farms classified as either endemic or negative). 
The lateral introduction of PRRSV in the nursery phase was also 
considered an important variable, here referred as PRRSV nursery 
outbreak, that was controlled in the regression analysis approaches but 
was not controlled as a confounder in the causal approaches described 
below, as it was not present in the causal pathway between exposure 
and outcome (25, 30), but affects the outcome and the estimation of 
PRRSV impact in the post-weaning phase.

2.5 Statistical analyses

Four analytical approaches were used to estimate the effect of 
PRRSV status on nursery mortality: two based on regression models 

FIGURE 1

Causal diagram for the sow farm PRRSV status impact of nursery mortality. * The minimum sufficient set (MSS) of variables to measure the total effect 
of PRRS epidemic sow farms vs. non-epidemic sow farms included three confounders: average parity at farrow, Mycoplasma hyopneumoniae status, 

and season. The exposure is represented by , while  is the symbol for the outcome nursery mortality, and factors are represented by 
 

are denoted as confounders, as they cause the exposure and outcome simultaneously. The pathways represented by  indicates a causal pathway, 
while  is a potential biasing pathway that needs to be blocked.
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(outcome modeling) and two based on propensity score methods 
(exposure modeling). The outcome models included a univariate and 
a multivariable regression model, where nursery mortality 
(log-transformed) was regressed of PRRSV status. The other two 
causal models involved were based on propensity scores (18), where 
one matching, and the other applied a doubly robust approach that 
combined exposure and outcome modeling. The variables identified 
as potential confounders on the causal diagram are used in both 
outcome and exposure modeling approaches as either a covariate or a 
matching variable, respectively. The results reported in each approach 
referred to significance (p < 0.05), mean nursery mortality, and mean 
confidence interval (C.I.) for each exposure category.

2.5.1 Outcome models
On the outcome model, two methods were utilized to estimate the 

exposure’s effect on the outcome using PROC GLIMMIX on SAS® 
Version 9.4 (SAS Institute, Inc., Cary, NC). The first refers to a 
univariate model (UM), where the numerical outcome, 
log-transformed nursery mortality, is regressed on the binary 
exposure, and the differences in nursery mortality are measured in the 
two categories of the exposure (PRRSV epidemic vs. non-epidemic), 
without any covariate in the model (ANOVA). Similarly, the second 
approach is a multivariable model (MM) where the log-transformed 
nursery mortality is regressed on the exposure, along with a set of 
covariates (i.e., all confounders and PRRSV nursery outbreak as 
mentioned above) selected based on the causal diagram to 
be controlled.

2.5.2 Exposure models
For the exposure model, two other models were utilized to 

measure the effect of the exposure on the outcome by utilizing 
propensity score causal methods. The first approach consisted of a 
propensity score model (PS) using PSMATCH procedure on SAS, 
where a matched dataset was built based on the propensity score 
values of each observation. The propensity score methodology was 
first described by Rosenbaum and Rubin (18) and refers to the 
probability of each observation being exposed given a set of covariates. 
This represented the probability for each group in the study population 
being either PRRSV epidemic or non-epidemic, given the confounders 
identified in the causal diagram.

The matched dataset was created by selecting one PRRSV 
non-epidemic pig lot for each lot classified as PRRSV epidemic, based 
on approximate propensity score value (i.e., similar background 
confounding effects). After assessing if the propensity score differences 
were reduced before and after creating a matched dataset (Figure 2), 
the causal effect of lots originating from PRRSV epidemic sow farms 
on downstream nursery mortality was estimated compared to the 
non-epidemic lots by using a paired t-test. The matching method 
using propensity score measures only the average treatment effect of 
the treated, often referred as ATT (31), which represents the effects of 
the exposure within the exposed population.

The second modeling approach utilized in this study is the doubly 
robust method using CAUSALTRT on SAS, which combined an 
exposure model based on the inverse probability weighting (IPW) 
method (32) and an outcome model based on regression adjustment 
estimation. The IPW utilizes a logistic regression model that regresses 
the binary exposure (PRRSV epidemic vs. non-epidemic) on the 
confounders, to estimate the propensity scores of each group in the 

dataset, and the inverse of these values is used to weight each 
individual in the estimation of the outcome.

Combining the two modeling approaches in a single model is 
called doubly robust because it produces an unbiased estimation of the 
causal treatment effect even if there are misspecifications on the 
models (33, 34), as long as one of the models is correctly specified. The 
causal effect estimated using this approach is defined as the average 
treatment effect (ATE), which refers to the effect of the exposure 
within the entire study population, meaning, for this study, the effect 
of the exposure PRRSV epidemic flows for epidemic and non-epidemic 
lots (31).

3 Results

3.1 Data characteristics

This study was initiated with information from 2,649 lots, where 
57 lots were deleted due to incomplete information for the variables 
across all observational units. The final data prepared for analyses 
contained 2,592 lots marketed from January 2021 until April 2023. A 
total of 188 lots were classified as PRRSV epidemic concerning their 
historical status at the time of the weaning from sow farms and the 
remaining lots (n = 2,068) as non-epidemic. Lots within the 
non-epidemic category included sow farms after the 16-week period 
post-outbreak, and positive stable sow farms, which is equivalent to 
categories I-B, II, and II-vx described in a recent PRRSV classification 
system (35).

The Shapiro–Wilk test on the outcome demonstrated that 
distribution of nursery mortality was not normal for the study 
population, thus requiring its log-transformation before the 
analyses. The back-transformed geometric mean nursery mortality 
was 3.42% (95% confidence interval (CI) 3.32–3.53%). The 
descriptive results of the variables in this study according to the 
exposure status (PRRSV epidemic vs. non-epidemic) are 
demonstrated in Table 1.

3.2 Causal diagram

The relationship among all variables included in this study is 
presented as a DAG in Figure 1. Between exposure (PRRSV epidemic 
sow farms) and outcome (nursery mortality), there were eight factors 
involved in this relationship, and one represents a post-weaning event 
interfering with the outcome only (i.e., not related to exposure → 
outcome directionality).

The variables identified with a blue circle refer to mediators as 
they are ancestors of the outcome but are influenced by the exposure 
status. On the other hand, the directionality of the variables in red 
simultaneously impacts both outcome and exposure. Blue and red 
variables are referred in the literature as mediators and confounders, 
respectively (30, 36).

The variable “other diseases” in gray is also a mediator but was 
considered unobserved as no data were available regarding other diseases 
occurring in the sow farms. Similarly, “Sow Source” represents sow farm-
related factors that may influence the impact of PRRSV infection on pig 
health and mortality. Finally, as mentioned previously, “PRRSV nursery 
outbreaks” was a factor identified on the DAG that influences the 
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outcome directly, but it is not related to exposure → outcome 
directionality as it concerns a post-weaning factor. For this reason, 
groups with a PRRSV outbreak during the nursery phase were adjusted 
in the regression analyses and not in the causal inference models.

As it was not our goal to estimate the direct effect, the minimal 
sufficient set (MSS) to correctly measure the total causal effect of sow 
farm PRRSV epidemic vs. non-epidemic groups on nursery mortality 
included three confounders: Average parity at farrow, season, and 
Mycoplasma hyopneumoniae. Table 2 contains the descriptive values 
for group frequency and nursery mortality means for each confounder 
for the total effect, according to the exposure status (epidemic vs. 
non-epidemic).

3.3 Measuring the total effect of PRRSV 
epidemic groups

The results from the four approaches tested in this research 
concerning the nursery mortality of lots classified as either PRRSV 
epidemic or non-epidemic are demonstrated in Table 3.

The outcome model approaches were based on regression 
methods only, and propensity scores were not utilized. The univariate 
model had the highest nursery mortality for the PRRSV epidemic 
category compared to the remaining approaches and the largest 
difference between epidemic and non-epidemic lots. Notably, this 
approach did not control for any confounders by including covariates 
and simulated the comparison of raw means, or similar to a 

“pivot-table” approach. On the other hand, the multivariable model 
had lower estimates and a narrower confidence interval compared to 
the univariate model.

For the exposure model approach, which is based on propensity 
scores for reducing variation between the confounders indicated by 
the causal diagram, the matching approach (PSMATCH) resulted in 
selecting 188 non-epidemic lots with similar propensity scores to the 
188 epidemic lots. Using this matched dataset (n = 376 lots), the 
geometric mean nursery mortality for the epidemic lots was identical 
(8.43%) to the univariate approach discussed above, but the 
non-epidemic lots` estimate was higher (3.64%). Figure  2 
demonstrates that the standardized mean differences for the 
covariates reduced to near zero when using the matched dataset.

The last model utilized in the exposure model approach was the 
doubly robust method, which combined modeling the exposure 
variable, here using the inverse probability weighting (IPW), and 
modeling the outcome with the regression method used on 
multivariate model. The method provided an estimate of the mean 
nursery mortality differences between PRRSV epidemic and 
non-epidemic lots for the entire population (ATE).

This method had the lowest estimates of mortality for both 
categories compared to the other three approaches. Similarly, narrower 
confidence intervals for the estimates were obtained, as well as a 
smaller difference in nursery mortality when comparing epidemic 
versus non-epidemic lots (Figures 3, 4).

When examining covariate balance (Table  4) based on the 
propensity score values calculated, the DR model reduced the 

FIGURE 2

Standardized mean differences of the covariates after matching with PSMATCH. All observations and region observations refer to the complete dataset 
and the region utilized to find matches, respectively.
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majority of the variation between the covariates after weighting. This 
was observed based on reduced standardized mean differences 
between epidemic and non-epidemic (values closer to 0) and variance 
ratio values (values closer to 1). The variable average parity at farrow 
was the factor with less reduction across the categories, where one 
(4.24 category) had an increased difference after weighting. The blank 
values observed were not calculated as they refer to each covariate’s 
reference values.

4 Discussion

In this study, we aimed to measure the causal effect of sow farm 
PRRSV outbreaks on the nursery mortality of pig lots weaned within 
the epidemic and non-epidemic periods, utilizing data collected under 
field conditions and comparing analytical approaches based on 
regression or causal inference methods.

When comparing the modeling approaches for estimating the 
effect of PRRSV, we observed increased nursery mortality for lots of 
pigs originating from PRRSV epidemic sow farms versus 
non-epidemic, which was statistically significant across all methods 
tested. The non-epidemic sow farms included herds not within the 
first 16 weeks of an outbreak, which represented unstable low 

prevalence or stable sow farms, similar to category I-B, II, and II-vx 
described in a recent PRRSV classification system (35). The estimates 
for the univariate model, which does not control for any confounding 
factors, demonstrated increased nursery mortality of 5.23% in 
PRRSV epidemic lots compared to non-epidemic (8.43% vs. 3.19%, 
respectively). PSMATCH estimates for PRRSV epidemic lots were the 
same as the UM estimates (8.43%), but the marginal estimates for 
non-epidemic lots were higher (3.64%), resulting in a smaller 
difference (4.69%) compared to UM (5.23%).

The smaller mortality estimates for PRRSV epidemic lots were 
observed on the doubly robust approach (7.18%), which was 3.97% 
higher compared to PRRSV non-epidemic lots (3.21%). Similarly, the 
results from the multivariate model (MM) were more similar to the 
DR model, with nursery mortality estimates for the PRRSV epidemic 
4.38% larger than the nursery mortality for non-epidemic lots (7.48% 
vs. 3.10%, respectively).

The results of this study indicate a difference in the distribution/
frequency of the background factors listed through the causal diagram 
before and after applying any of the methods to control confounding 
effects. Thus, estimating the effect of PRRSV sow farm outbreaks on 
the downstream nursery mortality without any adjustment for 
confounders (i.e., using the UM approach) is imprecise and can lead 
to biased results (17).

TABLE 2 Description of the variables indicated to be controlled on the causal diagram.

Variable name Categories Nursery mortalitya Groups` mortality (%) and frequency (n)

PRRSV epidemic PRRSV non-epidemic

Mycoplasma hyopneumoniae 

status

Endemic 5.39% 12.10% (n = 135) 4.78% (n = 1,481)

Negative 3.61% 7.41% (n = 53) 3.39% (n = 923)

Average parity at farrow

3.08 5.16% 10.89% (n = 51) 4.69% (n = 612)

3.84 4.87% 10.71% (n = 53) 4.34% (n = 580)

4.24 4.34% 11.18% (n = 41) 3.88% (n = 605)

4.92 4.49% 10.34% (n = 43) 3.78% (n = 607)

Season

January–March 5.82% 11.60% (n = 63) 5.10% (n = 505)

April–June 4.39% 9.36% (n = 27) 4.18% (n = 620)

July–September 3.82% 9.60% (n = 33) 3.58% (n = 798)

October–December 5.33% 11.17% (n = 65) 4.54% (n = 481)

aRaw mean nursery mortality percentage for each variable and the respective categories.

TABLE 3 Results of the multiple approaches for measuring the effect of exposure on outcome.

Type of model Sow farm PRRSV 
status

Nursery mortalitya Confidence interval 
(C.I.)

p-value

Univariate Model (UM) Epidemic 8.43% 7.59–9.37% <0.0001

Non-epidemic 3.19% 3.09–3.28%

Multivariable Model (MM) Epidemic 7.49% 6.70–8.36% <0.0001

Non-epidemic 3.10% 2.99–3.23%

Matched Dataset (PSMATCH) Epidemic 8.43% 7.59–9.37% <0.0001

Non-epidemic 3.64% 3.12–3.88%

Doubly robust (DR) Epidemic 7.18% 6.45–7.98% <0.0001

Non-epidemic 3.21% 3.12–3.31%

aGeometric mean nursery mortality for each variable and the respective categories, back transformed from the log-scale. The controlled variables are average parity at farrow, Mycoplasma 
hyopneumoniae status, and season.
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The PSMATCH result for non-epidemic lots compared to the 
univariate model is a consequence of matching non-epidemic lots 
with similar characteristics to epidemic cohorts based on similar 

propensity scores, given the confounding factors. Thus, selecting 
PRRSV non-epidemic lots with similar conditions for the confounders 
likely selected lots challenged with other diseases not related to 

FIGURE 3

Estimates and C.I. for different approaches on measuring PRRSV status impact. DR, doubly robust; MM, multivariable model; PSMATCH, matching 
method using propensity score; UM, univariate model.

FIGURE 4

Difference in mortality between epidemic and non-epidemic groups for different approaches. DR, doubly robust; MM, multivariable model; PSMATCH, 
matching method using propensity score; UM, univariate model.
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PRRSV outbreaks, for example, non-epidemic lots during winter 
months, a season with higher detection of swine enteric and 
respiratory pathogens (13, 37).

The doubly robust estimation of increased nursery mortality of 
3.97% in PRRSV epidemic flows compared to non-epidemic lots 
suggested the most accurate estimate for this study population, as seen 
that standard mean differences for the confounders after weighting 
decreased, and the lowest confidence intervals were observed (i.e., 
lower errors) compared to the remaining modeling approaches. As the 
true causal impact of PRRSV in nursery mortality is impossible to 
measure, it is theoretically favorable to utilize the doubly robust 
estimation methods for causal inference analysis in veterinary 
epidemiology, as it combines the outcome regression model with a 
model for the exposure based on the propensity score, thus providing 
unbiased results as long as one of the two models are correctly 
specified (34).

The range of weeks selected in this study to classify batches of 
weaned pigs as PRRSV epidemic (first 16 weeks of an outbreaks) and 
non-epidemic does not exclude the possibility of having non-epidemic 
groups with clinical signs similar to the epidemic batches of weaned 
pigs, mixed with groups without clinical signs. Previous authors 
reported breeding herd outbreaks taking longer than 17 weeks to “cool 
down” the effect of PRRS associated with PRRSV shedding and 
clinical signs (13, 14, 38). Therefore, the results of the present study 
could be underestimated if the acute phase of infection is occurring in 
both classifications hereby utilized. For instance, an industry report 
that analyzed 49 breeding herds with PRRSV outbreaks demonstrated 
median time to baseline production (i.e., time to reach productivity 
regarding the number of pigs weaned before the outbreak) was 
22 weeks (39). On the other hand, this industry report showed that the 
largest productivity losses in terms of number of weaned pigs were 
higher during the initial 16 weeks but could have lasted longer periods.

The results of this research are in accordance with other veterinary 
studies that observed a more precise estimation of marginal effects 
when investigating the causal inference of an exposure using the 
doubly robust methods compared to regressions models (24, 25). 
Notably, regression models should provide similar results to the 
propensity score-based methods if no confounding is present or if the 
relationship between the variables is linear (23). However, complex 

non-linear relationships between many extraneous variables related 
to the exposure and outcome being investigated are common in the 
veterinary epidemiology realm, where propensity score can be a good 
solution for epidemiologists as it demonstrates higher modeling 
robustness (40). In addition, potential residual confounding due to the 
inclusion of nodes that are proxy of other confounders can occur, for 
example, with season, as it is a proxy of periods of the year of lower or 
higher incidence of disease.

The clinical presentation of PRRSV in swine herds may vary from 
subclinical to devastating, depending on multiple concurrent factors 
(1). Previous observational studies in the literature have reported 
PRRSV impact incoming from sow farms on the downstream 
mortality by increasing post-weaning mortality by 1.78% (5), 3.4% 
(14), 3.3% (2), and up to 10.19% (41), but in these cases sow farms 
classified as positive for PRRSV included cohorts with positive 
detection of virus through rt-PCR in due-to-wean age piglets, which 
may last over 25 to 32 weeks after an outbreak (38). On the other 
hand, the devastating effect was demonstrated in case studies 
available from the literature reporting outbreaks in sow farms of high 
pathogenicity PRRSV, which caused peaks in downstream wean-to-
finish mortality reaching ~20–50% (6, 11, 42), and nursery mortality 
averaging 9.9% for the batches weaned within the first 18 weeks after 
an outbreak (9).

Despite PRRSV being one of the most relevant diseases for the 
global swine industry (1–3), and common within the United States 
(43–45), research on its impact under field conditions is limited to 
observational studies as mentioned above. In these cases, adjustment 
for extraneous variables was done through regression models and 
without prior identification of confounders through a causal diagram. 
Notably, no prior observational studies have measured the impact of 
diseases in swine using causal inference methods, and, to the best of 
the author’s knowledge, this is the first observational study measuring 
the causal impact of PRRSV on swine nursery mortality.

Unfortunately, the scenario of limited causal inference research is 
not different for other livestock species. In fact, a review of two 
hundred observational studies (20) in veterinary medicine conducted 
between 2020 and 2022 reported that 86% of the scientific studies 
utilized the causal wording incorrectly (i.e., in the absence of a clearly 
defined exposure and outcome relationship, and without methods for 

TABLE 4 Covariate differences for propensity score on the doubly robust (DR) model.

Variable name Categories Standard differencea Variance ratiob

Unweighted Weighted Unweighted Weighted

Mycoplasma 

hyopneumoniae status

Endemic 0.2178 0.0311 0.8559 0.9833

Negative – – – –

Average parity at farrow 3.08 0.0379 0.0321 1.0417 1.0352

3.84 0.0926 −0.0391 1.1059 0.9525

4.24 −0.0793 −0.0904 0.9055 0.8903

4.92 – – – –

Season January–March 0.2836 0.0100 1.3427 1.0135

April–June −0.2883 −0.0355 0.6426 0.9581

July–September −0.3654 0.0147 0.6526 1.0111

October–December – – – –

aStandard difference: values closer to zero on the weighted data vs. unweighted data mean less difference between epidemic and non-epidemic exposure lots.
bRefer to the ratio of the variance to the mean, where values closer to 1 also indicated less variation between exposure lots.
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controlling for confounders or a causal diagram). Only one study out 
of two hundred reported explicit exposure and outcome relationships, 
along with a causal diagram.

The absence of research applying causal inference methods for 
measuring PRRSV’s impact is not due to the lack of information 
related to its extraneous variables (i.e., other risk factors) as disease-
related information is commonly recorded under field conditions 
(19). Actually, the availability of information concerning confounding 
factors for the lots of pigs in this study was what made it possible to 
build the causal pathway (DAG), which guided the subsequent 
statistical analyses without requiring to record extra information. 
Furthermore, plenty of information is available in the literature 
concerning the guidelines for conducting causal inference analysis 
from observational data in the veterinary epidemiology realm 
(16, 22).

The external validity of the present study is limited to the swine 
production system from which the data were collected and for the 
time frame analyzed, as the causal impact of diseases such as PRRSV 
is expected to change over time and between different companies or 
regions if a new PRRSV strain is introduced, for example. This study 
focused on survivability, not assessing changes in other key 
performance indicators such as growth rate or feed efficiency. Another 
limitation of this study is that it is prone to information bias as data 
recorded in the farm and used in the model could have been recorded 
incorrectly (e.g., the date of an outbreak with PRRSV in the sow farm 
could have been reported early or late compared to the actual date). 
In addition, the information used for characterizing the weekly 
batches of weaned pigs was provided as average values for the specific 
weeks over an “X” number of wean events per litter, where the variance 
within the means was unavailable from the raw data. Finally, other 
potential diseases not recorded by the system could have influenced 
the health status of the animals at the time of the weaning.

Despite the limitation, this study demonstrates the importance 
of applying causal inference models to observational data instead 
of relying on raw mean comparisons or from regression analyses 
marginal estimates, as it provided more accurate modeling 
strategy for analysis of multiple variables with non-linear 
relationships. The extrapolation of the present results for other 
field conditions is limited as the interactions between health and 
productivity are expected to change drastically over time, location, 
and farms.

5 Conclusion

Building causal inference analysis in the veterinary epidemiology 
realm requires consolidated data containing comprehensive 
information and appropriate implementation of causal inference 
methods. This study demonstrated the application of this approach 
using swine data collected under field conditions by following the 
guidelines for observational studies and the steps recommended for 
causal inference analysis.

The goal for applying the causal inference approach, rather than 
relying only on regression models, was to handle the variation of 
known background factors related to PRRSV outbreaks in sow farm 
and downstream nursery mortality, providing accurate estimates 
between epidemic and non-epidemic lots after reducing the variation 
of the confounders.

The doubly robust method provided the lowest impact for the 
two PRRSV lots on mortality, suggesting that the other approaches 
could not control all confounding effects. This study revealed the 
application of causal inference models in swine field data, which 
can be  utilized for other pathogens or disease/production-
related factors.
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