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Unique temperature change 
patterns in calves eyes and 
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object detection
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This study investigates the potential of non-invasive, continuous temperature 
measurement techniques for assessing cattle welfare. We employed advanced 
object detection algorithms and infrared thermography to accurately extract and 
continuously measure temperatures of the eyes and muzzles of 11 calves over 
several months (total, 33 samples). A mobile thermal imaging camera was paired 
with the Mask R-CNN algorithm (object detection) trained on annotated datasets 
to detect eye and muzzle regions accurately. Temperature data were processed 
by outlier rejection, standardization, and low-pass filtering to derive temperature 
change patterns. Cosine similarity metrics and permutation tests were employed 
to evaluate the uniqueness of these patterns among the individuals. The average 
cosine similarity between eye and muzzle temperature changes in the same 
individual across 33 samples was 0.72, with permutation tests yielding p-values 
<0.01 for most samples, indicating pattern uniqueness. This study highlights the 
potential of high-frequency, non-invasive temperature measurements for detecting 
subtle physiological changes in animals without causing distress.
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1 Introduction

Temperature is measured routinely in clinical settings and is a crucial diagnostic tool for 
assessing an animal’s health status and detecting potential illnesses or physiological changes. 
The most common and traditional method is rectal temperature measurement. However, 
sometimes this method can be stressful, which has prompted investigations into alternative, 
non-invasive techniques. Recent studies have explored the correlation between eye 
temperature, measured using infrared cameras, and rectal temperature in various species, 
including cats (1), sheep (2), and cattle (3, 4). These studies have demonstrated medium to 
strong correlations, suggesting that eye or muzzle temperature measurements could serve as 
viable substitutes for core body temperature measurements. Despite the advancements in 
measurement techniques, the current infrared camera-based temperature measurement 
techniques have limitations. The region of interest (ROI) in the images is typically defined 
using rectangular or circular shapes (1–3, 5, 6), which may not allow for precise extraction of 
the desired area. Furthermore, manual temperature measurements result in discontinuous 
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data collection. Indeed, previous studies have consistently employed 
intermittent measurement protocols, with temporal intervals between 
data points (2, 4, 7, 8).

Recent advancements in artificial intelligence have led to its 
widespread application in scientific fields. A recent study combining 
object detection with infrared camera technology for respiratory 
pattern analysis (9) demonstrated the following two key advantages: 
(1) accurate ROI identification and (2) continuous temperature 
measurements at a rate of 8.7 frames/s. Regarding accurate ROI 
identification, this will help overcome the limitation of infrared 
camera measurements mentioned above. Moreover, continuous 
temperature measurement allows for consistent tracking of eye and 
muzzle temperatures, potentially opening up new research 
possibilities. At this point, establishing the reliability and validity of 
continuous measurement methods is crucial. Therefore, this study 
aims to substantiate these claims through two distinct processes. First, 
temperatures were accurately and continuously measured from 
different areas (eyes and muzzle) in cattle to determine if similar 
patterns of temperature change were observed in the same individual 
in continuous cases. Second, temperature change patterns from 
randomized patterns were compared to identify whether the 
characteristics of short-term, continuously measured temperature 
change patterns are unique.

2 Materials and methods

2.1 Animals and devices

For this study, data from 11 calves (aged 12–14 weeks) were 
collected and analyzed at the Kobe University farm (Food Resources 
Education and Research Center, Graduate School of Agricultural 
Science Kobe University). Each calf underwent a series of thermal 
imaging sessions at four-week intervals, including three separate 
imaging events, from February to September (ambient temperature 
range: 9°C–34.1°C). This systematic approach yielded a comprehensive 
dataset comprising 33 distinct imaging samples. Imaging was 
conducted between 11:00 and 13:00 during the post-feeding 
rumination period. To minimize disturbance, the researchers 
approached the calves slowly and conducted imaging from a distance 
of 1 m. Data collection included both thermal imaging using an 
infrared camera and conventional video recording (1–2 min) using a 
standard camera attached to an infrared camera device. The calves 
were housed at the Kobe University farm in a semi-open facility, 
characterized by one side being completely open to the 
external environment.

We used a mobile thermal imaging camera (FLIR One Pro for 
iOS [accuracy: ±3.0°C, sensitivity: 0.07°C, field of view: 55° × 43°, 
resolution: 80 × 60, temperature range: −20°C–400°C], FLIR 
Systems Inc., Santa Barbara, CA, USA).1 The emissivity was set to 
0.95 (the correct emissivity for animal tissue is 0.98; however, it 
was set to 0.95 due to the limitation of the device’s 
emissivity setting).

1 www.flir.com

This study was approved by the Institutional Animal Care and Use 
Committee of the Osaka Metropolitan University (approval number: 
24–024).

2.2 Image extraction and temperature 
derivation

Image extraction and temperature derivation were performed 
according to the protocols established in previous research (9).

2.2.1 Algorithm training for image extraction
Algorithm training for image extraction denotes a series of 

methodological steps (annotation, training, and inference) designed 
to enable the identification and isolation of specific features (namely, 
eyes and muzzle) in novel red, green, and blue (RGB) images.

Annotation: the process of creating a dataset (annotated images) 
for training. Annotated images are those that have labels added to 
highlight specific features of interest. These annotations may include 
bounding boxes, lines, arrows, or text indicate and describe specific 
regions within the image. In this study, we used lines to mark the 
relevant features (eyes or muzzles). We annotated eye and muzzle 
regions in 1000 images (700 for training and 300 for validation) using 
the VGG Image Annotator (VIA) (10). With the annotated images as 
dataset, the training models can later perform tasks like object 
detection, segmentation, and classification.

Training: it involves algorithms to locate objects in images 
through annotated datasets and iterative learning. As for training 
algorithm, we used the Mask R-CNN architecture (11) in conjunction 
with transfer learning, utilizing a pre-trained model for detection 
training. Transfer learning enhances learning outcomes by leveraging 
knowledge acquired from a previously mastered, related task. This 
approach is particularly beneficial when the available dataset is 
insufficient for comprehensive training, allowing the use of a model 
trained on a similar, existing dataset. Our dataset, comprising 1,000 
images, was deemed inadequate for full-scale training. Consequently, 
we used the COCO (Common Objects in Context) dataset (12), which 
is a large-scale object detection dataset developed by Microsoft. The 
COCO dataset, which includes various animal categories, shared 
similarities with our target domain. We  leveraged a pre-trained 
backbone weight based on the COCO dataset to expedite the training 
process. For the backbone architecture, we implemented ResNet 101 
(13). By combining ResNet 101 with the COCO dataset, we fine-tuned 
a new classifier specifically for this eye and muzzle detection task. This 
process involved adjusting the model’s weights.

Inference: the process where a trained model localizes objects in 
new images with weights. Weights in neural networks are numerical 
values that determine how strongly different features influence the 
model’s decisions. During training, these weights are iteratively 
updated to improve the model’s ability to recognize specific patterns, 
in this case, eyes and muzzles. Using these optimized weights, the 
model can then effectively locate regions of interest in new, 
unseen images.

2.2.2 Temperature change pattern derivation
To determine temperature variation patterns, we obtained (1) 

temperature sequence data from the infrared camera and (2) 
conventional video images from the standard camera for 33 samples. 
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The conventional video images were processed using the previously 
obtained weights to extract eye and muzzle regions. The identified eye 
and muzzle locations were then used to extract the corresponding 
temperature data from the temperature sequence data. Finally, mean 
temperatures were calculated to determine eye and muzzle 
temperatures. This process was repeated for all frames to derive time-
dependent temperature changes in the eyes and muzzles.

To ensure the reliability and validity of our temperature variation 
analysis, we developed a comprehensive data processing protocol. It 
involved a multi-step approach to ensure data integrity and 
comparability. Initially, we implemented an outlier rejection protocol 
utilizing Tukey’s hinge method (g = 1.5) (14), which is a widely 
accepted technique in statistical analysis. This method defines an 
acceptable range based on the following formula:

 ( ) ( )1 3 1 3 3 1,Q g Q Q Q g Q Q − − + −  

where Q1 and Q3 represent the first and third quartiles of 
temperature distribution, respectively, and g denotes Tukey’s constant. 
Subsequently, to address the variability in absolute temperature 
measurements stemming from inter-individual differences and 
environmental factors, we applied a standardization procedure to the 
data. This step facilitates more meaningful comparisons across subjects 
and conditions. Finally, the graph incorporates various sources of 
noise, including camera frame artefacts, external environmental 
factors such as wind, and physiological interferences stemming from 
cardiac and respiratory activities. To mitigate these diverse noise 
elements, a low-pass filtering technique was employed, with a cut-off 
frequency set at 0.08 Hz. This methodological sequence ensures robust 
data preprocessing, accounting for outliers, individual variability, and 
measurement-induced fluctuations, thereby providing a solid 
foundation for subsequent analysis of temperature change patterns.

2.3 Statistical analysis

2.3.1 Cosine similarity
To analyze and compare the temperature change patterns of two 

distinct graphs, we employed cosine similarity as our primary metric. 
This approach allows the comparison of graph structures. The 
temperature change patterns of the eye and muzzle, extracted from the 
same individual, were represented as vectors. Subsequently, the cosine 
similarity between these two vectors was calculated using the 
following formula:

 

V1·V2 
V1 V2

cosine similarity =
  

The resulting cosine similarity value, ranging from −1 to 1, was 
interpreted as follows: values closer to 1 indicate high similarity in 
variability patterns, values closer to 0 suggest orthogonality or 
dissimilarity, and negative values, if present, indicate inverse relationships.

2.3.2 Permutation test
To assess the statistical significance of the observed similarities, 

we conducted a permutation test (15) with 10,000 iterations. This 

procedure included the following steps: (1) calculation of the observed 
cosine similarity between the two graphs (the temperature change 
patterns of the eye and muzzle, extracted from the same individual), 
(2) random permutation of the elements of one of the vectors (the 
temperature change patterns of the muzzle) multiple times (10,000 
iterations), (3) calculation of cosine similarity with the unpermuted 
vector (the temperature change patterns of the eye) for each 
permutation. The number of permuted similarities ≥ the observed 
similarity was recorded. This value was then divided by the total 
number of permutations (10,000) to derive the p-value. This analysis 
provided a p-value to quantify the likelihood of observing such 
similarity by chance. All computations and analyses were performed 
using Python 3.8 with the NumPy and SciPy libraries. The 
visualizations were generated using Matplotlib.

3 Results

By training utilizing annotated images and the Mask R-CNN 
algorithm, we obtained weights that enabled the detection of eyes and 
muzzles in the images captured for this study (Figure 1).

Subsequently, by combining temperature data from infrared 
cameras with the location data of eyes and muzzles extracted from 
standard images, we were able to derive temperature changes over 
time. After applying outlier rejection, standardization, and low-pass 
filtering, we obtained temperature change patterns for the eyes and 
muzzles (Figure 2).

The average cosine similarity obtained by comparing the similarity 
of eye and muzzle temperature changes in the same individual across 
33 samples (Figure 3) was 0.72 (Table 1).

A permutation test, which involved randomizing one sample 
(muzzle temperature change) in the same individual and comparing 
its similarity with non-randomized samples (eye temperature change), 
yielded a p-value <0.01 (29 of 33 samples). This was interpreted to 
mean that randomized graphs could not exhibit high cosine similarity, 
and the original graph patterns possessed uniqueness. However, 4 of 
33 samples showed cosine similarities close to 0 and p-values >0.5 in 
the permutation test. For these 4 samples, difficulties in detecting eyes 
in the captured images were observed, resulting in the complete failure 
to detect the eyes or erroneous identification of other parts (skin or 
body parts). Additionally, 3 samples failed to exceed a cosine similarity 
of 0.5. In these cases, the calves’ heads were turned sideways, and the 
muzzle portions in the images were small with prominently captured 
nostrils, suggesting that the muzzle temperatures were relatively 
strongly influenced by respiration.

4 Discussion

In this study, we employed object detection, an AI technology, 
to enhance the accuracy of ROI detection. We  also utilized 
temperature data from all frames of the infrared camera to obtain 
high-frequency temperature change variability. The reliability of this 
method was verified by comparing the variability between two areas 
(eye and muzzle). This results confirmed that short-term 
temperature changes (1–2 min) exhibit unique characteristics. 
Furthermore, distinctive temperature variations were identified by 
measuring eye and muzzle temperatures. However, muzzle 
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measurements might have been influenced by the sideways 
movement of the calf ’s head, resulting in a smaller muzzle area in 
the image, or strong respiration. Notably, this study was conducted 
in a field setting rather than a controlled environment, thus 
validating its potential for practical application in real-
world scenarios.

4.1 Utilization of temperature 
measurements

Research utilizing Infrared Thermography (IRT) to detect 
physiological changes in animals is increasingly supported by studies 
across diverse species and contexts. For instance, IRT has been 

FIGURE 1

Results of using object detection to identify calves eye and muzzle. (A) Image of a calf captured using a standard camera. (B) Image of the eye region 
extracted by object detection. (C) Image of the muzzle region. The green-bound boxes represent object detection, while the green hatched areas 
denote pixel-wise object detection, also known as segmentation.

FIGURE 2

Analyzing and processing temperature data over time. (A) Temperature graph over time obtained by combining infrared temperature data and object 
extraction (B) after outlier rejection, (C) after standardization, (D) after low-pass filtering. The green line represents the filtered graph. (E) A pattern of 
temperature change over time.
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validated as a tool to identify heat stress in farm animals by detecting 
vasodilation-mediated temperature changes in thermal windows like 
the ocular region and muzzle (16). Additionally, IRT has been 
integrated with heart rate variability (HRV) metrics to 
comprehensively assess autonomic nervous system (ANS) activity 
during stress responses (17). In clinical applications, IRT’s 
non-invasive nature has proven valuable for monitoring ischemic 
events and tracking inflammatory responses during wound healing 
(18). Recent advances also highlight its utility in studying temporal 
body temperature dynamics. For example, infrared technology has 
been used to quantify circadian rhythmicity (24-h cycles) (19) and 
short-term fluctuations (~10-min intervals) in core body temperature 
(20). Notably, avian studies demonstrate rapid stress-induced 
thermal responses, such as transient eye temperature drops followed 
by rebounds within 30 s, underscoring the need for sub-second 
measurement resolution to capture acute physiological shifts (21, 
22). Accordingly, in this study, we aimed to measure temperature at 
a frequency of less than 1 s using temperature data from all 
consecutive frames of the infrared camera. We were able to obtain 
reliability through measurement and comparison at two locations: 
the eyes and muzzle. The implementing high-frequency temperature 
measurements at intervals of ≤1 s, as employed in this study, 
represents a significant methodological advancement in animal 
welfare monitoring. This approach is comparable to the difference 
between simple heart rate measurement and continuous heart rate 

monitoring that enables HRV analysis, revealing information that 
would otherwise be undetectable. Continuous data collection allows 
for various mathematical calculations, and consequently, its 
improved sensitivity might detect subtle temperature fluctuations, 
potentially revealing minor stressors or physiological changes 
imperceptible with less frequent sampling. In fact, a human study 
(23) has successfully detected stress through continuous 
measurement of nasal tip temperature and various mathematical 
analyses of this data, such as temperature difference between from 
the start and the end, slope of thermal variable signal, and standard 
deviation of successive differences of thermal variable signal. The 
current study has verified the validity and reliability of temperature 
changes in calves’ eyes and muzzles, which we believe will serve as a 
foundation for diverse analyses in future research.

4.2 Object detection-based measurements

Recent advancements in AI have led to its integration with 
existing technologies, rather than relying solely on AI, enabling us to 
overcome the limitations of traditional devices. A prime example of 
this synergy is the integration of AI with infrared cameras in various 
studies. For instance, in bovine research, AI has been successfully 
integrated with infrared camera imagery to detect digital dermatitis 
(24), mastitis (25), respiratory patterns (26), and body temperature 
(27). These applications demonstrate how AI can augment the 
analytical power of thermal imaging. While the aforementioned 
integrations typically use AI to identify specific areas of interest within 
infrared images, our study takes a different approach. We  aim to 
address the inherent limitations of infrared imaging by using object 
detection techniques on RGB images. This novel approach allows us 
to overcome some of the constraints associated with thermal imaging 
alone. To elaborate further on our methodology, traditional infrared 
camera-based methods of measuring eye or muzzle temperatures were 

FIGURE 3

Comparison of temperature change patterns in the eye and muzzle in the same individual (A–I). Green indicates eye and red, muzzles.

TABLE 1 Cosine similarity among samples.

Cosine similarity Number of 
samples

p

0.5–1 26 p < 0.01

0.3–0.5 4 p < 0.01

<0.3 3 p > 0.5
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limited by rectangular or circular ROI settings (5) and manual 
configuration requirements. These limitations often resulted in the 
inclusion of surrounding skin areas within the ROI, potentially 
leading to inaccurate temperature readings due to temperature 
differentials between the eye and surrounding skin. Previous studies 
(3) showing only medium correlations between rectal and muzzle 
temperatures may be attributed to imprecise muzzle area extraction. 
This study, however, employed object detection techniques, specifically 
utilizing the segmentation capabilities of Mask R-CNN. This approach 
enabled precise pixel-level detection of eye and muzzle regions, 
consequently enhancing the accuracy of temperature calculations, 
which in turn provided a more robust foundation for analyzing 
thermal variation patterns in cattle.

Despite these advancements, a significant challenge in our study’s 
AI-based detection of bovine eyes and muzzles lies in distinguishing the 
eyes within the cranial region. This difficulty arises from the chromatic 
similarity between the eye and surrounding fur. However, the detection 
process employed in this study proved successful in a majority of the 
cases. Despite this success, four samples yielded near-zero similarity 
scores, likely due to detection failures, which can be  attributed to 
external factors, such as backlighting and overcast weather conditions. 
It is noteworthy that under such circumstances, even human visual 
discrimination of the eye region would be considerably challenging.

4.3 Field measurements

There are numerous constraints related to infrared camera 
temperature measurements in field settings. External environmental 
factors can influence measured temperatures, with cold or windy 
conditions often resulting in lower temperature readings (28, 29). In 
this study, measurements were taken across various seasons (February 
to September, ambient temperature range: 9°C–34.1°C), revealing a 
wide range of temperatures. Additionally, it is known that infrared 
camera temperature readings can vary due to individual factors such 
as skin thickness and hair density (30), differences in infrared emissivity 
based on color variations (31), and breed-specific characteristics (32). 
Indeed, in this study, we were able to observe temperature differences 
between individuals. The continuous temperature measurements and 
the resulting temperature variability analysis in this study are significant 
in their potential for standardization, which could help overcome the 
aforementioned limitations. Standardization allows us to focus on 
relative changes over time rather than absolute values. This approach is 
expected to minimize the differences in absolute temperatures caused 
by external environmental factors and individual variations among 
animals, thereby allowing for a clearer focus on physiological changes 
of interest. This approach adds significant value to the research, 
enabling more reliable analyses of temperature variability in animals, 
despite the inherent challenges of field-based infrared thermography.

5 Conclusion

This study demonstrates the efficacy of combining artificial 
intelligence-based object detection with infrared camera technology 
for continuous, non-invasive temperature measurement in cattle. The 
research yielded several significant findings. First, short-term 
temperature changes (1–2 min) in cattle exhibit unique characteristics, 

as evidenced by the high average cosine similarity (0.72) between eye 
and muzzle temperature patterns in the same individual. Second, the 
permutation test results (p < 0.01) confirm that these temperature 
change patterns possess distinctive features that cannot be replicated 
by random fluctuations. Finally, this study’s field setting validates its 
potential for practical application in real-world scenarios. The 
methodology developed here offers a promising approach for 
enhancing animal welfare monitoring in field conditions, potentially 
enabling early detection of stress or health issues in livestock.
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