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Mycobacterium avium subsp. paratuberculosis causes various types of granulomatous 
lesions in cattle, ranging from focal lesions associated with latency to diffuse lesions 
observed in animals with clinical disease. While the exact determining factors are 
unknown, recent evidence highlights the key role of innate immunity in the outcome 
of the infection. NOD-like receptors, which are innate immune proteins, play a 
significant role in recognizing intracellular pathogens, including mycobacteria. This 
study aimed to evaluate the expression of NOD1 and NOD2 in intestinal samples 
from cattle with different types of lesions associated with paratuberculosis: focal, 
diffuse paucibacillary, and multibacillary forms. The expression of NOD1 and NOD2 
was assessed according to the number of immunolabeled cells, and only those 
cells consistent with macrophages were considered. A significant increase in the 
number of NOD1+ and NOD2+ macrophages was observed in cattle with diffuse 
multibacillary forms compared to the other groups. No expression of NOD1 or 
NOD2 was detected in the focal and diffuse paucibacillary lesions, while a strong 
expression of NOD2 and occasional NOD1 was observed in the multibacillary 
granulomas. These findings suggest that NOD1 and NOD2 are involved in the 
pathogenesis of bovine paratuberculosis.
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1 Introduction

Paratuberculosis is a chronic inflammation of the small intestine of cattle and other 
ruminants, caused by Mycobacterium avium subsp. paratuberculosis (MAP) (1). The disease 
causes important economic losses in the livestock industry, associated with lower production 
and premature culling of infected animals (2, 3). Calves get exposed to MAP at a young age 
via the fecal–oral route (4), which can result in a range of outcomes, such as complete clearance 
of the pathogen, lifespan asymptomatic infection, or clinical disease in adulthood (5). The 
infected cattle may show different types of intestinal lesions associated with the infection, from 
focal granulomas in Peyer’s patches to diffuse granulomatous enteritis (6), which shares a 
relation with the stages of the disease (7). Many aspects of its pathogenesis are still poorly 
understood, in particular, the factors that determine the host response to infection. 
Nonetheless, there is recent evidence suggesting a central role of innate immunity in the 
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susceptibility/resistance of cattle to paratuberculosis (8, 9). Several 
lymphocyte and macrophage subpopulations have been evaluated in 
relation to MAP-associated lesions in cattle (10–16), but the markers 
of innate immunity have been less explored (17, 18).

Pattern recognition receptors (PRRs) play a critical role in the 
detection of pathogens by innate immune cells and in the onset of 
specific responses (19, 20). Among these, nucleotide-binding 
oligomerization domain (NOD)-like receptors (NLRs) have emerged 
as key components of the immunological response against intracellular 
bacteria (21). NOD1 and NOD2 are cytosolic NLRs that, respectively, 
sense meso-diaminopimelic acid (m-DAP)-containing peptides and 
muramyl dipeptide (MDP) (22, 23), which constitute motifs of the 
mycobacterial peptidoglycan (PGN) (24). These receptors are 
expressed by a wide variety of cells in the intestine (25, 26) and were 
reported to detect MAP ligands (27). NOD1 participates in the 
recognition of MAP by intestinal epithelial cells (28), but its role in the 
innate response of bovine macrophages is unclear (29). NOD2 gene 
polymorphisms have been associated with susceptibility to 
paratuberculosis infection in cattle (30–32). Furthermore, variations 
in the patterns of NOD2 expression were detected in the intestine of 
infected sheep with different pathological forms (33). Nevertheless, 
the precise role of NOD1 and NOD2  in the pathogenesis of 
paratuberculosis remains unclear.

The aim of this study was to evaluate the expression of NOD1 and 
NOD2  in the different types of intestinal lesions associated with 
bovine paratuberculosis, using immunohistochemical techniques.

2 Materials and methods

2.1 Samples

Paraffin-embedded formalin-fixed (10% neutral buffered 
formalin) tissue samples from the intestine (jejunum, which includes 
Peyer’s patches, and ileum) and mesenteric lymph nodes of 20 female 
Holstein cattle, aged 1–6 years, were selected for histopathological 
analysis. These animals were from two commercial dairy herds where 
a follow-up study on losses due to paratuberculosis was ongoing. The 
cattle were culled in an authorized slaughterhouse for productive 
reasons, in compliance with current legislation. Paratuberculosis 
infection was confirmed by both bacteriological culture of frozen 
tissue samples and nested-PCR to detect MAP DNA as previously 
described (6). Samples that tested negative for both methods were 
used as negative controls for the study.

Tissue sections, 2.5 μm in thickness, were obtained and stained 
using Harris’s hematoxylin and eosin (H&E) for general histological 
examination, and the Ziehl–Neelsen method was used to identify 
acid-fast bacilli (AFB). Histological examination revealed no lesions 
consistent with MAP infection in the five cattle that tested negative by 
both bacteriological culture and nested PCR. In contrast, 
granulomatous lesions were identified in 15 animals that tested 
positive for MAP infection.

According to the lesions, animals were histologically classified as 
focal (n = 5), diffuse paucibacillary (n = 5), and diffuse multibacillary 
(n = 5) (Supplementary Figure S1), following the guidelines provided 
by Gonzalez et  al. (6). Focal lesions consisted of well-demarcated 
granulomas, formed by 5–30 epithelioid macrophages, at the 
interfollicular zone of the Peyer’s patches or lymph nodes. Diffuse 

lesions were characterized by diffuse lymphadenitis and enteritis that 
varied in the type of inflammatory infiltrate and the amount of 
AFB. The diffuse paucibacillary type consisted of a diffuse lymphocytic 
infiltrate, with some well-defined granulomas among the 
lymphocytes. AFB was either undetected or present in minimal 
amounts. Diffuse multibacillary type consisted of a severe 
granulomatous infiltrate, composed of macrophages harboring large 
numbers of AFB.

2.2 Immunohistochemistry

A total of 20 tissue sections of the intestine and 20 sections of the 
regional lymph nodes, one from each animal included in the study, 
were selected and immunolabeled using rabbit IgG isotype anti-
NOD1 (PA5-17328, Invitrogen™, Waltham, Massachusetts, USA) and 
anti-NOD2 (BS-7084R, Bioss Inc., Woburn, Massachusetts, USA) 
polyclonal primary antibodies at 1:200 and 1:300 dilution titers, 
respectively. Heat-mediated antigen retrieval was achieved using the 
PT Link system (Dako-Agilent® technologies, Santa Clara, USA) for 
20 min at 95°C with target retrieval solution pH 9 for NOD1 and pH 
6 for NOD2. The immunohistochemical technique was performed as 
described elsewhere (10). Appropriate species- and isotype-matched 
immunoglobulins were used as negative controls.

The specificity of the NOD1 primary antibody was tested by 
Western blot analysis of cattle buffy coat cells stimulated in vitro with 
concanavalin A as previously described (17), as no proven or predicted 
reactivity in the bovine species is reported in the manufacturer’s 
instructions. Blocking was performed with Tris-phosphate buffer with 
0.05% Tween-20 (TBS-T) containing either 5% non-fat milk or 5% 
bovine serum albumin (BSA). NOD1 primary antibody diluted in 
TBS-T containing 0.5% non-fat milk or 3% BSA (according to the 
blocking buffer) and appropriate goat anti-rabbit (YH381824, 
Invitrogen, Waltham, MA, USA) horseradish peroxidase-conjugated 
secondary antibody diluted in TBS-T were used at 1:500. In the case 
of the NOD2 antibody, no additional validation was performed, as the 
datasheet predicts a cross-reactivity in cattle, based on the high degree 
of homology (81.2%) between human and bovine NOD2 proteins (34).

2.3 Evaluation of the immunolabeling

Due to the heterogeneous nature and distribution of the 
immunolabeled cells, a differential cell count was performed on the 
lamina propria (LP), gut-associated lymphoid tissue (GALT), and 
mesenteric lymph node (LN) of each section evaluated in the study. 
In each slide, 30 randomly chosen fields were selected from each of 
the two intestinal layers analyzed and the lymph node and 
photographed at 400x magnification (Nikon® Eclipse E600 
microscope with a Nikon® DS-Fi1 digital camera). The type of cell 
stained was assessed according to morphological features, and only 
those with clear macrophage morphology were considered. In 
addition, the distribution of the positively immunolabeled cells in 
relation to MAP-associated granulomatous lesions was also assessed.

Blinded evaluation of the immunostaining was assessed 
independently by two pathologists (D.Z. and M.F.), and discordant 
results were discussed in a multi-headed microscope to 
reach consensus.
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2.4 Statistical analysis

Cell counts for NOD1 and NOD2 were expressed as means, 
standard deviation, and range (minimum and maximum) following 
conventional statistical descriptive procedures. The Kolmogorov–
Smirnov test was used to evaluate the normality of the data. Since the 
values obtained did not fit a normal distribution and could not 
be  statistically transformed, non-parametric tests were used. To 
compare the number of immunolabeled cells between the different 
infection statuses (control, infected), lesion types (control, focal, 
diffuse paucibacillary, and diffuse multibacillary), and intestinal 
locations (LP, GALT, and LN), the non-parametric Mann–Whitney 
U-test and Kruskal–Wallis tests were used. In a second step, to assess 
which pair of groups had the differences present, a post-hoc analysis 
(pairwise Wilcoxon rank-sum) was performed with Bonferroni 
correction for the level of significance (35). p-values of < 0.05 were 
considered statistically significant.

All statistical analyses were performed with the R software version 
3.5.3 (R Foundation, Vienna, Austria).

3 Results

3.1 Distribution of the immunolabeled cells

The positively immunolabeled cells had markedly brown-colored 
cytoplasm and their identification was made according to 
morphological features. The immunolabeled cells for NOD1 and 
NOD2 in the stroma had moderate ameboid-shaped cytoplasm and 
were morphologically consistent with macrophages, although the 
presence of NOD1+ and NOD2+ cells with small cytoplasm and 
multilobulated nuclei, compatible with neutrophils, was also detected. 
Triangular-shaped epithelial cells, consistent with Paneth cells, showed 
positive immunoreactivity for NOD1 and NOD2  in the crypts 
of Lieberkühn.

In samples of control cattle, scattered macrophages, neutrophils, 
and individual Paneth cells showed granular cytoplasmic staining for 
NOD1 (Figure 1a) and NOD2 (Figure 2a) at the intestinal LP. In the 
associated Peyer’s patches, macrophages immunolabeled for NOD1 
(Figure 1b) and NOD2 (Figure 2b) were concentrated at the dome, 
below the M-cell epithelium, with scarce positive cells in the 
interfollicular region. Fewer isolated NOD1+ (Figure 1c) and NOD2+ 
(Figure 2c) macrophages were present in the cortex, medullary cords, 
and sinus of the regional LN. In samples with focal lesions, the 
immunolabeled cells for NOD1 (Figure 1d) and NOD2 (Figure 2d) 
followed a similar distribution to the controls outside of the 
granulomas. The epithelioid macrophages forming the focal lesions in 
Peyer’s patches and mesenteric LN showed no immunoreactivity for 
NOD1 (Figures 1e,f) or NOD2 (Figures 2e,f). In sections with diffuse 
paucibacillary forms, the epithelioid and Langhans giant cells forming 
the granulomatous lesions among the lymphocytic infiltrate neither 
stain for NOD1 (Figures 1g–i) nor for NOD2 (Figures 2g–i). However, 
in samples with diffuse multibacillary lesions, the epithelioid cells 
invading the LP, GALT, and LN showed diffuse granular staining for 
NOD2  in the cytoplasm (Figures  2j–l), with occasional punctate 
immunolabeling for NOD1 (Figure 1j). In tissue sections with diffuse 
forms, both paucibacillary and multibacillary, variable numbers of 
NOD1 + neutrophils were seen in close relationship to the 

granulomatous lesions present in the LP, Peyer’s patches, and 
associated LN (Figures 1g,i,k).

3.2 Number of immunolabeled cells

Only those immunolabeled cells for NOD1 and NOD2 that 
showed clear macrophage morphology were considered for the cell 
counting. A significant increase in the number of positively 
immunolabeled macrophages for NOD1 (p < 0.01) and NOD2 
(p < 0.05) was detected in infected cattle compared to the controls. 
When analyzing the different lesion categories (Figure  3), the 
highest number of macrophages immunolabeled for NOD1 and 
NOD2 was observed in cows with diffuse multibacillary forms, 
showing significant differences compared to the rest of the 
groups (p < 0.001). Control cattle had significantly more 
NOD2 + macrophages compared to those with focal and diffuse 
paucibacillary forms (p < 0.001), but these two groups showed no 
difference (p > 1.000).

Regarding the different intestinal locations analyzed (LP, GALT, 
LN), a heterogeneous distribution of immunolabeled cells for NOD2, 
but not for NOD1, was observed in the three compartments. Control 
cattle showed a higher number of NOD2 + macrophages in the GALT 
compared to the LN (p < 0.001) and the LP (p < 0.05). In the group 
with focal lesions, a significant increase in macrophages 
immunolabeled for NOD2 was detected in the LP compared to the 
GALT (p < 0.01). In cattle with diffuse lesions, both paucibacillary and 
multibacillary, the number of NOD2 + macrophages was higher in the 
LP and the GALT compared to the LN (p < 0.001).

3.3 Immunoblot analysis

The specificity of the NOD1 primary antibody used for 
immunohistochemistry was tested by immunoblotting. Validation was 
confirmed by the presence of a specific band of approximately 
100 kDa, consistent with the detection of NOD1 protein (107 kDa) 
(34, 36), without any cross-reacting bands (Supplementary Figure S2).

4 Discussion

Paratuberculosis leads to the development of different types of 
granulomatous lesions in the intestine, depending on the outcome of the 
infection, from focal lesions associated with early infection or latency to 
diffuse forms related to clinical disease (6, 37). These pathological forms 
show a progressive and dynamic nature (6, 39), which can be influenced 
by different factors such as the dose and time of the initial exposure, age, 
sex, genetics, and other factors affecting host immunocompetence (e.g., 
gestation, parturition, and negative energy balance) (40). Recent 
evidence has highlighted the vital role of innate immunity in the outcome 
of MAP infection (8, 9), although the majority of these investigations 
constitute candidate gene association studies or in  vitro assays of 
infection. NOD1 and NOD2 belong to the NOD-like receptor family, a 
group of innate immune proteins involved in the recognition of 
intracellular pathogens (21, 38). These receptors have previously been 
associated with bovine paratuberculosis (29–32), but their role in the 
pathogenesis of the disease remains to be  elucidated. The 
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immunohistochemical analysis of NOD1 and NOD2 expression in cattle 
with different types of lesions associated with paratuberculosis provides 
a snapshot of the immunological events ongoing in the intestine of these 
animals at the moment of euthanasia, allowing the characterization of 
the immune cell populations expressing these receptors and their 
distribution in relation to MAP-associated granulomas.

Diffuse multibacillary forms are the most common type of lesion 
reported in adult cattle with clinical signs of Johne’s disease (6). These 
pathological forms are characterized by an anti-inflammatory micro-
environment within the granulomas that allows the unrestricted 
growth of MAP in the macrophages (12, 14). The epithelioid cells 
forming this type of lesion showed diffuse granular staining 

FIGURE 1

Tissue sections of control and infected cattle showing different types of lesions associated with paratuberculosis infection, immunolabeled for NOD1. 
(a–c) Sections of the jejunum and jejunal lymph node (LN) of uninfected control cattle. (a) Few immunolabeled macrophages for NOD1 (arrow) are 
present in the stroma of the lamina propria (LP). Paneth cells show positive immunoreactivity in the crypts (arrowhead). (b) Group of 
NOD1 + macrophages situated in the dome of a Peyer’s patch. (c) Scant positive cells for NOD1 (arrow) in the cortex of a mesenteric LN. Insert: 
Labeled macrophage in a medullary cord. (d–f) Sections of the jejunum and jejunal LN of cattle with focal lesions. (d) Few macrophages and Paneth 
cells display NOD1 + staining in the LP. Insert: Detail of NOD1 + cytoplasmic staining in macrophages. (e) Absence of NOD1 expression in the 
granulomas present in Peyer’s patches. (f) Lack of NOD1 + macrophages in the focal lesions situated in the LN. (g–i) Sections of the ileum and jejunal 
LN of cattle with diffuse paucibacillary lesions. (g) Moderate numbers of immunolabeled neutrophils are in close relationship to a granuloma present in 
the LP, which does not stain for NOD1. (h) The epithelioid and Langhans giant cells infiltrating the gut-associated lymphoid tissue show no 
immunoreactivity for NOD1. (i) Absence of NOD1 + staining in the granulomatous lesions situated in the LN. Few positive PMNs are present (arrow). 
(j–l) Sections of the ileum and jejunal LN of cattle with diffuse multibacillary lesions. (j) Scarce punctate peroxidase reaction for NOD1 (arrowheads) in 
the cytoplasm of the epithelioid cells invading the LP. (k) Lack of NOD1 expression by the macrophages infiltrating the Peyer’s patches, despite a few 
positively immunolabeled PMNs. (l) The granulomatous lesions present in the LN show no immunoreactivity for NOD1.
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for NOD2  in the cytoplasm, with inconsistent punctate 
NOD1 + immunolabeling. NOD1 and NOD2 detect conserved motifs 
of the bacterial cell wall present in the cell cytosol (41), which are 
released as a consequence of PGN remodeling during bacterial 
division or digestion by host enzymes (42). Thus, the expression of 

NOD1 and NOD2 by the macrophages forming the multibacillary 
lesions indicates the presence of free cell-wall fragments in the cell 
cytosol. Since MAP prevents lysosomal degradation and, most 
probably, replicates within the phagosome (43, 44), these components 
may be released during the multiplication of the mycobacteria (45, 46) 

FIGURE 2

Tissue sections of control and infected cattle showing different types of lesions associated with paratuberculosis infection, immunolabeled for NOD2. 
(a–c) Sections of the jejunum and jejunal lymph nodes (LN) of uninfected control cattle. (a) Positively immunolabeled macrophages for NOD2 (arrow) 
are scattered at the lamina propria (LP) between the crypts, which show positive immunoreactivity for NOD2 in the Paneth cells (arrowhead). Insert: 
Detail of NOD2+ macrophages. (b) Several macrophages labeled for NOD2 concentrate in the dome of a Peyer’s patch. (c) Isolated NOD2+ 
macrophage (arrow) in the cortex of mesenteric LN. Insert: Solitary macrophage labeled for NOD2 in a medullary cord. (d–f) Sections of the jejunum 
and jejunal LN of cattle with focal lesions. (d) Positive immunoreactivity for NOD2 in the macrophages and Paneth cells located in the LP. (e) Lack of 
NOD2+ immunostaining in the granulomas situated in the Peyer’s patches. (f) The macrophages forming the focal lesions in the LN are not 
immunolabeled for NOD2. (g–i). Sections of the ileum and jejunal LN of cattle with diffuse paucibacillary lesions. (g) Lack of immunoreactivity for 
NOD2 antibody in the granulomatous lesions (arrowheads) present between the lymphocytic inflammation at the LP. (h) The epithelioid and Langhans 
giant cells infiltrating the gut-associated lymphoid tissue show no immunoperoxidase reaction for NOD2. (i) Absence of NOD2+ immunolabeling in 
the granulomatous infiltrate invading the cortex of a LN. (j–l) Sections of the ileum and jejunal LN of cattle with diffuse multibacillary lesions. (j) Positive 
immunoreactivity for NOD2 in the granulomatous infiltrate invading the LP. (k) Macrophages displaying mild NOD2+ immunolabeling in the infiltrate 
affecting the Peyer’s patches. (l) Moderate to intense expression of NOD2 in a granulomatous lesions located in the cortex of a LN. Insert: Detail of the 
punctate to granular staining in the cytoplasm of the epithelioid cells.
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and actively secreted into the cytosol for NOD-dependent detection 
(47, 48). Although the precise mechanism by which NOD1 and NOD2 
interact with their respective ligands is not completely understood 
(49), the punctate to granular staining observed for both markers 
inside the macrophages could indicate a relocation of these cytosolic 
receptors to the MAP-containing endosomes (50, 51). The scarce 
immunoreactivity observed for NOD1 suggests a marginal response 
of this receptor even to high concentrations of MAP, as previously 
reported (27). However, caution should be taken when interpreting 
the results obtained from in  vitro studies involving cultured 
macrophages, as they may not fully represent the complexity of the 
innate immune response that takes place within a well-developed 
granuloma. Beyond PGN recognition, NOD1 and NOD2 participate 
in the immunological response against pathogenic bacteria in other 
ways, including the regulation of adaptive immunity (38, 49). In fact, 
evidence suggests that NOD1 and NOD2 collaborate with TLRs in 
shaping the immunological response during mycobacterial infection 
(52, 53). Recent studies have identified a high expression of TLR4 in 
cattle with multibacillary lesions (14, 17). In this sense, excessive TLR4 
signaling may lead to a downregulation of IL-12 expression via NOD2 
to prevent excessive inflammation (14, 17, 54). Therefore, the 
NOD-mediated response in this pathological form may not 
be protective but rather contribute to the polarization of the local 
immunity toward an ineffective anti-inflammatory response (55).

Focal lesions have been observed both in the early stages of 
infection and in adult cattle with subclinical infection, leading to 
the hypothesis that they represent persistent latent forms (6). On 
the other hand, diffuse paucibacillary lesions are infrequent 
pathological forms observed in animals with clinical disease, but 
their pathogenesis remains largely elusive (37, 40). Contrary to 
multibacillary forms, focal and diffuse paucibacillary lesions are 
marked by a robust local pro-inflammatory response (12, 13), with 

a few AFB detected in the granulomas (6). The macrophages in 
these lesions do not show immunoreactivity for NOD1 or NOD2, 
indicating undetectable levels of NLR proteins. This suggests the 
possibility of a lack of antigenic stimulation in the granulomas (56), 
likely due to the limited multiplication of MAP within macrophages 
(45). As observed with other mycobacteria (57), spheroplasts or 
non-replicative forms of MAP have been identified in cows with 
paratuberculosis (58, 59), but their role in disease pathogenesis is 
still unclear. González et al. (6) suggested the presence of these 
forms in focal and diffuse paucibacillary lesions, where detecting 
AFB using Ziehl-Neelsen staining or immunohistochemical 
methods is frequently unsuccessful. Stress conditions within the 
granuloma, such as the production of nitric oxide (NO) by 
macrophages (12), could activate a dormant phenotype of MAP 
(60), similar to what has been reported for Mycobacterium 
tuberculosis (61, 62). This activation may enable the pathogen to 
persist inside macrophages for extended periods (63). Conversely, 
several studies have indicated that the activation of NOD1 and 
NOD2 contributes to the expression of inducible nitric oxide 
synthase (iNOS) and tumor necrosis factor-alpha (TNF-α) by 
macrophages during mycobacterial infection (53, 64–66). However, 
Fernández et  al. (12) demonstrated strong TNF-α and iNOS 
immunolabeling in macrophages associated with focal and diffuse 
paucibacillary lesions, despite a lack of immunoreactivity for NOD1 
and NOD2 observed in the present study. Collectively, these 
findings suggest that TNF-α and NO production in MAP-associated 
granulomas occur independently of NOD signaling.

The results of this study highlight the critical role of NOD1 and 
NOD2 receptors in the development of various pathological forms 
associated with bovine paratuberculosis. The release of PGN 
fragments during the multiplication of MAP inside infected 
macrophages, forming diffuse multibacillary lesions, likely stimulates 

FIGURE 3

Mean number of immunolabeled macrophages for NOD1 and NOD2 in the intestine according to the type of lesion (C, control; F, focal; DP, diffuse 
paucibacillary; DM, diffuse multibacillary). Superscript letters indicate statistical significance. Error bars: standard error.
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the expression of NOD2, and to a lesser extent, NOD1. However, 
excessive TLR4 signaling in this pathological form may favor a Th2 
polarization of local immunity via NOD2, creating a 
microenvironment conducive to bacterial growth, as observed in 
other studies (12, 14). On the other hand, the presence of 
non-replicative forms of MAP in focal and diffuse paucibacillary 
lesions, due to a robust local pro-inflammatory response, could 
explain the lack of NLR expression by macrophages. The differential 
expression patterns of NOD1 and NOD2 across different pathological 
forms of bovine paratuberculosis allow us to better understand the 
importance of these receptors in the host immune response and their 
potential role in disease pathogenesis. These findings open the door 
to new strategies for the treatment and management of bovine 
paratuberculosis, focused on modulating the immune response and 
its interaction with MAP.

The relatively small sample size used in the present study limits 
the ability to fully capture the diversity of factors that may influence 
lesion development. Additionally, the inability to account for the 
initial conditions of infection, such as the timing, dose, and route of 
exposure, represents a challenge in interpreting the results. The study 
focused on a group of adult female Holstein cattle, but intrinsic animal 
factors such as genetics, immune response variability, and other 
potential environmental or physiological influences were not 
comprehensively considered. These factors could play a significant 
role in shaping the lesion microenvironment and influencing lesion 
progression. Therefore, further research with a larger and more diverse 
animal population, as well as a broader consideration of these intrinsic 
factors, is essential to improve the understanding of how various 
variables interact in the development of lesions during 
chronic infections.
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SUPPLEMENTARY FIGURE S1

Tissue sections of control and infected cattle showing different types of 
lesions associated with paratuberculosis infection. (a) Control. Lack of 
granulomatous lesions consistent with MAP infection in the lamina propria 
(LP) and associated Peyer’s patches of the jejunum. Hematoxylin and eosin 
(H-E). (b) Focal lesions. Multiple small and well-demarcated granulomas 
(arrows) in the jejunal Peyer’s patches. H-E. Insert: No detectable acid-fast 
bacilli (AFB) are present in the cytoplasm of the macrophages. Ziehl-Neelsen 
(Z-N). (c) Diffuse paucibacillary lesion. Inflammatory infiltrate in the ileal LP is 
composed mainly of lymphocytes with small groups of macrophages (arrow) 
and Langhans giant cells (arrowhead) scattered among them. H-E. Insert: 
Langhans giant cell contains no detectable AFB. Z-N. (d) Diffuse 
multibacillary lesion. Widespread granulomatous infiltrate (asterisk) 
composed mainly of macrophages together with some giant cells and low 
numbers of lymphocytes in the ileal LP. H-E. Insert: Macrophages contain 
large numbers of AFB. Z-N.

SUPPLEMENTARY FIGURE S2

Immunoblots of NOD1 antibody blocked with TBS-T containing 5% non-fat 
milk (a) and 5% BSA (b). Left reference: Precision Plus Protein™ 
Kaleidoscope™ Prestained Protein Standards.
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