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Spontaneous reporting of adverse events (AEs) by veterinary professionals and 
the public is the cornerstone of post-marketing safety surveillance for veterinary 
medicinal products (VMPs). However, studies suggest that most veterinary AEs 
remain unreported. Veterinary medicine regulators, including the United Kingdom 
Veterinary Medicines Directorate and the European Medicines Agency, have included 
the exploration of big data utilization to support pharmacovigilance efforts in 
their regulatory strategies. In this study, we describe the application of veterinary 
electronic healthcare records (EHRs) from the SAVSNET veterinary first opinion 
informatics system to conduct pharmacoepidemiological analyses. Five VMP-AE 
pairs were selected for investigation in a proof-of-concept study, where drug 
exposure was identified from semi-structured treatment data and AEs from the 
unstructured free-text clinical narrative. Dictionaries were developed to identify 
AEs based on standard terminology. The precision of these dictionaries improved 
when they were expanded using word vectorization and expert opinion. A key 
strength of first-opinion EHR datasets is their ability to enable cohort studies and 
facilitate calculations of absolute incidence and relative risk. Thus, we demonstrate 
that unstructured free-text clinical narratives can be used to identify outcomes 
for veterinary pharmacoepidemiological studies and, consequently, support and 
expand pharmacovigilance efforts based on spontaneous AE reports.
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1 Introduction

Pharmacovigilance is defined as ‘the science and activities related to the detection, 
assessment, understanding, and prevention of adverse effects or any other drug-related 
problem’ (1). Central to this process is the spontaneous reporting of adverse events (AEs) by 
veterinary professionals and members of the public, either to the marketing authorization 
holder (MAH) or directly to the national competent authority (NCA). Despite the importance 
of AE reporting for the safety monitoring of veterinary medicinal products (VMPs), studies 
suggest significant underreporting (2–6). Therefore, exploring alternative data sources that 
can support and enhance pharmacovigilance efforts is warranted. Given this potential, 
regulatory agencies—including the European Medicines Agency and the United Kingdom’s 
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NCA, the Veterinary Medicines Directorate (VMD)—have included 
the evaluation of big data approaches for pharmacovigilance in their 
regulatory strategies (7, 8).

In human healthcare, numerous studies utilize electronic healthcare 
records (EHRs) for pharmacovigilance (9, 10). A primary advantage of 
using EHRs for this purpose is the capability to calculate absolute 
incidence due to the availability of denominator information in the form 
of treatment data recorded in the EHR. In veterinary medicine, 
EHR-based drug safety studies have primarily depended on retrospective 
chart reviews of EHRs from single centers (11–13) or diagnosis codes 
assigned to EHRs to identify AEs when using large datasets from 
multiple centers (14–17). While these studies clearly demonstrate the 
value of veterinary EHRs for drug safety and efficacy research, manual 
retrospective chart review is labor-intensive, making scalability of this 
approach unappealing. Additionally, studies relying on diagnosis codes 
are constrained by the completeness and accuracy of the assigned codes.

The Small Animal Veterinary Surveillance Network (SAVSNET) 
is a veterinary informatics initiative created at the University of 
Liverpool that collects veterinary EHRs from participating first 
opinion practices in the United  Kingdom. In addition to animal 
signalment data, SAVSNET collects treatment information and the 
free-text clinical narrative recorded by the veterinary professional 
during each consultation. A detailed account of the SAVSNET data 
collection process is available elsewhere (18). Previous work has been 
undertaken to map the treatment data captured by SAVSNET to active 
substances (19). Using this work, it is therefore possible to identify 
specific drug exposures for individual animals. Developing a method 
to detect AEs in the free-text clinical narrative would allow for the use 
of SAVSNET EHRs in pharmacoepidemiological analyses.

Therefore, the aim of this study was to create a method for identifying 
VMP-AE pairs in SAVSNET EHRs. We utilized five example VMP-AE 
pairs as a proof of concept. Accordingly, the specific objectives were:

 (1) To identify cohorts of animals based on their exposure to 
specific VMPs.

 (2) To develop dictionaries of terms related to the AEs of interest, 
facilitating the identification of mentions of these AEs in 
SAVSNET EHRs.

 (3) To use data from objectives one and two to calculate the 
absolute incidence of the AEs of interest and relative risk 
compared to a comparator VMP.

2 Materials and methods

2.1 Ethics

The SAVSNET project has received ethical approval from the 
University of Liverpool Research Ethics Committee (RETH001081).

2.2 Drug-event pair selection

Five VMP-AE combinations, representing four VMPs and four 
AEs, were selected in consultation with the VMD. These VMP-AE 
pairs had previously been identified for further monitoring by the 
European Medicines Agency. As this is a proof-of-concept study, the 
integration of results into signal management and pharmacovigilance 
risk mitigation strategies has not been explored. Therefore, the VMP 
names have been concealed, and the VMPs are referred to using the 
labels ‘VMP-A,’ ‘VMP-B,’ ‘VMP-C,’ and ‘VMP-D.’ However, it is 
important to note that the outcomes have been shared with the 
VMD. The VMP-AE pairs were as follows:

 (1) VMP A-Blindness
 (2) VMP B-Convulsions
 (3) VMP C-Hepatopathy
 (4) VMP D-Renal insufficiency
 (5) VMP C-Convulsions

All of these examples pertain to dogs, except for VMP 
A-Blindness, which focuses on cats. One comparator VMP was 
selected for each of the VMPs of interest. Comparators were chosen 
with advice from veterinary surgeons alongside the Summaries of 
Product Characteristics (SmPC). Comparator VMPs had the same or 
similar indications as the VMP of interest and were free from any 
known or suspected risk of the AE of interest, except for the 
comparator selected for VMP-D, where the AE of interest represents 
a known pharmaceutical class effect.

Case definitions for the AEs of interest were developed with the 
clinical expertise of domain experts (veterinary surgeons practicing 
in an academic referral center, one having additional experience in 
drug safety and the other in veterinary health informatics) and are 
shown in Table 1.

2.3 AE identification

To identify the AEs of interest in SAVSNET data, dictionaries 
containing words and phrases that may be  used by veterinary 
professionals to record these AEs within the free-text clinical narrative 
portion of the EHR (referred to as ‘clinical narratives’ herein) were 
developed. The dictionaries were applied to SAVSNET data as regular 
expressions, an approach for identifying specific (and often complex) 
patterns within the text (20).

2.3.1 Initial dictionary: VeDDRA term selection
The Veterinary Dictionary for Drug Regulatory Activities 

(VeDDRA) version 15.0 was utilized to develop the initial 
dictionary for each AE. A comprehensive top-down examination 
of VeDDRA was performed for each AE, commencing with the 
pertinent system organ class, to identify VeDDRA codes for 
potential inclusion. The VeDDRA ‘lower-level’ terms (LLTs) were 
selected, as this category most accurately reflects the terminology 
that may be employed to articulate individual clinical signs and 
symptoms in a clinical context, as opposed to the ‘preferred term’ 
(PT) category, which encompasses broader medical concepts. A 
regular expression was created using the VeDDRA LLTs contained 
within these dictionaries.

Abbreviations: AE, Adverse event; MAH, Marketing authorization holder; NCA, 

National competent authority; VMP, Veterinary medicinal product; VMD, Veterinary 

Medicines Directorate; EHR, Electronic health record; SAVSNET, Small Animal 

Veterinary Surveillance Network; VeDDRA, Veterinary Dictionary for Drug Regulatory 

Activities; LLT, Lower level term; PT, Preferred term.
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2.3.2 Expanded dictionary: word vectorization 
model training

Recognizing that the VeDDRA regulatory language is unlikely 
to cover the full range of terminology used in clinical narratives, 
the initial dictionaries were expanded using a word vectorization 
approach to identify corpus-specific synonyms, misspellings, and 
abbreviations. A random sample of 1,000,000 SAVSNET clinical 
narratives was used to train a word vectorization model 
(word2vec) using the Gensim Python library (21). The Skip-gram 
iteration was chosen over the continuous bag-of-words approach 
due to the superiority of skip-gram in capturing the semantics of 
words (22).

Narrative pre-processing involved splitting each narrative into 
separate sentences, removing capitalization, tokenization using the 
Natural Language Toolkit (NLTK) package (23), and removing 
punctuation via regular expression substitution. Finally, bigrams were 
generated using Gensim’s Phrases function.

A series of models was generated to investigate the optimal values 
for the vector size, window size, and minimum count parameters, in 
turn. All other parameters were set to their default values, and the 
number of iterations was fixed at 15. The similar_terms function takes 
an input word and provides an output of terms within the corpus along 
with their cosine similarity to the input word, starting with the highest 
cosine value (i.e., the most similar to the input word). This function was 
used to determine the optimal value, using ‘diarrhoea’ as the input 
word. Diarrhoea was chosen due to the numerous misspellings, 

abbreviations, and synonyms possible within free text. For each model, 
the output of the 30 most similar words and phrases was reviewed, and 
the parameter value that yielded the most suggestions for misspellings, 
abbreviations, and synonyms with the fewest irrelevant terms was 
selected. When there was little difference in the performance of the 
various models, the original word2vec work (22) and the application 
of word2vec for a similar task (24) were referenced to guide the final 
model choice.

As the similar_terms function returns a cosine similarity value for 
each token within the corpus, a method was needed to determine how 
many of these terms should be manually reviewed for inclusion in the 
expanded dictionary. Instead of specifying an arbitrary number of 
terms for review, which risks overlooking relevant terms when there 
are numerous tokens with high similarity, a cut-off cosine similarity 
value was established for each target word. Hypothesizing that the 
VeDDRA PT (i.e., the broad medical concept) would have a similar 
cut-off value to the individual LLTs, we used each of these PTs as the 
input word to generate individual outputs for review. Each output was 
reviewed, starting with the highest cosine similarity, until no new 
misspellings or unique synonyms were identified within 10 
consecutive terms. The cosine similarity value for the last relevant 
term was then selected as the cut-off.

The similar_terms function was used to generate an output of 
similar words and phrases with a cosine similarity greater than or equal 
to the determined cut-off value for each of the VeDDRA LLTs included 
in the initial dictionary. One reviewer reviewed the outputs to create 

TABLE 1 Case definitions for the AEs of interest.

Adverse event Case definition

Visual impairment/blindness The clinical narrative contains a clear indication of limited/deteriorating vision or blindness as determined by a veterinary professional

OR

Clear description of the patient showing behavior consistent with blindness (e.g., bumping into things, does not track cotton ball)

OR

A clinical narrative includes descriptions of abnormal visual reflexes/responses or pathological anatomical alterations

Convulsions The clinical narrative contains a clear indication that the animal has had a convulsion

OR

This is a clear indication that the veterinary professional suspects the animal has had a convulsion

OR

A clear description of the patient showing behavior consistent with convulsions, either focal or generalized (e.g., twitching muscles, 

jerking, paddling, drooling/foaming at mouth, vacancy, collapse, and/or loss of consciousness, nystagmus)

Hepatopathy The clinical narrative indicates ALT is elevated and/or ALT is above (150 IU/L)

OR

Bile acids are elevated

OR

Veterinary professionals indicate that they suspect a hepatopathy

OR

Clear description of the patient presenting with jaundice in the absence of anemia

OR

The patient has been prescribed a liver disease-specific treatment such as Samylin®, Denamarin®, Destolit® or ursodeoxycholic acid

Renal insufficiency Patients prescribed kidney disease-specific treatment such as a renal diet or Ipakitine® or Pronefra®

OR

The clinical narrative contains a statement indicating a diagnosis of kidney disease

OR

The clinical narrative reports a result consistent with a diagnosis of kidney disease (specific gravity <1.030, creatinine >125, SDMA >14, 

UPC > 0.5)
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an expanded dictionary, which was then used to develop an expanded 
regular expression. Where applicable, word stems were utilized to 
incorporate multiple individual terms into the regular expression.

2.3.3 Regular expression development
Regular expression development was conducted iteratively by testing 

the regular expression on a random sample of clinical narratives and 
reviewing the matches to identify false positives. After each test, the 
regular expression was updated. For example, the convulsions regular 
expression was refined to ensure the phrase ‘fit and well’ was ignored 
while still capturing mentions of ‘fit,’ which may be used to describe 
convulsions. A new random sample was used following each update. In 
the absence of a formalized benchmark, this process was repeated until 
the reviewer felt that false positives had been minimized sufficiently.

2.3.4 Regular expression finalization: expert 
opinion

The final stage in developing the regular expressions involved an 
expert review. Domain experts—both veterinary surgeons practicing 
in an academic referral center, one with additional experience in drug 
safety and the other with additional expertise in veterinary health 
informatics—examined each of the final dictionaries and regular 
expressions, suggesting updates. Notably, they recommended that the 
regular expressions for renal insufficiency and hepatopathy include 
terms to capture relevant test results. These suggestions were 
incorporated into the regular expressions, and further iterative testing 
was conducted to ensure they did not lead to additional false positives. 
Following this process, the regular expressions were deemed final. The 
final regular expressions are available in the Supplementary materials S1.

2.3.5 Regular expression precision
A random sample of 10,000 clinical narratives was used to assess 

the precision of the regular expressions. Two independent reviewers 
evaluated matches against the case definitions (Table 1). Precision was 
determined by dividing the number of reviewer-confirmed cases by 
the total number of matches. Due to the presence of a gold standard 
dataset containing practitioner-confirmed cases of renal insufficiency, 
the recall of the renal insufficiency regular expression was also 
evaluated by dividing the total number of matches by the total number 
of true positives.

2.4 Exposure identification

Animals prescribed the VMP of interest or the comparator VMP 
were identified using a previously classified dataset (19). Within this 
dataset, product descriptions are mapped to standardized active 
substances. The dataset was filtered by active substance to create a list 
of unique animals that had received the VMP of interest. This list 
identified the initial prescribing event (i.e., index prescription) for 
each animal. Further filtering was conducted to remove animals 
receiving a different dosage form than the VMP of interest. Dosage 
form is not a standardized field in this dataset; therefore, this task was 
carried out using manual filtering within Microsoft Excel (2016) and 
regular expression-based matching of the raw product description. 
Animals were removed from the dataset for prescription events where 
multiple dosage forms exist if the specific VMP could not be identified.

The data lock point of this pre-mapped dataset was 24-Feb-2020. 
Therefore, only animals with an initial prescribing event occurring 
between the start of SAVSNET data collection and 24-Feb-2020 were 
included in each cohort.

For the remaining animals, the unique SAVSNET ID was used to 
generate a dataset that included each animal’s complete SAVSNET 
consultation history (i.e., pre- and post-drug exposure). Note that the 
data lock point mentioned earlier was not applied during this stage. 
Animals without post-exposure data were excluded. The finalized 
regular expressions were applied to the pre-drug exposure 
consultations, and any animals with the outcome of interest occurring 
before drug exposure were removed. Finally, any animals appearing 
in both cohorts (i.e., VMP of interest and comparator VMP) were 
eliminated to prevent contamination between groups. An overview of 
this process is shown in Figure 1.

2.5 Follow-up period identification

Previously submitted AE reports and pharmacokinetic data found 
in SmPCs were used to establish a post-exposure period during which 
an AE was likely to occur. In this analysis, we calculated the median 
time-to-onset of the AE and the median absolute deviation for the 
previously submitted AE reports. If the drug half-life indicated that 
the drug would remain in the system longer than the calculated 
median time-to-onset, then the equivalent of five half-lives (i.e., 
estimated total elimination) was applied. In the final dataset, animal 
histories were limited to include only post-exposure consultations 
within the following time periods:

 • VMP A-blindness = 28 days
 • VMP B-convulsions = 50 days
 • VMP C-hepatopathy = 14 days
 • VMP D-renal insufficiency = 52 days
 • VMP C-convulsions = 50 days

2.6 Analysis

Finalized regular expressions were applied to the VMP-exposed 
and comparator VMP final datasets. A rule-based approach was then 
used for the AEs related to renal insufficiency and hepatopathy to 
eliminate matches associated with normal test results. All other 
matches were deemed to be cases.

Incidence was calculated by using the total number of identified 
cases as the numerator and the total number of animals in the cohort 
as the denominator, expressed per 10,000 animals. Relative risk and 
95% confidence intervals (CIs) were calculated for each VMP/
comparator VMP-AE pair.

All analyses were conducted using Python (version 3.7.0) in 
Jupyter Notebook, utilizing the pandas (25) and SciPy (26) packages.

Given that renal-related AEs are a known pharmaceutical class 
effect for the group of products to which VMP-D belongs, 
we conducted further analyses to examine the baseline exposure of 
animals in the VMP-D and comparator VMP cohorts to drugs within 
the same class. It was not feasible to calculate total exposure due to the 
nature of the available data (i.e., invoicing data missing the total 
quantity of tablets or volume of liquid dispensed and/or lack of 
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generated prescription labels). Therefore, exposure was determined 
based on one prescription event equating to one exposure. 
We controlled for age confounding in these cohorts using the Mantel–
Haenszel method to calculate an age-adjusted relative risk using the 
metafor (27) package in R (version 4.1.2).

3 Results

3.1 Dictionary expansion

The final word2vec parameters chosen were a vector size of 300, a 
window size of five, and a minimum count of eight. Using this model, 
an additional 59 terms were identified for the hepatopathy dictionary, 

35 for renal insufficiency, 37 for blindness, and 106 for convulsions. 
Notably, some of these terms are included in the final regular expression 
in stemmed format, while others were not included at all following 
expert review or due to the number of false positives introduced, as 
identified during testing. For example, the terms ‘epileptic,’ ‘epileptic 
type,’ and ‘epileptiform’ were stemmed to ‘epilep’.

3.2 Regular expression validation

Generally, the precision of the regular expressions improved with 
the expansion of the dictionaries using word embeddings and expert 
opinion. For the renal insufficiency regular expression, recall was also 
improved following this expansion. The precision and recall (where 
available) for the three dictionaries developed for each AE are shown 
in Table  2. Further investigation was warranted due to the low 
precision of the renal insufficiency regular expression. Therefore, the 
regular expression was divided into three distinct parts: mentions of 
renal disease, test results, and references to renal diet or treatment. 
Testing the three parts separately revealed that precision was highest 
when considering only mentions of renal diet or treatment (0.8), 
compared to those referring to renal disease (0.35) and test results 
(0.44). Nevertheless, all three parts were retained since recall was 
greatest (0.68) when all segments were included, compared to 
mentions of renal disease (0.38), test results (0.16), or renal diet or 
treatment (0.42) alone.

3.3 Exposure identification

Across the VMP cohorts, the number of animals receiving the 
VMP ranged from 1,403 to 34,503. After exclusions, these cohorts 
ranged from 503 to 23,558. Overall, the primary reason for exclusion 
was the lack of post-exposure consultation data. The total number of 
unique animals identified with a documented exposure event for each 
of the VMPs of interest, as well as for the comparator VMPs and 
exclusions, is shown in Table 3. Notably, for consultations occurring 
at practices using one specific practice management system, the free-
text clinical narratives are not available in the SAVSNET database. 
These consultations are shown in the ‘data unavailable’ column.

3.4 Outcome identification

AEs were identified within the post-exposure window for all 
cohorts except the VMP-C cohort. Table 4 shows the number of cases 
(i.e., animals with a post-VMP exposure regular expression match), 
the absolute incidence rate per 10,000 animals, relative risk (RR), and 
95% CI. Due to the lack of AEs identified for this pair, no further 
analysis was performed to investigate the relative risk for hepatopathy 
among animals receiving VMP-C or comparator VMP.

There was a greater risk of developing renal insufficiency within a 
52-day window following exposure to VMP-D compared to the 
comparator product (RR = 2.87, 95% CI 1.44–2.57). Using the 
information available in the EHRs, we were able to conduct further 
analysis. Overall, animals receiving VMP-D had a greater number of 
prior prescriptions for VMPs in the same pharmaceutical class 
compared to animals in the comparator cohort (1.27 prescriptions per 

FIGURE 1

An overview of the process used to define the final cohort of 
exposed animals, beginning with the identification of animals that 
had exposure to the VMP of interest and detailing each stage of 
exclusions.
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1,000 animal days versus 0.04 prescriptions per 1,000 animal days). 
However, the cases from the VMP-D cohort had received a similar 
number of prior prescriptions when compared with non-cases (1.34 
vs. 1.27 per 1,000 animal days). When analyzing by age, the relative 
risk calculated for each stratum was as follows: <10 years RR = 1.49, 
95% CI 0.21–10.56, and > 10 years RR = 1.92, 95% CI 0.92–4.01. The 
age-adjusted relative risk was determined to be 1.85 (95% CI 0.93–
3.69), suggesting that further evaluation as a larger cohort becomes 
available is necessary.

4 Discussion

This study demonstrates for the first time that valuable 
pharmacoepidemiological data can be  obtained from large, 
unstructured first-opinion EHR datasets in the veterinary context. 
Furthermore, we have outlined a method for identifying cohorts of 
animals based on their exposure to a VMP and for identifying 
mentions of specific clinical signs representative of five AEs of interest. 
Together, these two steps facilitate the identification of VMP-AE pairs 
in veterinary EHRs for pharmacoepidemiological studies. Specifically, 
we show that free-text data can be utilized for AE identification, which 
can be further enhanced with the accompanying structured and semi-
structured data from the EHR, such as drug exposure and animal 
signalment information. Thus, data produced by this approach is 
potentially useful to NCAs and MAHs, as well as to clinicians making 
risk–benefit prescribing decisions, since it enables the estimation of 
risk at a per-patient level and allows for comparisons of those risks to 
a within-indication comparator product.

EHRs are widely used in human healthcare for identifying AEs, 
with several large databases supporting this effort, including the 
Clinical Practice Research Datalink (CPRD) in the United Kingdom 
(28) and the Sentinel initiative in the US (29). In fact, a previous study 
showed that an acute myocardial infarction signal could be detected 
using the EU-ADR network of EHR databases four years prior to its 
identification through traditional data sources (30).

The digitization of records and the databases of EHRs, curated 
through projects such as SAVSNET (18), VetCompass (31), and 
the Banfield group (32), means that substantial volumes of EHRs 
are accessible for epidemiological research in veterinary medicine. 
Our previous work suggests that veterinary AEs are frequently 
documented within EHRs, even when they are not formally 
reported (33).

Studies identifying veterinary AEs in large datasets have mostly 
relied on diagnosis codes (14–17). In these studies, a list of relevant 
diagnosis codes is outlined at the outset, and these codes are then used 
to identify cases of interest within the databases. In this regard, AE 
detection depends on the complete and accurate coding of every 
consultation present in the EHR. In human medicine, it has been 
shown that there are several obstacles to achieving high inter-
annotator agreement when coding EHRs, even among medically 
trained annotators (34). This issue is not well explored in veterinary 
medicine, partly because manual annotation of entire datasets is not 
common clinical practice. However, given the lack of a standardized 
approach to coding or a universally accepted coding framework, 
similar challenges likely exist.

Identifying AEs in free text would avoid the problems associated 
with non-systematic data coding. Since it is not feasible to manually 
screen tens of thousands to millions of records, big-data approaches 
are necessary to identify cases of interest. Here, we demonstrated that 
VeDDRA can serve as a foundational ontology for AE identification 
and that the precision of subsequent searches is improved by 
expanding VeDDRA terminology with misspellings and synonyms 
identified through a word embeddings approach. Notably, precision 
improved further after review by a domain expert (a veterinary 
surgeon), emphasizing the importance of including experts in 
developing the search strategy. Word2vec has been successfully 
employed in other studies. In one study, word2vec was utilized to 
expand a dictionary of dietary supplements, resulting in an 8.3% 
increase in recall (35). Additionally, another study used word2vec to 
enlarge a dictionary of known AE terms, finding that the resulting AE 
rates were more accurate with the expanded dictionary than with the 
original (24).

We tested the precision of each developed regular expression on 
a random sample of 10,000 clinical narratives. The precision of the 
regular expressions for convulsions and renal insufficiency was found 
to be low, at 0.47 and 0.43, respectively. This was somewhat expected 
for the convulsions regular expression due to the inclusion of the term 
‘fit,’ which is frequently used to describe convulsions but can also 
be employed in various other contexts. We attempted to control for 
this by specifying many of these contexts in the regular expression 
using negative lookbehinds and negative lookaheads. These two 
assertions mean that a dictionary term is only matched if it is not 
preceded or followed by other specified terms. For instance, the 
negative lookbehind ‘(? <!good/s)fit’ ensures that the sentence ‘harness 
is a good fit’ is not matched, while the negative lookahead ‘fit/s(?!and 
well)’ ensures that ‘dog is fit and well’ is not matched. However, it is 
not feasible to define all the ways in which the word ‘fit’ is used in a 
sentence in unstructured clinical narratives. Consequently, several of 
these instances were missed, contributing to the poor precision of the 
regular expression. We  also found that the regular expression for 
hepatopathy did not follow the pattern of increasing precision as the 
dictionaries were updated. We suspect this is due to the numerous 
abbreviations for the various liver evaluative test indicators (e.g., ALT, 
ALP) included in the final regular expression. We chose to include 

TABLE 2 Precision and recall for regular expressions based on three 
different dictionaries.

Adverse 
event of 
interest

Regular 
expression

Precision Recall

Blindness/

impaired vision

Initial dictionary 0.67

N/AExpanded dictionary 0.72

Final dictionary 1.00

Convulsions Initial dictionary 0.18

N/AExpanded dictionary 0.27

Final dictionary 0.47

Hepatopathy Initial dictionary 0.67

N/AExpanded dictionary 0.24

Final dictionary 0.61

Renal 

insufficiency

Initial dictionary 0.17 0.07

Expanded dictionary 0.27 0.52

Final dictionary 0.43 0.68

Initial dictionary, based on VeDDRA terms alone; Expanded dictionary, expanded using 
word embeddings; Final dictionary, expanded further using expert opinion.

https://doi.org/10.3389/fvets.2025.1550468
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Davies et al. 10.3389/fvets.2025.1550468

Frontiers in Veterinary Science 07 frontiersin.org

these terms despite their minor negative effect on overall precision, as 
we hypothesized that they might improve recall of potential cases due 
to the high likelihood that liver-related tests would be performed and 
discussed prior to a definitive diagnosis.

The primary advantage of using a word embeddings approach is 
that the identified synonyms and misspellings are specific to the 
corpus. This provides flexibility when working with various datasets 
(for example, data derived from different practice groups, regions, or 
settings), as dictionaries can be tailored for each corpus. A drawback 
is that model generation and optimization can be time-consuming, 
although GPU-equipped systems have significantly reduced the time 
required to complete these tasks. Another aspect to consider is that 
models may need periodic updates due to the constantly evolving 
nature of natural language. Given how the similar_terms function 
operates (i.e., a target word is provided, and an output is generated 
consisting of n terms with the closest cosine similarity), the target 
word must appear in the training set more frequently than the 

threshold defined as the ‘minimum count’ parameter. In this case, the 
minimum count was eight, and while this did not appear to influence 
the number of new relevant terms identified during the model testing 
process, some less common terms were likely excluded. Therefore, this 
approach may not be  suitable for developing dictionaries for rare 
events or those described in a pathognomonic manner, especially if 
the training set is not adequately large.

Large language models (LLMs) offer an alternative approach to 
AE identification and have garnered significant interest in human 
pharmacovigilance. These models are trained on extensive datasets 
and, therefore, eliminate the need to develop dictionaries of terms for 
detection. Various models have been tested, including GPT and 
BERT-based variants, yielding promising results. A fine-tuned model, 
AE-GPT (a GPT 3.5 model), achieved an F1 score of 0.70 for detecting 
vaccine AEs from spontaneous reporting data (36). Studies have also 
investigated using social media data as a source of AEs. Social media 
data may be more closely related to unstructured clinical data than 

TABLE 3 Number of unique animals with a recorded exposure to each product and comparator, the number of animals excluded at each step, and the 
number of animals in each of the final cohorts.

Index 
prescriptions

Data 
unavailable

No post-
exposure 

data

Pre-
existing 
clinical 
signs

Product 
crossover

Final 
cohort

Product A
Blindness

11,158 2,980 2,789 15 20 5,354

Comparator A 101,717 304 24,357 208 20 76,828

Product B
Convulsions

34,503 4,904 5,052 738 251 23,558

Comparator B 1,571 162 235 35 251 888

Product C
Hepatopathy

12,736 2,136 2,496 24 1,377 6,703

Comparator C 287,343 12,777 60,635 449 1,377 212,105

Product D Renal 

insufficiency

1,403 175 312 81 305 530

Comparator D 249,276 33,944 50,355 3,731 305 160,941

Product C
Convulsions

12,736 2,136 2,496 171 1,340 6,593

Comparator C 287,343 12,777 60,635 2,962 1,340 209,629

TABLE 4 Number of cases in each product and comparator cohort, with the calculated absolute incidence per 10,000 animals and the corresponding 
relative risk (RR) and 95% CIs.

Blindness No signs Total Incidence (per 
10,000 animals)

RR 95% CI

Product A 1 5,353 5,354 1.9
0.80 0.11–5.97

Comparator A 18 76,810 76,828 2.3

Convulsions No signs Total Incidence RR 95% CI

Product B 79 23,479 23,558 33.5
1.49 0.37–6.05

Comparator B 2 886 888 22.5

Renal signs No signs Total Incidence RR 95% CI

Product D 8 522 530 150.9
2.87 1.44–5.7

Comparator D 847 160,094 160,941 52.6

Convulsions No signs Total Incidence RR 95% CI

Product C 18 6,575 6,593 27.3
1.33 0.82–2.09

Comparator C 438 209,191 209,629 20.9
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traditional AE reports due to the likelihood of misspellings, 
abbreviations, and informal language styles. In these studies, fine-
tuned BERT-based models were utilized, attaining F1 scores of 0.80 
(37) and 0.86 (38). Based on the results of these studies, we propose 
further exploration of LLMs for AE identification from veterinary 
clinical narratives, and PetBERT, the BERT-based model fine-tuned 
on SAVSNET clinical data (39), provides an opportunity to do so.

Although not the primary purpose of this study, we conducted 
preliminary pharmacoepidemiological analyses of the VMP-AE pairs 
identified. Two of the VMP-AE pairs (VMP C-convulsions and VMP 
A-blindness) are listed in the respective SmPCs as known but very rare 
events. According to the rule of three, the cohort size required to 
detect these events would be 30,000 animals (40). Although the cohort 
sizes we identified are not sufficiently powered to detect very rare 
events, a benefit of using EHRs is that data is collected in near real-
time, allowing studies to be repeated at regular intervals as cohort sizes 
increase. Additionally, to avoid potential contamination between the 
VMP and comparator cohorts, we excluded animals that had received 
both products in any order at any time in their SAVSNET history. This 
was necessary due to complexities in defining when an animal was 
considered to be ‘off-drug’ for a particular product. This presents a 
particular issue in veterinary medicine, where preventative medicines 
are sold in multiple pack sizes to be dosed at non-regular intervals 
(i.e., at intervals of a month or longer). Evidence suggests that these 
products are administered sporadically (41). Furthermore, these 
products can be purchased for one animal during a veterinary visit, 
but subsequent doses in the pack may be used to treat other animals 
in the household. An obvious limitation of this approach is that 
animals may experience an AE due to the VMP of interest and then 
subsequently change treatment to the comparator product, meaning 
that these AEs would not be detected.

Whilst the cohort for VMP-D was relatively small, we suspected 
that these animals were at a higher risk of renal insufficiency than 
those receiving the comparator product. The availability of other 
data within the EHR allowed us to explore this further. First, 
animals in the VMP-D cohort were older than those receiving the 
comparator product, increasing the likelihood that they were 
already experiencing age-related renal function decline. An 
age-adjusted relative risk of 1.85 suggests that the crude relative risk 
of 2.87 may have been inflated by an increased risk in older animals. 
However, this should be interpreted with caution given the 95% CI 
of 0.98–3.69. Further, while animals in the VMP-D cohort had a 
higher number of prior prescriptions for a drug in the same class at 
baseline compared to those in the comparator cohort, the same 
pattern was not observed when comparing cases and non-cases 
within the VMP-D cohort. Since testing does not generally identify 
renal dysfunction until there has been a significant loss of function 
(42), we  suggest repeating this study later with a larger post-
exposure window of interest to account for this.

Perhaps the most significant advantage of using EHRs for AE 
detection is the ability to calculate absolute incidence. Incidence 
values cannot be calculated from traditional pharmacovigilance data 
given that the number of reports (i.e., the numerator) does not take 
into account the known high levels of underreporting and the true 
number of exposed patients (i.e., the denominator) is unknown and 
therefore has to be estimated from sales data. The availability of 
exposure data in EHRs taken from prescription labels and invoicing 

information means that exposure can be more reliably calculated 
when compared to using sales data. However, there are some nuances 
worth discussing. First, prescription label information is likely 
incomplete for products administered to animals during consultations, 
as the product does not leave the premises. Since prescription labels 
usually provide more detailed descriptions of a product than the 
product dispensed information (which is primarily generated for 
invoicing), identifying the specific product formulation and dosage 
can be challenging when prescription label information is missing. 
Validation studies would be  beneficial in fully understanding the 
extent of this issue. Secondly, animal owners are increasingly 
purchasing veterinary products online, which means that not all 
exposures are reflected in the EHR.

Additionally, unlike human healthcare systems, animals lack a 
unique personal identifier that accompanies them across various 
veterinary practices and settings. Animals may be presented to 
multiple different practices across their lifetime making it difficult to 
calculate total exposure at the individual level with certainty and 
resulting in ‘loss to follow-up’ in cohort-based studies. The method for 
identifying AEs discussed here relies on examining the clinical 
narrative for mentions of AEs; as a result, animals without post-
exposure consultation data were excluded. Excluding these animals 
may have introduced bias into the study, potentially leading to either 
an under- or overestimation of the AE incidence reported here. First, 
it is possible that animals without consultation data following the 
initial exposure did not return for veterinary care because treatment 
was successful or because ongoing care was provided by a different 
veterinary practice. This scenario would result in an overestimation of 
AE incidence (on a per-regular-expression basis) if no AE occurred, 
particularly in cases where the sample size is small. On the other hand, 
there is a possibility that animals lost to follow-up experienced a 
serious AE, prompting the owner to seek urgent veterinary care from 
a different veterinary practitioner. This limitation is inherent to 
EHR-based companion animal health surveillance. An advantage of 
using a system like SAVSNET to investigate AEs is that data 
continually accumulates, and analysis can be  repeated. Therefore, 
we suggest that the analysis for VMP-D be revisited after further data 
accumulation, especially since VMP-D is indicated for a chronic 
condition, making it likely that these animals may return for 
veterinary care. Furthermore, during the study period, it became a 
legal requirement for dogs and cats to have an identifying microchip. 
Thus, future research could develop methods for tracking animals (in 
this regulatory region) across practices using this number.

The methods outlined here depend on prior identification of a 
VMP-AE pair of interest and some knowledge of the likely post-
exposure window during which an AE is expected to occur. In this 
regard, it represents an approach for signal validation (i.e., to support 
the investigation of AEs identified through existing 
pharmacovigilance methods). It is however, perhaps less useful for 
signal generation. Rapid advancements in machine learning and AI 
could prove essential for fully realizing the potential of EHRs in 
pharmacovigilance and pharmacoepidemiology. This approach could 
be enhanced by preparing a library of search terms for each VEDDRA 
term. Utilizing LLMs offers an exciting and potentially less labor-
intensive opportunity to identify AEs in unstructured data by 
automating some of the steps described and detecting previously 
unknown AEs.
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5 Conclusion and future direction

This study outlines that EHRs represent a rich data source that can 
be utilized to conduct pharmacoepidemiological analyses. Medicine 
regulators globally have highlighted the exploration of alternative data 
sources as a priority, and this study demonstrates that methods can 
be developed to use free-text clinical narratives to meet that need. The 
ability to calculate absolute incidence is a significant advantage of 
using EHRs, and can complement existing regulatory processes.
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