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Whole-transcriptome analysis of 
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Bovine leukemia virus (BLV) is a retrovirus that infects cattle, causing bovine enzootic 
leukosis, a chronic disease characterized by the proliferation of infected B cells. BLV 
proviral load (PVL) is a key determinant of disease progression and transmission 
risk. Cattle can exhibit distinct phenotypes of low PVL (LPVL) or high PVL (HPVL), 
which remain stable throughout their lifetime. Differential expression analysis 
revealed 1,908 differentially expressed genes (DEGs) between HPVL and LPVL 
animals, including 774 downregulated (DReg) and 1,134 upregulated (UReg) genes. 
Functional enrichment analysis revealed that DReg genes were associated primarily 
with immune response pathways. Conversely, the UReg genes were enriched in 
processes related to cell cycle regulation, mitotic division, and DNA biosynthesis. 
Protein–protein interaction analysis revealed six highly interconnected clusters. 
Interestingly, a cluster was enriched for sphingolipid metabolism, a process critical 
to enveloped virus infection and immune receptor signaling. These findings provide 
valuable insights into the molecular mechanisms of BLV infection, suggesting 
potential markers for disease monitoring and targets for therapeutic intervention.
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1 Introduction

Bovine leukemia virus (BLV) is a retrovirus that naturally infects cattle, causing a chronic 
disease known as bovine enzootic leukosis (1). BLV primarily infects mature B cells (2), 
although other blood cells can also be affected (3, 4).

After infection, the viral RNA is retrotranscribed and integrated randomly into the host 
cell genome as a provirus. An increase in the blood proviral load (PVL) is correlated with 
disease progression (3, 5–7) and the risk of BLV transmission to a healthy herd mate (8, 9).

In dairy cattle populations, two distinct groups of animals can be distinguished: low PVL 
(LPVL) and high PVL (HPVL) and, generally, the PVL level remains stable throughout an 
individual cow’s lifetime (8, 10, 11).

Several strategies have been proposed for controlling BLV dissemination, including the 
use of BLV attenuated vaccines (12) and culling HPVL cows from herds (13). Alternatively, 
genetic polymorphisms in the major histocompatibility complex class II BoLA-DRB3 gene 
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have been suggested as markers for selecting and breeding LPVL cows 
(14–19). However, the genetic basis of disease resistance/susceptibility 
is complex and polygenic, influenced by multiple loci with small 
effects on the phenotype (20–24).

Genomic association studies have revealed that single-
nucleotide polymorphisms (SNPs) linked to BLV PVL variation in 
infected cattle are distributed across the entire bovine genome (21, 
25). In a previous work, we evaluated the expression of candidate 
genes located within regions harboring associated SNPs in HPVL 
and LPVL cows. Our results revealed differential expression of the 
ABT1 transcription factor and a significant correlation between 
lymphocyte count and PRRC2A and IER3 gene expression. These 
genes had not previously been associated with BLV infection 
phenotypes (26).

Few investigations assessed the global gene expression response 
to BLV (27), and compared naturally BLV-infected vs. non-infected 
animals (20, 28, 29). Depending on the BLV phenotype evaluated and/
or the route of infection considered, differentially expressed genes 
have been found to be related to DNA mismatch repair, cell cycle and 
growth factors (27–29), as well as innate and adaptive immunity, 
including complement system activation (20). Nishimori et al. (29) 
compared healthy animals, BLV-infected animals, and BLV-infected 
animals with lymphoma and identified host gene expression correlated 
with the BLV proviral load, potential markers for monitoring 
disease progression.

However, the mechanisms underlying BLV PVL development and 
progression in cattle remain poorly understood. In the present study, 
we assessed the whole-transcriptome response of BLV-infected cows 
exhibiting contrasting PVL levels to identify the host genes and 
metabolic pathways involved. Differential expression analysis allowed 
us to identify a group of significantly differentially expressed genes 
(DEGs) when comparing HPVL and LPVL cows. These DEGs were 
functionally annotated into biological categories, providing insight 
into the underlying mechanisms of BLV infection.

2 Materials and methods

2.1 Sample selection and collection

BLV-infected cows were selected from previously phenotyped 
animals (26). Briefly, 129 adult Holstein cows from the Argentinian 
main dairy farm region (31°16′S, 61°29′W) were sampled. Animals, 
which shared the same lactation period were screened via anti-BLV 
ELISA (see below) twice, at −10 mo (T1) and − 5 mo (T2) from the 
final sampling time; the mean percentage of reactivity (PR) was 
122.7 ± 34.8 and 146.3 ± 55.6, respectively. Since antibody levels have 
been reported to reflect proviral load (PVL) in  vivo (30, 31), 
individuals from the lowest (Q1) and highest (Q4) PR quartiles at both 
time points were selected (n = 15) (Q1: T1 = 25.0–102.8%, T2 = 25.0–
118.2%; Q4: T1 = 148.6–178.6%, T2 = 194.4–239.6%). These animals 
underwent PVL quantification via qPCR (see below) at −3 mo (T3) 
and 0 mo (T4). Finally, 6 cows with consistent (T3 and T4) high-PVL 
(HPVL) and 6 with low-PVL (LPVL) were selected.

Cow fresh blood samples (45 mL) were obtained via jugular 
venipuncture and supplemented with EDTA (225 μM). Peripheral 
blood mononuclear cells (PBMCs) were isolated via Ficoll–Paque Plus 
(GE Healthcare, Uppsala, Sweden) density gradient centrifugation 

(following the manufacturer’s protocol) and resuspended in 
RNAlater® (Ambion, Austin, TX, United States). Sample collection 
and PBMC isolation were performed on the same working day to 
prevent any RNA degradation. The samples were stored at −80°C 
until use.

The animal handling and sampling procedures followed the 
manual’s recommendations of the Animal Care and Use Committee 
of the National Institute of Agricultural Technology (INTA, Buenos 
Aires, Argentina).

2.2 Anti-BLV ELISA and cell counts

An indirect ELISA against the whole BLV viral particle-lysed 
antigen was used following a previously described protocol (32). A 
weak positive international control standard serum was utilized as a 
reference to calculate a normalized sample-to-positive ratio. The 
difference between the optical density values obtained for the weak 
positive control and negative BLV control samples was set as 100% 
reactivity. All the tested samples were referred to it. Samples with PRs 
above the cutoff level (>25%) were considered positive. A hematologic 
analyzer (Sysmex XN-1000, Sysmex Co., Kobe, Japan) was used for 
absolute leukocyte count.

2.3 BLV PVL quantification

Genomic DNA (gDNA) was isolated from PBMCs via a High 
Pure PCR Template Preparation Kit (Roche, Penzberg, Germany). The 
concentration (ng/μL) and quality (A260/280 and A260/230) of the 
gDNA were measured via a spectrophotometer (Nanodrop, Thermo 
Fisher Scientific, Waltham, MA).

To quantify the BLV PVL, validated SYBR Green dye-based qPCR 
targeting the BLV Pol gene was used (33). Briefly, each qPCR mixture 
(final volume = 25 μL) contained Fast Start Universal SYBR Green 
Master Mix (Roche), forward and reverse primers (800 nM; 
BLVpol_5f: 5′-CCTCAATTCCCTTTAAACTA-3′; BLVpol_3r: 
5′-GTACCGGGAAGACTGGATTA-3′; Thermo Fisher Scientific), 
and 200 ng of gDNA template. The amplification and detection 
reactions were performed via a Step One Plus device (Applied 
Biosystems, Foster City, CA). The thermocycler profile included 
predenaturation for 2 min at 50°C, then denaturation for 10 min at 
95°C, followed by 40 cycles of 15 s at 95°C, 15 s at 55°C, and a final 
extension of 60 s at 60°C. The specificity of each BLV-positive reaction 
was confirmed through melting temperature dissociation curve (Tm) 
analysis. Samples with PVL values <1,500 copies/μg of total DNA were 
considered LPVL; otherwise, they were considered HPVL (26).

2.4 RNA isolation and library sequencing

Total RNA was extracted from PBMCs stored in RNAlater® with 
a High Pure RNA Isolation Kit (Roche) via a modified protocol. The 
DNase treatment step was set to 20 min at 37°C. The RNA 
concentration and integrity were evaluated using a 2,100 Bioanalyzer 
chip (Agilent Technologies, Santa Clara, CA, United  States) 
(Supplementary Figure S1). RNA samples with a RIN value ≥8 were 
used to prepare sequencing libraries with the TruSeq Stranded mRNA 
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Kit (Illumina, San Diego, CA, United  States) following the 
manufacturer’s protocol.

Samples from four animals per phenotypic group were sequenced 
(HPVL: A1, A2, A6 and A7; LPVL: B2, B5, B6, and B7). Equal molar 
concentration sequencing libraries were pooled and set in 4 
sequencing lanes of a NextSeq500 equipment (Illumina) run to avoid 
possible batch effects (34). A total of 354.4 M reads (1 × 75 bp) 
were obtained.

2.5 Quality control and reference genome 
mapping

Demultiplexed Fastq files for each sample were visually inspected 
with FastQC (35). Quality control (QC) and adapter trimming were 
performed with TrimGalore v0.6.4 (36) using a q score > 20. Reads 
with lengths <20 bp were discarded. QC-passed reads were mapped 
to the bovine reference genome ARS-UCD1.2 v100 (37) using HISAT2 
v2.2.0 (38). The mapped read statistics were evaluated with RSeQC 
v4.0.0 (39) (Supplementary Table S1).

2.6 Gene expression quantification and 
differential expression analysis

Genomic features (genes) were quantified via HTSeq-count 
v0.12.4 (40) in the “union” mode, which counts only uniquely mapped 
reads and discards those overlapping with two or more genes. This 
process yielded a raw count expression matrix for each sample and 
annotated gene (8 × 27,607). The expression matrix was subsequently 
analyzed using the edgeR package (41, 42) within the Bioconductor 
project v3.13 (43). All the analyses were conducted in the 
R environment.

The relationships between the gene expression profiles of the 
HPLV and LPVL samples were visualized using a multi-dimensional 
scaling plot. The leading 500 gene log2-fold changes (root-mean-
square average) between each pair of samples were used as distances.

Differentially expressed genes (DEGs) between the HPVL and 
LPVL groups were tested via an exact test based on the quantile-
adjusted conditional maximum likelihood (qCML) implemented in 
edgeR (44). Multiple comparisons correction of the p values was 
performed by the Benjamini-Hochberg false discovery rate (BH-FDR) 
method (45). BH-FDR adjusted p values (q-value) < 0.05 were 
considered statistically significant.

2.7 Functional annotation and protein–
protein interaction network analysis

Functional inference of each expressed gene were made using 
PANTHER database (db) v17.01 (46, 47) and STRING db2 (48, 49). 
The PANTHER ontological classification system provides functional 
categories integrating experimental evidence, functional and 

1 https://www.pantherdb.org/

2 https://cn.string-db.org/

evolutionary information on protein family phylogenetic trees (47, 
50), and the Protein Class (PC) and abbreviated Gene Ontology 
(GO-Slim) terms were used. In addition, the Kyoto Encyclopedia of 
Genes and Genomes (KEGG) metabolic pathways3 (51) were retrieved 
using STRING db.

Enrichment analysis of GO/PC PANTHER/KEGG metabolic 
pathway terms was performed on the list of 13,382 expressed genes 
(EGs) obtained after filtering out genes whose expression was low. 
These genes were ranked by their logFC values between the HPVL and 
LPVL groups. The Mann–Whitney rank-sum test (U test) was used to 
indicate functional categories that are more overrepresented at the top 
or bottom (up- or down-regulated genes) of the ranked list than 
expected by chance. Enrichment test p-values were adjusted for 
multiple testing with the BH-FDR method, and q-values <0.05 were 
considered statistically significant.

A protein–protein interaction (PPI) network of DEGs was 
constructed via STRING db, which compiles curated known and 
predicted protein–protein interactions from several sources, i.e., 
experimental evidence, computational prediction, scientific literature, 
coexpression, other (primary) databases, etc. The resulting network 
was visualized in Cytoscape v3.9.0 (52). Clusters of highly 
interconnected proteins were identified using the molecular complex 
detection algorithm implemented in MCODE v2.0 with default 
parameters (53). An overrepresentation analysis of GO terms and 
KEGG metabolic pathways was applied to clusters via Fisher’s exact 
test on the basis of the hypergeometric distribution (54).

2.8 Gene expression by RT–qPCR

A total of 5 statistically significant (FC >1.5) DEGs (BLNK, 
PIK3CA, BoLA-DQB, CD8A and CD4) were selected for RT–qPCR 
validation. The assay was conducted following the recommendations 
proposed by the minimum information for publication of quantitative 
real-time PCR experiments following the minimum recommendations 
(MIQE) guidelines (55). The primers (Supplementary Table S2) were 
designed using the Primer-BLAST tool (56). Homo and heterodimers, 
GC content, Tm, and potential secondary structures for each primer 
pair were evaluated using OligoAnalyzer software v3.1 (57).

RNAs (300 ng) extracted from 5 HPVL and 5 LPVL 
[Supplementary Table S3, (26)] were treated with the DNase RQ1 
(Promega, US). Then, the MultiScribe High-Capacity cDNA Reverse 
Transcription Kit (Applied Biosystems, US) was used for cDNA 
synthesis, according to the manufacturer’s instructions.

RT–qPCR was performed with a 1:10 dilution of cDNA using the 
SsoAdvanced Universal SYBR Green Supermix (Bio-Rad, US) in a 
final reaction volume of 10 μL, containing 300 nM of each specific 
primer (forward or reverse) and 3 μL of cDNA. Runs were performed 
with StepOne Plus equipment (Applied Biosystems, US) following 
standard cycling conditions: (1) 95°C for 30 s and (2) 40 cycles of 
95°C for 15 s and 60°C for 1 min. Reaction specificities were 
confirmed by inspection of the Tm dissociation curve. Technical 
duplicates were assayed for all RT–qPCRs. For each gene, non-RT 
RNAs and no template controls were incorporated. The reaction 

3 http://www.genome.jp/kegg/
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efficiencies were calculated using the LinRegPCR software (58). 
Relative expression values were normalized against two bovine 
reference genes, RPLP0 and B2M (59). Differential expression analysis 
was performed via REST software (60). This returns a relative 
expression value (R): an R > 1 indicates higher gene expression in the 
HPVL phenotype than in the LPVL phenotype, whereas an R < 1 
indicates lower expression.

3 Results

An average mapping rate exceeding 97% was achieved, with more 
than 85% of the reads uniquely mapped to the bovine reference 
genome. Additionally, approximately 69% of the reads aligned to 
exonic regions.

Unsupervised clustering revealed that sample A2 had a 
distinct expression profile from that of the HPVL group 
(Supplementary Figure S2). Removing A2 improved the clustering of 
LPVL and HPVL samples, so we excluded it from downstream analysis.

The differential expression analysis between HPVL (n = 3) and 
LPVL (n = 4) was performed on expressed genes (EGs) identified 
2,216 differentially expressed genes (DEGs) (q < 0.05) out of 13,382 
genes evaluated. Among these, 86.1% (1,908) showed moderate 
changes (FC ≥ |1.5|), 37.4% (829) of DEGs exhibited high fold change 
values (FC ≥ |2|), and 0.85% (19) showed differences exceeding a FC 
>10 (Supplementary Table S4). From those 1,908 genes with fold 
changes (FCs) ≥ |1.5|, 774 were downregulated (DReg) and 1,134 
upregulated (UReg) genes (Figure 1, Supplementary Table S4).

We then selected five genes showing a FC >1,5 and experimentally 
validated the differential expression in LPVL and HPVL cows via 

RT–qPCR. Four of these genes presented significant expression 
differences consistent with RNA-seq results (Figure 2), whereas CD4 
displayed a non-significant trend toward lower expression in 
HPVL animals.

To gain functional insights into the phenotypes studied, 
we conducted gene enrichment analysis using the list of EGs ranked 
by logFC. The PANTHER and STRING databases were used to 
annotate Gene Ontology (GO) terms, Protein Class (PC) categories, 
and KEGG metabolic pathways, identifying enriched functional 
categories among upregulated (UReg) and downregulated (DReg) 
genes (Supplementary Table S5). Several functional terms enriched in 
UReg genes were associated with cell division processes. The Biological 
Process (BP) GO-slim categories included “Mitotic cell cycle phase 
transition” (GO:0044772), “Protein  localization to kinetochore” 
(GO:0034501), “DNA biosynthetic process” (GO:0071897), “Mitotic 
spindle assembly” (GO:0090307), and others (Supplementary Table S5). 
Additionally, Protein Class (PC) terms enriched in UReg genes 
included “chromatin/chromatin-binding or -regulatory protein” 
(PC00077) and “Kinase activator” (PC00138), whereas KEGG 
pathway enrichment highlighted the “Cell cycle” (bta04110).

In contrast, most functional terms enriched in DReg genes were 
associated with immune responses, encompassing BP terms such as 
“Inflammatory response” (GO:0006954), “Response to interleukin-1” 
(GO:0070555), “Antigen processing and presentation” (GO:0019882), 
“T-cell-mediated immunity” (GO:0002456), and “Positive regulation 
of adaptive immune response” (GO:0002821). The significant KEGG 
pathways associated with the DReg genes included “Th1 and Th2 cell 
differentiation” (bta04658), “natural killer cell-mediated cytotoxicity” 
(bta04650), and “cytokine–cytokine receptor interaction” (bta04060). 
The enriched PC terms in the DReg genes were “Major 

FIGURE 1

Main differentially expressed genes in HPVL vs. LPVL transcriptomes. The vertical dotted green lines correspond to the log2 (FC) values of −1.5 and 1.5. 
The red dots denote DEGs and the black dots those statistically non-significant and/or with FC lower than the absolute value of 1.5 (|1.5|). Gene 
symbols indicate the 10 genes with the lowest q-values.
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histocompatibility complex proteins” (PC00149) and 
“Immunoglobulin receptor superfamily” (PC00124), both of which 
are key players in immune responses. Figures 3A,B show significant 
DEGs within the PC00149 and PC00124 terms, respectively.

A protein–protein interaction network based on the 1908 DEGs 
(FC ≥ |1.5|) consisted of 1732 nodes (proteins) and 10,621 edges 
(interactions), forming a primary network (interaction score ≥ 0.4) 
with additional smaller subnetworks and isolated nodes 
(Supplementary Figure S3). We selected the largest network to identify 
clusters of highly interconnected proteins, potentially representing 
protein complexes related to specific metabolic pathways. Six clusters 
were identified (Figure 4). Cluster A predominantly contained UReg 
genes, whereas clusters C, D, and E presented distinct subclusters of 
UReg (dotted circles) and DReg genes. Each cluster was analyzed for 
overrepresented GO, BP, and KEGG terms using the STRING database 
to interpret their biological functions (Supplementary Table S6). 
Clusters enriched with UReg genes were associated with cell cycle 
regulation, mitotic division, and DNA repair, whereas clusters 
enriched with DReg genes were enriched in immunological processes, 
specifically innate and adaptive immunity. The functional terms and 
pathways enriched in the UReg and DReg genes were consistent across 
the enrichment analysis and cluster-based tests, validating the results 
through different analytical approaches. Notably, Cluster B (Figure 4) 
was enriched in terms related to sphingolipid metabolism.

4 Discussion

To identify bovine genes and biological pathways underlying 
contrasting levels of BLV infection, we  conducted whole-
transcriptome analyses on PBMCs (peripheral blood mononuclear 
cells) obtained from BLV-infected Argentinian Holstein cows showing 
low and high BLV proviral load (LPVL and HPVL, respectively).

Differential expression analysis (HPVL vs. LPVL) revealed 2,216 
differentially expressed genes (DEGs) (q < 0.05) among the 13,382 
genes evaluated. Among these DEGs, only 37.4% (829) presented high 
fold change values (FC ≥ |2|), whereas 86.1% (1,908) presented 
moderate changes (FC ≥ |1.5|). These findings agreed with previous 
reports of modest gene expression changes in blood cells in response 
to BLV infection (20).

Among the top 10 DEGs with the lowest q-values (Figure 1), eight 
were classified as UReg (upregulated), while two were categorized as 
DReg (downregulated). Notably, seven UReg genes (GALNT14, 
KIAA0040, EPB41L1, ZNF469, BLNK, AK7, and WSCD1) are 
associated with the progression of various cancers in humans (61–67). 
Conversely, two DReg genes, BoLA-DQB and IFITM10, are associated 
with immune processes. The BoLA-DQB gene encodes the β chain of 
the DQ molecule, which is essential for CD4+ T-cell activation and, 
hence, on the modulation of the adaptive cellular and humoral 
response (68). IFITM10, a member of the interferon-induced 
transmembrane protein family, has been implicated in the inhibition 
of viral infections in humans, including HIV-1, Influenza, and SARS-
CoV-1 (69).

The functional annotation revealed that immune-related 
categories, such as “antigen processing and presentation,” “positive 
regulation of adaptive immune response,” and “T-cell-mediated 
immunity,” predominantly included DReg genes 
(Supplementary Table S5). A significant proportion of these immune-
related genes were associated with the PANTHER term “Major 
histocompatibility complex (MHC) proteins” (PC00149). Figure 3A 
highlights the DEGs (q < 0.05, FC > |1.5|) within this category. 
Notably, BoLA-DRB3 polymorphisms have been extensively 
investigated for their association with BLV proviral load (PVL) levels 
(14–19). Additionally, other class II MHC genes (BoLA-DQB, BoLA-
DOA, and DRB1-like pseudogene) were differentially expressed. These 
genes are expressed primarily in antigen-presenting cells (APCs), such 
as dendritic cells, mononuclear phagocytes, and B cells, where they 
play critical roles in regulating T-cell-mediated immune regulation. 
Variants in DRB3-DQB haplotypes have been associated with 
susceptibility or resistance to persistent lymphocytosis (PL) in 
BLV-infected cattle (70–72). Additionally, MHC class I (BoLA-5) and 
non-classical MHC genes (BoLA-NC1 and NC4) were downregulated 
in HPVL animals (Figure 3A). MHC class I molecules facilitate the 
presentation of intracellular viral peptides to CD8+ T cells (73), 
whereas non-classical MHC genes regulate T-cell responses (74). 
Dysregulation of CD1 class I-like genes, which present lipid antigens 
to T cells, was also observed. This finding is consistent with reports of 
altered CD1 expression in human viral infections (75–78). Moreover, 
five DEGs encoding UL16-binding proteins (ULBPs), stress-induced 
molecules critical for NK-cell cytotoxicity, were significantly 

FIGURE 2

Experimental validation of differential gene expression by RT-qPCR expression ratio (R) for selected genes. The R were normalized against the 
geometric mean of the reference genes. BLNK (R = 2.192, p-value = 0.019) and PIK3CA (R = 1.728, p-value = 0.018) were UReg; conversely, BoLA-DQB 
(R = 0.492, p-value = 0.021) and CD8A (R = 0.108, p-value = 0.006) were DReg. CD4 (R = 0.7, p-value = 0.127) showed a tendency to DReg.
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downregulated (Figure  3A). Downregulation of ULBPs has been 
linked to viral immune evasion mechanisms (79–81).

Consistently, the PANTHER PC category “Immunoglobulin (Ig) 
receptor superfamily” (PC00124) was significantly enriched in DReg 
genes (Figure  3B). This category includes genes encoding T-cell 
receptors (TCRs) and components of the T-cell activation pathway. In 

contrast, the functional categories enriched in the UReg genes were 
predominantly related to the cell cycle, including “Mitotic cell cycle 
phase transition” (GO:0044772), “DNA biosynthetic process” 
(GO:0071897), and “assembly of the mitotic spindle” (GO:0090307). 
The KEGG pathway “Cell cycle” (bta04110) was also enriched in the 
UReg genes (Supplementary Table S5). Dysregulation of these 

FIGURE 3

Lollipop chart of differentially expressed genes and their logFC values from two protein class (PC) PANTHER terms: (A) “Major histocompatibility 
complex (MHC) proteins” (PC00149) and (B) “Immunoglobulin (Ig) receptor superfamily” (PC00124). Red and blue dots indicate upregulated and 
downregulated genes, respectively, in HPVL animals.

FIGURE 4

Clusters analysis of the protein–protein interaction (PPI) networks. The nodes represent proteins, and the edges (connecting lines) denote various types 
of interactions as suggested in the STRING db. Node colors are determined by the expression values (logFC); the blue scale represents DReg genes, 
while the red scale represents UReg genes. Clusters (C–E) consisted of two distinct sub-clusters, comprising UReg (dotted line circle) and DReg genes.
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processes has been linked to oncogenesis, which is consistent with the 
oncogenic nature of BLV. Furthermore, the BP terms “B-cell activation” 
and “B-cell receptor signaling pathway” were overrepresented in the 
UReg genes. Approximately 30% of BLV-infected cows exhibit 
increased B-cell proliferation (82–85), which has been associated with 
disrupted cell proliferation and apoptosis (86, 87).

The enrichment of terms such as “zinc-finger transcription 
factors (C2H2) (PC00248),” “acetyltransferases” (PC00042) and 
“histone acetylation” (GO:0016573) in UReg genes suggests 
potential epigenetic regulation. Notably, C2H2 zinc-finger proteins 
are involved in chromatin remodeling, a mechanism exploited by 
retroviruses to establish latency (88). This may facilitate BLV 
immune evasion, promoting the expansion of infected B-cell clones.

Protein–protein interaction (PPI) network analysis 
(Supplementary Figure S3) revealed clusters of highly 
interconnected proteins (Figure 4). The functional enrichment of 
clusters primarily composed of UReg genes revealed associations 
with cell division, mitotic spindle formation, and DNA repair 
(Clusters A, C-E; Figure 4; Supplementary Table S6). In contrast, 
clusters predominantly composed of DReg genes were enriched for 
immune response pathways, including T-cell metabolism and 
immune signaling (Clusters C-E, Figure 4, Supplementary Table S6).

Cluster F, composed of both upregulated and downregulated 
genes in HPVL animals, was overrepresented in categories containing 
genes involved in cell cycle regulation and adaptive immune responses, 
respectively. In contrast, cluster B was enriched in terms related to 
sphingolipid metabolism. Cholesterol and sphingolipids form lipid 
rafts in the plasma membrane of B cells, which serve as platforms for 
increasing the concentration of B-cell receptors (BCRs) following 
antigen (Ag) stimulation (89, 90). Notably, in BLV-infected animals, 
resistance to BCR translocation to lipid rafts has been observed (91). 
Additionally, sphingolipid metabolism plays critical roles in 
lymphocyte circulation and viral processes such as entry, replication, 
assembly, budding, and release, particularly in enveloped viruses 
(92, 93).

Overall, our findings suggest two non-mutually exclusive 
mechanisms contributing to the HPVL phenotype: dysregulation of 
B-cell proliferation/apoptosis and modulation of T-cell and NK-cell 
responses. Additionally, the suppression of proviral transcription via 
inhibitory transcription factors, such as zinc-finger proteins, may 
facilitate BLV immune evasion. Together, these mechanisms promote 
the expansion of infected B-cell clones, driving the HPVL phenotype. 
Given the increased risk of BLV transmission in HPVL cows (9, 94, 
95), the segregation or elimination of HPVL animals from farms 
remains a viable control strategy (13). However, middle/low-PVL 
animals in transition to an HPVL phenotype are present. In this 
study, we  identified a reduced number of DEGs participating in 
protein–protein interaction clusters that could be further investigated 
as early biomarkers of an HPVL phenotype. Our the results are in line 
with findings previously reported by Nishimori et al. (29) providing 
additional support. Indeed, five of the seven markers positively 
correlated with PVL (29) were found to be upregulated in HPVL 
animals in this work (Supplementary Table S4).

Future transcriptome studies could include BLV-uninfected cows 
to establish a baseline gene expression profile, enabling a more 
comprehensive understanding of the transcriptional changes induced 
by BLV infection. Additionally, single-cell RNA-seq studies could 
uncover immune cell heterogeneity in the peripheral blood of 

BLV-infected cattle, identifying specific subsets of B and/or T cells 
that may play a protective role against BLV proliferation in LPVL 
animals. This could offer valuable insights into the mechanisms 
underlying BLV disease progression and immune response regulation.

5 Conclusion

The differential expression analysis conducted in this study 
identified a group of significantly differentially expressed genes (DEGs) 
when comparing animals with the HPVL and LPVL phenotypes in 
naturally infected cattle under productive conditions. The 
downregulated (DReg) genes were associated primarily with functions 
related to the cellular immune response, whereas the upregulated 
(UReg) genes were linked predominantly to the dysregulation of cell 
proliferation and the silencing of viral gene transcription. These 
mechanisms may enable the BLV to increase provirus copy numbers 
and evade the host’s immune response. This study enhances our 
understanding of the pathways involved in BLV infection and provides 
valuable insights that could contribute to the identification of infection 
markers, therapeutic targets, and information useful for BLV 
dissemination control programs within herds.
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