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Introduction

Senecavirus A (SVA) is an emerging virus, typically inducing a vesicular disease in

pigs. Clinical signs are characterized by lethargy and lameness, usually followed by the

development of vesicles on the snout, dewclaw or (and) coronary band. The clinical signs

are generally indistinguishable from those of other vesicular diseases in pigs (1). SVA-

infected cases have been reported in at least 10 countries (2–11), therefore attracting a

great deal of attention from the pig industry worldwide.

SVA is the only member of the genus Senecavirus, in the family Picornaviridae

(12). The virion is a typical icosahedral particle, encapsulating its own genome that is

a positive-sense, single-stranded RNA genome (Figure 1A), approximately 7,300 nt in

length, composed of 5' untranslated region (UTR), polyprotein open reading frame (ORF)

and 3' UTR. SVA has a length-variable poly(A) tail at the genomic 3' terminus (13). At

the 5' terminus, there is no cap structure. Alternatively, a short peptide, VPg, is covalently

linked to the 5' terminus, and as the protein primer, plays a crucial role in the synthesis of

viral genome.

In an SVA-infected cell, the viral polyprotein precursor is translated and progressively

cleaved into 12 proteins: L, VP4, VP2, VP3, VP1, 2A, 2B, 2C, 3A, 3B, 3C and 3D (14). The

VP1 to VP4 are structural proteins, which interact with one another, responsible for the

viral morphogenesis. The others are non-structural proteins, required for viral replication

(15–17). For example, the 2A oligopeptide confers a ribosome “skipping” effect, separating

two proteins without needing a proteinase (18).

Construction of SVA reverse genetics platform:
general methodology

The reverse genetics (RG) technique is a potent tool, whereby a replication-competent

RNA virus can be rescued (or recovered) from its genome cDNA clone, facilitating studies

onmolecular virology, virus-vectored vaccinology, marker-tagged diagnostics and so forth.

To data, several groups have independently constructed the RG platform of SVA, using

their individual methodologies (19–25), slightly different from one another. We have

established an SVA RG platform, demonstrated to be highly efficient in the recovery of

viable SVA (26).

The first step, taking our method to develop the SVA RG system as an example, was

to construct a cDNA clone of full-length genome, through either chemical synthesis or
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FIGURE 1

Schematic representations of wild-type genome, chimeric genome, and a single round of replication cycle after SVA-eGFP infection. Wild-type (A)

and chimeric (B) SVA genomes. The latter contains an eGFP-T2A fusion fragment, located between the viral 2A and 2B sequences. Genetic elements

match their actual lengths in proportion. A single round of viral replication cycle in a cell infected with SVA-eGFP (C). The replication cycle mainly

includes nine steps, namely, (I) virus attaching to its receptor, (II) endocytosis-mediated entrance of virion into cell, (III) uncoating of virion, (IV)

ribosome-triggered translation of polyprotein, (V) further processing of polyprotein through lysis, (VI) RdRp-initiated replication of nascent

antigenome, (VII) replication of nascent genome, (VIII) morphogenesis of virion, and (IX) release of virion.

overlap extension PCR. The cDNA clone was flanked by a T7

promoter and a poly(A) tail at its 5' and 3' ends, respectively.

The fusion sequence, T7 promoter-cDNA clone-poly(A) tail, was

subcloned into a plasmid for constructing a recombinant one. For

virus rescue, BSR-T7/5 cells, which could constitutively express

the T7 RNA polymerase, were seeded onto a 6-well plate for
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incubation overnight at 37◦C, followed by transfection with the

cDNA clone-containing plasmid. The plasmid-transfected cell

monolayer was subsequently cultured at 37◦C for 3 d, and then

subjected to two freeze-and-thaw cycles to harvest the supernatant

for serial blind passages. The passage-5 progeny was analyzed

by RT-PCR for detecting whether the virus of interest was

successfully rescued.

RG-generated wild-type SVA for omics
studies

SVA can be clinically isolated from SVA-infected pigs. An

SVA isolate, if not subjected to several rounds of plaque

purification, may not be a single SVA clone, even containing

other pathogens in the viral stock. If so, an SVA-based omics

study would be invaluable. In contrast, RG-generated SVA is a

single strain without contamination by other pathogens, required

for a comparative study of omics after SVA infection. In our

previous study, a wild-type SVA was successfully rescued from its

cDNA clone (26). The passage-5 progeny was inoculated into cell

monolayers, followed by a series of comparative analyses based on

multi-omics, including transcriptomics (27), proteomics (28) and

metabolomics (29).

RG-mediated point mutation for
unveiling SVA characteristics

It has been widely reported that one single point mutation

can even extensively change the picornaviral characteristics (30–

33). Site-directed mutagenesis (SDM) can be used for modifying

a wild-type SVA cDNA clone to reconstruct a mutant. If able to be

rescued from the mutant, the SDM-modified SVA can be compared

with its wild-type counterpart concerning some viral features. For

example, two SVA variants were constructed via SDM to introduce

different mutated sites in their RdRps (S460L alone and I212V-

S460L in combination), consequently suggesting both variants that

had lower recombination capacity than the wild-type strain (34).

More recently, Zhao et al. (13) used the RG tool with method

of structural biology to optimize novel oncolytic SVA mutants:

viral receptor-associated SVA-S177A, and viral antigenic peptide-

related SVA-S177A/P60S, both of which showed not only higher

infectivity but also lower immunogenicity than the wild-type strain

did (35).

Fluorescent marker-tagged SVA
facilitating viral studies

Picornavirus is capable to accommodate a foreign sequence in

its genome. The shorter the foreign sequence is, the stronger the

accommodation capability is. Fluorescent protein and luciferase

sequences are widely used as tracking markers inserted into

wild-type SVA cDNA clones to rescue marker-tagged viruses

for antiviral screening, virus neutralization test, oncolytic

analysis, etc (19, 25, 36, 37). These fluorescent markers include

enhanced green fluorescent protein (eGFP), red fluorescent

protein, NanoLuc
R©

luciferase (NLuc), Gaussia luciferase,

and so on.

eGFP-tagged SVA

The eGFP is most broadly used for constructing fluorescent

marker-tagged picornaviruses. An eGFP-tagged SVA (SVA-

eGFP) has a chimeric genome that generally contains an eGFP

ORF fused with a Thosea asigna virus 2A (T2A) sequence

(Figure 1B). The SVA-eGFP virion can enter a susceptible cell

via an endocytic pathway, followed by a series of processes

to encode the eGFP and finally to generate mature virions

in the cell, as schematically shown in Figure 1C. Notably,

the eGFP is expressed as the eGFP-T2A fusion pattern,

which can “light up” the cell through observation using a

fluorescence microscope, indicating that the cell has been infected

with SVA-eGFP.

Viral titration based on TCID50 assay is involved in observing

cytopathic effect (CPE) for calculating a titer value. However, a

few reports have shown that some SVA strains hardly induce

the typical CPE on a cell monolayer (7, 38, 39), therefore

inconducive to the viral titration. One of the advantages in

use of SVA-eGFP is facilitating the viral titration, because

fluorescence-emitted wells in the TCID50 assay indicate that their

corresponding cell monolayers have been infected with SVA-

eGFP. The accuracy of titer measurement through identifying

fluorescent wells is much higher than that through observing the

CPE formation.

The conventional virus neutralization test (VNT) is generally

considered as a gold standard for recognizing virus-specific

antibodies, but unfortunately is a labor- and time-consuming

method. If a wild-type SVA is used for VNT, the prerequisite

is that the wild-type SVA is able to induce obvious CPE on a

96-well plate. In contrast, if SVA-eGFP is used, CPE would be

unnecessary for VNT readings, because the SVA-eGFP can function

as a virus-infected indicator to imply which wells are infected or

not. Fluorescence-free wells suggest that neutralizing antibodies

have completely neutralized SVA-eGFP at a certain dilution of

viral suspension. More importantly, 2 days are enough for the

incubation of 96-well plate to recognize a fluorescent phenotype

after SVA infection, whereas the wild-type SVA-based VNT need

at least 4 days. Therefore, use of SVA-eGFP contributes to VNT for

clinical sera (19, 25).

Another SVA-eGFP-related advantage is favorable to determine

whether a replication-competent virus is successfully rescued

from its cDNA clone. If there is no green fluorescence with

serial blind passages, commonly three passages after plasmid

transfection, it can be concluded that the viable SVA-eGFP fails

to be rescued. This is very important especially for a large

number of genetically modified SVA-eGFP cDNA clones that need

to be analyzed for uncovering their own recovery abilities. For

example, Meng et al. (40) constructed a series of 36 different

cDNA clones, independently transfected into cell monolayers in

an attempt to rescue genetically modified SVA-eGFPs. The green

fluorescence was demonstrated to facilitate the fast screening
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for some SVA-eGFP cDNA clones without ability of virus

recovery (40).

Luciferase-tagged SVA

Luciferases are proteins with enzymatic activity, which can

catalyze the oxidation of substrate (commonly luciferin), causing

the emission of photons. Luciferase is another fluorescent marker,

widely used for the construction of recombinant viruses using RG

technique. Different from fluorescent proteins, on the one hand,

luciferases do not need the excitation light for lighting up cells

but require appropriate luciferins; on the other hand, luciferase-

induced fluorescence can be quantified using a microplate reader,

whereas fluorescent protein-induced fluorescence cannot be done.

There are various types of luciferases with their own

characteristics. NLuc is a novel luciferase, shorter, smaller

and “brighter” than the other two common ones, firefly

and Renilla reniformis luciferases. NLuc is a promising

fluorescent marker to construct chimeric viruses for imaging

assay in vitro or in vivo (41–44). The NLuc-tagged SVA

(SVA-NLuc) is able of efficiently expressing NLuc, which

as a bright indicator has been demonstrated to facilitate

greatly the SVA-mediated oncolytic analysis in vitro (37),

whereas there has unfortunately been no further study on an

in vivo test.

The luminescence intensity is roughly proportional to the

titer of luciferase-tagged SVA in cells. Such a quantifiable

feature contributes to the high-throughput screening of anti-

SVA drugs (36, 45, 46). For example, Wang et al. (23) used

the SVA-NLuc to analyze a drug library composed of 136

natural products, and rapidly screened out five efficient anti-

SVA products, namely, monensin sodium salt, progesterone,

hypophyllanthin, 4-hydroxyderricin, and 2-methoxyestrone (45).

In addition, its quantitative trait significantly shortens the

period of conventional method for determining an SVA growth

curve (37).

Drawback of marker-tagged SVAs:
genetic instability with passaging

As mentioned above, marker-tagged SVAs greatly facilitate

studies of SVA, whereas unfortunately, foreign sequences have

been demonstrated to be genetically unstable in recombinant

SVAs. We found that SVA-eGFP-induced fluorescence was

gradually weakening in intensity with viral passaging, and RT-PCR

demonstrated that the eGFP sequence was consecutively deleted

from the chimeric SVA genome (19). The eGFP ORF is 720 bp in

length, longer than the NLuc ORF (516 bp). In theory, the longer

a marker is, the more unstable its sequence is. Indeed, we found

that NLuc was genetically more stable than eGFP with passaging

(37), whereas, as a foreign fragment, the NLuc sequence was still

deleted gradually from the SVA-NLuc genome with passaging.

Such an unstable feature limits the application of marker-

tagged SVAs, resulting in only low-passage progenies that can

be used.

Development of novel SVA vaccine
using RG technique

Because a foreign sequence is unstable in a chimeric SVA

genome, SVA has no potential in developing a virus-vectored

vaccine. In addition, different SVA strains are prone to genetic

recombination with each other (47). Therefore, live vaccines cannot

be used in preventing SVA infection. Conventional inactivated

vaccines have been widely reported to be safe and efficient against

SVA infection (39, 48–52). Interestingly, Fan et al. (53) used the RG

tool to construct an engineering His-tagged SVA, further processed

into a novel inactivated vaccine. In this study, one 6×His tag was

fused to the C-terminal of VP1, and could be displayed on the

surface of SVA virion. The 6×His tag was so short that it was

relatively stable in the chimeric SVA with passaging, and more

importantly, allowed one-step purification of SVA antigens through

Ni2+ affinity columns (53). Such an engineering strain provided a

novel method of concentrating SVA antigens for the production of

inactivated vaccines.

Future challenges for developing RG
system of SVA

Numerous groups have established their own RG systems

for SVA recovery (19–25), opening up new avenues for in-depth

dissection of SVA molecular mechanisms, whereas some technique

challenges still remain to be addressed. The first one is how a full-

length cDNA clone is rapidly, efficiently constructed. We found

that many genetically unstable fragments were possibly prone to

being deleted from a longer sequence via the conventional method,

restriction enzyme-based cloning, for constructing an SVA cDNA

clone. Chemical synthesis, albeit costly, is more efficient than the

conventional method in constructing a full-length cDNA clone.

The second challenge is rescue of a strain that can induce obvious

CPEs on a cell monolayer. We previously rescued different SVA

strains from their own cDNA clones. Unfortunately, SVA-induced

CPE was almost invisible during initial passaging in vitro (26),

therefore limiting the application of SVA as amodel virus. The third

challenge is how a risk-free SVA strain is rescued as a model virus

for use in vivo. In other words, we should use the RG technique to

facilitate our studies on SVA, rather than to create some putative

risks in bio-safety.
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