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Canine osteosarcomas (COS) are the most common bone tumors in dogs, 
characterized by high metastatic rates, poor prognosis, and poor responsiveness 
to routine therapies, which highlights the need for new treatment targets. In this 
context, the metabolism of neoplastic cells represents an increasingly studied 
element, as cancer cells depend on particular metabolic pathways that are also 
elements of vulnerability. Among these, tumor cells (TCs) show higher iron 
requirements to sustain proliferation (so-called iron addiction), which are achieved 
by increasing iron uptake and/or by activating ferritinophagy, a process mediated 
by the Nuclear receptor Co-Activator 4 (NCOA4) leading to iron mobilization 
from ferritin (Ft) deposits. Previous studies have shown that COS cells overexpress 
Transferrin Receptor 1 (TfR1) to increase iron uptake. In this study we evaluated 
the immunohistochemical expression of ferritinophagy-related proteins, namely 
Ferritin Heavy chain (FTH1) and NCOA4, and proliferating cell nuclear antigen 
(PCNA) in canine normal bone and canine osteoblastic osteosarcoma (COOS) 
samples. Normal samples revealed negative/weak immunoreactivity for FTH1, 
NCOA4 and PCNA in <10% of osteocytes. In COOS samples the majority of 
neoplastic cells showed immunoreactivity to FTH1, NCOA4 and PCNA. Our data 
suggest that the activation of ferritinophagy by COOS cells responds to the need 
for feed their “iron addiction.” These data, though preliminary, further suggest that 
targeting iron metabolism represents a new potential strategy worthy of further 
study to be transferred into clinical practice.
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1 Introduction

The study of metabolic alterations of neoplastic cells is currently a hot topic, as cancer cells 
can become addicted to specific metabolic pathways also representing metabolic vulnerabilities 
against which novel drugs that target them can be developed (1). Among these, the so-called 
“iron addiction” is one of the most relevant metabolic alterations of neoplastic cells (2). Cancer 
cells show higher iron requirements than normal cells to sustain proliferation (3) and tissue 
invasion (4) and tend to satisfy this need by over-expressing a series of proteins involved both 
in the iron uptake from the bloodstream (5, 6) and in its mobilization from intracellular 
reserves by so-called “ferritinophagy,” a selective form of autophagy that specifically targets 
intracellular (Ft) for lysosomal degradation (7, 8). Key molecules in iron metabolism are: (1) 
TfR1, which uptakes and internalizes iron by binding transferrin (Tf)-Fe3+ complex, which is 
followed by Fe3+ reduction to Fe2+ by ferrireductases in the cytosol (9); (2) the Ft, which 
represents the storage site of iron in the cytosol, and which also contributes to the physiological 
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release of iron from reserves to form the cytoplasmic labile iron pool 
(cLIP) (10–12); and (3) the NCOA4, a selective cargo protein which 
binds to a conserved C-terminal domain of FTH1 and to autophagy-
related proteins to deliver FT to autophagosomes and trigger 
ferritinophagy (13, 14). Previous studies in human pathology have 
reported impairment of iron metabolism in different cancers (15–21). 
This appears to be particularly true in human osteosarcomas (22, 23), 
the most common primary malignant bone tumor affecting children 
and adolescents (24, 25). Unfortunately, in veterinary medicine iron 
metabolism and its alterations connected to cancer are still poorly 
studied (26–31). The early results presented in a previous study (26) 
highlighted the relevance of TfR-1 expression in canine osteosarcomas 
(COS), suggesting therapies involving both TfR-1 and other molecules 
related to iron metabolisms in dogs with osteosarcoma should 
be  developed, also considering the potential clinical impact for 
humans. COS represent a well-known preclinical model for human 
osteosarcoma, particularly for those developing in young people as 
they share molecular and morphological aspects, as well as prognosis 
and treatment options (32). COS represent the most frequent primary 
malignant bone neoplasms of mesenchymal origin in dogs (33, 34), 
exhibiting local aggressiveness, high metastatic behavior and high 
mortality rates (35–38). COS originate mainly from appendicular 
skeleton, with the most frequent localization occurring at the 
metaphyseal level, while only 20–25% of tumors originate from the 
axial bone (34). Histological classification of bone tumors of domestic 
animals describes the presence of six different histotypes, namely: 
poorly differentiated, osteoblastic (productive and non-productive), 
chondroblastic, fibroblastic, telangiectatic, giant cell type, with the 
osteoblastic type being the most frequent (33, 39). To date, therapy is 
based on surgery (conservative or not) coupled to chemotherapy and 
radiotherapy, however life expectancy remains low (40–42) and 
resistance to typical antineoplastic drugs is building up (43–45). 
Therefore, the need for new targets, new antineoplastic drugs and/or 
adjuvant antineoplastic compounds for COS is rising. In this context, 
we recently validated and studied the expression of the NCOA4 and 
FTH1  in some canine normal and neoplastic tissues (46). In this 
report, we  provide additional evidence for the relevance of iron 
metabolism alterations in canine osteoblastic osterosacomas (COOS), 
highlighting the role of ferritinophagy-related molecules NCOA4 and 
FTH1, thus suggesting that the mechanisms of ferritinophagy could 
represent a further potential pathway to be  targeted to selectively 
destroy this type of cancer cells.

2 Materials and methods

2.1 Tissue samples

Three normal bone samples (N1-N3) and 20 COOS samples 
(COOS1-COOS20) were retrieved from the archives of the 

Department of Veterinary Medicine  – University of Perugia. 
Ethics committee’s approval and animal testing request were 
waived since all animal tissue samples examined in this study were 
retrieved from archives. Samples had been previously decalcified 
and processed by routing histological techniques, paraffin-
embedded and stained with hematoxylin and eosin (H&E). All 
samples had been observed by light microscopy for morphological 
classification of histological subtypes according to the World 
Health Organization’s histologic classification of tumors of 
domestic (33).

2.2 Immunohistochemistry

For each paraffin-embedded sample 3 μm sections were 
processed for immunohistochemistry (IHC) as previously 
described (47) to evaluate expression of proteins involved in 
ferritinophagy (FTH1, NCOA4), and PCNA to assess 
proliferation (46). Antibody specification and dilutions are reported 
in Table 1. Sections were counterstained with hematoxylin, and 
immunolabeling was revealed with diaminobenzidine-
tetrahydrochloride (DAB).

2.3 Scoring of Immunoreactivity

To evaluate the expression of FTH1, NCOA4 and PCNA a 
semiquantitative score was applied by analyzing the number of 
positively labelled cells in 1,000 cells in 10 fields at 400x magnification 
(40x objective 10x ocular) for each specimen by two independent 
observers (Leonardo Leornardi and Gionata De Vico) under blinded 
conditions (48). Results were expressed as percentage.

3 Results

3.1 Histopathology results

Breeds, sex, age, tumor localization and histologic classification 
are summarized in Supplementary Table S1. Normal tissue samples 
(N1-N3) were characterized by abundant bone matrix in which 
elliptical osteocytes, showing mildly basophilic cytoplasm and oval 
nucleus, were immersed (Figure  1A). All COS samples (COOS1-
COOS20) were characterized by polyhedral cells with eccentric nuclei 
and basophilic cytoplasm. Nuclei appeared pleomorphic, presenting 
hyperchromatic chromatin, and bizarre and atypical mitosis were 
observed. Osseus matrix was present in moderate to high amounts, 
often in the pattern of dense sheets (Figure  1B). Considered the 
histopathological features observed in the COS samples, they were 
classified as productive COOS.

TABLE 1 Antibodies used in immunohistochemical analysis.

Antibody Manufacturer/clone Host species Dilution

FTH1 Antibodies/Polyclonal Rabbit 1:100 Leandri et al. (46)

NCOA4 Abcam ab62495/439CT10.1.2 Mouse 1:100 Leandri et al. (46)

PCNA Abcam ab18197/PC10 Mouse 1:400 Ersoy et Ozem (68)
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3.2 Immunohistochemistry results

Normal bone samples presented less than 10% of cells positive for 
all the three tested antibodies (Figures 2A,C,E). On the contrary, in 
COOS samples 85–95% of neoplastic cells showed a strong 
cytoplasmic immunostaining for FTH1 (Figure  2B) and NCOA4. 
(Figure  2D). Moreover, 70–80% of neoplastic cells were strongly 
labelled at the nuclear level by anti-PCNA (Figure 2F).

4 Discussion

Canine osteosarcomas (COS) are aggressive malignancies of the 
bone, for which the prognosis of patients still remains relatively poor 
and survival rates have not significantly improved during the recent 
decades. COS share biological and clinical similarities with the 
human counterpart, where a growing research tendency is focusing 
on the role of iron and its metabolism in both tumor progression and 
tumor suppression (2, 3, 20). Given the similarities between the two 
species, we  investigated the expression in COOS of key proteins 
involved in iron metabolism to possibly identify new therapeutical 
targets for both dogs and possibly humans. Our results show an 
increased expression of all analyzed proteins in COOS samples 
compared to normal samples. Previous data on the overexpression of 
TfR1 in COS (26), supported the idea that iron uptake plays a decisive 
role in supporting the growth of COOS neoplastic cells and could 
represent a new therapeutic target. Our study emphasizes for the first 
time in COOS the role of NCOA4 and FTH1, key molecules involved 
in ferritinophagy regulation (49). Interestingly, in our study cancer 
samples showed higher immunoreactivity in neoplastic cells 
compared to normal ones, in accordance to literature (50, 51). In the 
classical ferritinophagy pathway NCOA4 interacts with ferritin-heavy 
chain (FTH1), transferring autophagosomes to lysosomes to degrade 
FT and release free iron thus increasing cLIP. Physiologically, NCOA4 
combined with iron is continuously degraded by ubiquitin-
proteasome system or directly by lysosomes (52), explaining why in 
our study NCOA4 was usually poorly highlighted in normal cells by 
immunohistochemistry. On the contrary, an intriguing result of our 
investigation is the strong immunohistochemical detection of 

NCOA4 coupled with the one of FTH1 in COOS cells, which testify 
for a deep dysregulation of iron metabolism and in particular of the 
ferritinophagy pathway. In our case, in fact, it could be hypothesized 
that the COOS cells are so highly dependent on the availability of 
iron for their growth and survival (iron addiction), to simultaneously 
activate different pathways that allow them to maintain high levels of 
iron in the cytosol, namely iron upload, storage and mobilization 
from storage. High iron loads and ferritinophagy have also been 
closely correlated with ferroptosis, a form of iron dependent 
non-apoptotic programmed cell death linked to oxidation of 
membrane lipid (53). It is to be  believed that COOS cells have 
developed mechanisms to evade these forms of cell death as already 
described in other tumor types (54, 55, 69). As a matter of fact, in our 
cases there was no evidence of characteristic morphological feature 
of ferroptosis in COS cells, namely cell membrane rupture, 
cytoplasmic swelling, and moderate chromatin condensation (56). 
Escaping ferroptotic mechanisms provides further vulnerable 
possible targets for ferroptosis-based therapy (70). Previous studies 
in human oncology have described the possibility of using synthetical 
or natural compounds to target iron metabolism (57–60) and 
enhance ferroptosis. Artemisin, the main bioactive component of 
Artemisia annua L, has been proven to activate apoptosis, ferroptosis 
and induce cancer cell death by producing ROS in human 
osteosarcoma (61, 62) and also in COS cell lines (63). More recently, 
two studies by Isani et al. (64) and Colurciello et al. (65) showed that 
COS cells treated with artemisin showed higher mortality rates and 
lower iron concentrations compared to untreated ones, probably due 
to ferroptosis. Furthermore, targeting ferritinophagy pathway can 
also represent mechanisms for some common anticancer drugs. As 
examples, low-dose cisplatin combined with ursolic acid inhibits 
cancer cell growth by activating autophagic degradation of Ft and 
overloading intracellular iron ions (66). The combination of 
artesunate and the hepatocellular carcinoma first-line drug sorafenib 
induces ferritinophagy in hepatocellular carcinoma cells and improve 
the efficacy of single anticancer drugs (67). The results of our study 
provide relevant, thought preliminary data on the alteration of the 
iron-metabolic pathway in COOS. Notably, they suggest an increased 
uptake of iron (26), release of iron from ferritin-storage coupled to a 
continuous replacement of the used Ft storage. COS appear as 

FIGURE 1

(A) Canine normal bone tissue showing osteocytes (arrow heads) and abundant bone matrix. H&E 20x. (B) Canine productive osteoblastic 
osteosarcoma showing many polyhedral cells (arrow heads) and osseus matrix. H&E 20x.
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favorable candidates for the use of antineoplastic drugs targeting iron 
metabolism, ferroptosis and ferritinophagy. Ideally, therapies should 
on one hand enhance cLIP by increasing NCOA4-induced 
ferritinophagy and on the other hand use TfR1 as a tool to selectively 
deliver compounds to tumoral cells and reduce undesired effects on 
healthy cells. Further studies will help deepen the knowledge about 
alterations in iron metabolism in COOS. Of particular interest would 
be correlating the overexpression of these molecules with patient 
follow-up data to assess their potential prognostic implications, and 

using 2D cell models hopefully opening the way to possible in vivo 
studies to be transferred into clinical practice.

Data availability statement
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the article/Supplementary material, further inquiries can be directed 
to the corresponding author.

FIGURE 2

(A) Canine normal bone tissue. FTH1. Osteocytes showing no immunolabeling. 40x; (B) canine productive osteoblastic osteosarcoma. FTH1. Tumoral 
cells revealed cytoplasmic immunostaining (arrow heads). 40x; (C) canine normal bone tissue. NCOA4. Osteocytes showing no/weak immunolabeling. 
40x; (D) canine productive osteoblastic osteosarcoma. NCOA4. Tumoral cells revealed cytoplasmic/perinuclear immunostaining (arrow heads). 40x; 
(E) canine normal bone tissue. PCNA. Few osteocytes showing weak nuclear immunolabeling. 40x. (F) canine productive osteoblastic osteosarcoma. 
PCNA. Tumoral cells showing strong nuclear immunolabeling (arrow heads). 40x.
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