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Reproductive traits are among the most important economic characteristics in 
sheep farming. Structural variations (SVs) are extensively distributed across sheep 
genomes and can directly or indirectly affect gene expression through a variety 
of mechanisms, leading to phenotypic variation among individuals or breeds. In 
this study, we characterized genomic SVs and identified candidate genes related to 
germplasm traits in seven sheep breeds. Based on the genome sequences of 73 ewes, 
SVs were detected using Delly, Lumpy, and Manta software tools, and the results were 
integrated using SURVIVOR software, leading to the identification of 107,166 SVs. 
The proportions of deletions, duplications, insertions, inversions, and translocations 
were 48.39, 38.41, 6.96, 6.22, and 0.03%, respectively. Regarding SV distribution, the 
number of SVs per chromosome decreased with increasing chromosome number. 
Both shared and breed-specific SVs were identified, with the local Tuva sheep breed 
showing the highest number of breed-specific SVs. Principal component analysis and 
phylogenetic tree results revealed a close genetic relationship between Hammari and 
Kabashi sheep. Selection signal analysis, gene annotation, and enrichment analysis 
led to the identification of potential functional SVs associated with reproductive 
traits, including FSHR, ADCY5, and MTNR1A. Experimental validation confirmed the 
regulatory activity of key SVs and their associations with the expression of target genes. 
This work characterized SVs in seven sheep breeds, identified genes associated with 
reproductive traits, and preliminarily validated the regulatory relationships between 
these SVs and their target genes. These findings provide essential data to support 
the genetic improvement of local sheep breeds in Xinjiang.
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1 Introduction

Sheep (Ovis aries) are economically important animals in global livestock production. 
Reproductive efficiency is a key indicator of the income level in the livestock industry. Among the 
key economic traits, litter size is the most significant production characteristic, contributing 70 to 
90% of the economic value in the sheep industry (1). The economic benefits of two-lamb litters 
are more than 1.6 times higher than those of single-lamb ones (2). Seasonal estrus is also a major 
factor limiting high productivity in sheep (3). Therefore, improving the reproductive capacity of 
sheep remains a key goal within the sheep industry, and is currently the subject of substantial 
research. Xinjiang possesses unique conditions for sheep farming and has cultivated many 
excellent sheep breeds with strong adaptability and disease resistance (4). For example, the local 
coarse wool breed, Kazakh sheep, is known for its resistance to cold, tolerance to coarse feed, 
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strong adaptability, and good stress resistance. However, Kazakh sheep 
are seasonal breeders, typically producing one lamb per year, and the 
two-lamb rate is very low (5). Similarly, the newly developed Yunnan 
semi-fine wool sheep breed also exhibits seasonal breeding, with most 
births resulting in single lambs (6). Several foreign breeds, such as the 
Baikal sheep and Tuva sheep from Russia, and coarse wool breeds such 
as Kabashi and Hammari sheep from the Sudan, also commonly exhibit 
single-lamb births and seasonal breeding strategies (7–10). In contrast, 
the Hu sheep breed is known for its year-round estrus and, consequently, 
higher lambing rates (11).

Recent advancements in genomics have led to the development of 
new approaches to uncover the genetic basis of reproductive traits in 
sheep. Structural variants (SVs), major forms of genetic variation, have 
been shown to significantly influence important economic traits in 
livestock. Liang et al. (12) compared genomic SVs between Tibetan 
sheep, residing at high altitudes, and Hu sheep, typically found at low 
altitudes, seeking to determine how these variations impact gene 
expression during the high-altitude adaptation process in Tibetan 
sheep. They identified numerous SVs in the Tibetan sheep genome, 
which were widely distributed and had a significant impact on the 
expression of genes involved in key physiological processes, thus 
shedding light on the genetic mechanisms underlying high-altitude 
adaptation. Yang et al. (13) conducted a whole-genome analysis of SVs 
in sheep and goats and identified numerous SVs that emerged during 
their evolutionary history. These variations were found to be associated 
with key production traits and highlighted the convergent evolutionary 
features of sheep and goats during environmental adaptation. Notably, 
deletions (DELs) in genes such as BMPR2 and BMPR1B were identified 
as critical regulators of litter size traits. Combining pan-genome 
construction, SV detection, and association analysis, Li et  al. (14) 
explored the diversity and complexity of SVs in the sheep genome, and 
uncovered SVs showing significant associations with tail traits. Qiao 
et al. (15) employed whole-genome, long-read sequencing technology 
to systematically detect SVs across multiple sheep breeds. In addition 
to characterizing the types, sizes, and distribution patterns of these SVs, 
they also investigated their associations with genetic diversity among 
breeds. Their findings offer valuable resources and novel insights for 
genetic research, improvement, and molecular breeding in sheep.

However, research on the genetic basis of reproductive traits in 
sheep remains limited. In particular, there is a lack of systematic studies 
focusing on SVs. The aim of this study was to detect SVs in the genome 
sequences of 73 ewes across seven breeds and characterize these 
variations using Delly, Manta, and Lumpy software. High-frequency 
SVs were selected, annotated, and screened for candidate genes 
associated with reproductive traits. To further explore the function and 
role of these high-frequency SVs in reproductive traits, experimental 
validation was carried out. This study not only contributes to the 
understanding of the genetic mechanisms underlying reproductive 
traits in Kazakh sheep but also provides a theoretical framework for 
genetic research and improvements in molecular breeding in sheep.

2 Materials and methods

2.1 Data sources

This study employed whole-genome resequencing data from 73 ewes 
of seven sheep breeds. Blood samples (5 mL) were collected from six 
Kazakh sheep obtained from the Yili Kazakh sheep Farm into tubes 

containing EDTA anticoagulant, preserved on dry ice, and sent to the 
laboratory for DNA extraction. Whole-genome data for the remaining 
sheep [20 Yunnan semi-fine wool sheep (BioProject: PRJNA783661), 18 
Hu sheep (BioProject: PRJNA1053506), 8 Kabashi sheep and 6 Hammari 
sheep from Sudan (BioProject: PRJNA849626), 4 Tuva sheep and 8 Baikal 
sheep from Russia (BioProject: PRJNA656153), and 3 Kazakh sheep 
(BioProject: PRJNA623062)] were obtained from the NCBI database.1

2.2 Detection of genomic structural 
variation

2.2.1 DNA extraction and data processing
Genomic DNA was extracted from the samples using the phenol-

chloroform method. The concentration and purity of the DNA 
samples were assessed using a NanoDrop  2000 Microvolume UV 
Spectrophotometer. Gel electrophoresis was employed to evaluate the 
integrity of the DNA samples, providing a comprehensive assessment 
of DNA quality. The DNA samples were stored at −80°C. Library 
construction and paired-end sequencing (Illumina HiSeq2500 
platform; Illumina Inc.) were performed by Tianjin Compass 
Biotechnology Co., Ltd. (Tianjin, China).

2.2.2 Quality control and alignment of genomic 
data

The raw data (FASTQ format) from paired-end sequencing were 
subjected to quality control using fastp software to obtain clean reads, 
which were then aligned to the sheep reference genome ARS-UI_
Ramb_v3.0 using the BWA MEM algorithm (16). The alignment 
results were sorted and duplicates were removed using the SortSam 
and MarkDuplicates modules of PICARD software.2 Finally, the 
sorted BAM files were statistically analyzed using Qualimap 
software (17).

2.2.3 SV detection and annotation
In this study, three software tools were employed for the detection 

and genotyping of SVs—Lumpy (18), Delly (19), and Manta (20). The 
results from Lumpy were further processed using SVTyper for SV 
genotyping. The results obtained via all three software tools were 
subsequently filtered and integrated using SURVIVOR (21), 
generating VCF files. The SVs were then annotated using SnpEff based 
on the annotation file of the sheep reference genome.

2.3 Population genetic analysis

2.3.1 Principal component analysis
VCF files were converted to PLINK format using VCFtools v.0.1.17 

and principal component analysis (PCA) was performed using PLINK 
(22) v.1.90. The results were visualized with the R package ggplot2.

2.3.2 Phylogenetic tree construction
The phylogenetic tree was constructed using the neighbor-joining 

method. The Hamming distances between samples were calculated 

1 https://www.ncbi.nlm.nih.gov/sra/

2 https://broadinstitute.github.io/picard/
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with PLINK software, generating a genetic distance matrix file. A Perl 
script was written to convert the file into .meg format, and the 
phylogenetic tree was then constructed using MEGA software. Finally, 
the graphical visualization of the tree was enhanced using the online 
tool ITOL.3

2.3.3 Genetic differentiation index (FST)
FST values for each sliding window were calculated using VCFtools, 

with a window size of 100 kb and a step size of 50 kb. The top 1% of 
these FST values were considered candidate regions under selection.

2.3.4 Gene Ontology and Kyoto Encyclopedia of 
Genes and Genomes enrichment analysis of 
genes in selected regions

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) enrichment analyses were conducted using 
DAVID4 and the results were visualized using the R package ggplot2.

2.4 SV validation

To validate the activity of RE-mediated SVs, dual-luciferase 
reporter gene vectors (pGL3-Basic vector) were constructed. Then, 
three SV sequences (FSHR-DEL, ADCY5-DEL, and MTNR1A-DEL) 
were separately cloned upstream of the reporter gene. SV activity was 
determined using the Luciferase Reporter Gene Assay Kit (Yeasen, 
Shanghai, China). Dual-luciferase activity was detected after 48 h 
post-transfection in HeLa cells.

3 Results

3.1 Sequencing, mapping, and SV detection

After quality control and alignment, the BAM files of several 
breeds were statistically analyzed using Qualimap software. A total of 
17.43 GB of clean data were obtained. The alignment rate of clean 
reads from all the samples to the reference genome was 99.70%, with 
an average sequencing depth of 13.32×. The GC content was above 
42.63% in all samples (Supplementary Table 1).

Using Manta, Lumpy, and Delly software, a total of 107,166 SVs 
were identified from the seven sheep breeds from different regions 
(Figure 1A). Among the different types of variation, DELs were the 
most frequent, accounting for 48.39%, while insertions (INSs) were 
the least common, with only 27 SVs detected, representing 0.03% of 
the total. The numbers of duplications (DUPs) and inversions (INVs) 
were relatively similar (Figure 1B). Regarding their distribution, SVs 
were unevenly distributed across chromosomes, which was largely 
related to differences in chromosome length. The highest number of 
SVs was observed on chromosome 1, followed by chromosome 2. 
Notably, the number of SVs on the X chromosome was significantly 
higher than that on the Y chromosome (Figure 1C). Subsequently, 
minor allele frequencies were determined. The results showed that a 

3 https://itol.embl.de/

4 https://david.ncifcrf.gov/

large number of SVs were widely present in the sheep population, 
indicating that they are not rare (Figure 1D). Of the detected SVs, 
21,335 DELs (35.11%) and 3,865 INSs (76.79%) had lengths ≥1 kb, 
and 3,800 DELs (14.38%) and 1,342 INSs (57.67%) had lengths ≥4 kb. 
Most DELs were in the 50 bp to 1 kb range, with their frequency 
significantly decreasing as their length increased (Figure 1E).

3.2 Distribution of SVs in different sheep 
breeds

Across the seven sheep breeds, Hu sheep had the highest number 
of SVs, totaling 59,424, accounting for 20.51% of the total. The SV 
counts for Yunnan fine wool sheep, Kazakh sheep, Baikal sheep, 
Hammari sheep, Kabashi sheep, and Tuva sheep were 52,642, 52,455, 
43,063, 31,909, 26,325, and 23,938, respectively (Figures 2A,B).

Further analysis showed that 4,857 SVs were shared among all 
seven breeds. The distribution of breed-specific SVs varied 
significantly, with Tuva sheep exhibiting the highest number of unique 
SVs (9,455), followed by Hu sheep (9,193), Yunnan semi-fine wool 
sheep (6,899), Kazakh sheep (6,741), Baikal sheep (4,758), Hammari 
sheep (1,907), and Kabashi sheep (1,338) (Figure 2C).

3.3 Population structure analysis

PCA of the SVs was used to explore the relationships among the 
breeds, plotting the first two principal components (PC1 and PC2). The 
analysis revealed that among the seven breeds, Hammari and Kabashi 
sheep clustered together, while the other five breeds showed clear 
separation based on their SV profiles (Figure 3A). To further investigate 
population relationships, a phylogenetic tree was constructed based on 
the SVs, with the results showing that the seven populations grouped 
into six distinct clusters, with Hammari and Kabashi sheep clustering 
together, consistent with the PCA results (Figure  3B). This was 
suggestive of a close genetic relationship between these two breeds.

3.4 Selection signal analysis

3.4.1 Differences in SVs between Hu sheep and 
other breeds and between Hu sheep and Kazak 
sheep or Yunnan semi-fine wool sheep

Selection signal analysis using FST detected SV differences between 
Hu sheep and other breeds, as well as between Hu sheep and Kazakh 
sheep or Yunnan semi-fine wool sheep. The top 1% of SVs with the 
highest FST values were selected as candidate regions for further 
analysis, leading to the identification of 653 loci under selection, 
annotated with 801 candidate genes. The FST threshold for the selected 
regions was 0.260 (Figure 4A).

3.4.2 SV differences between Kazakh sheep and 
five other breeds

Next, we analyzed the differences in SVs between Kazakh sheep 
and five other breeds (Yunnan fine-wool sheep, Baikal sheep, 
Hammari sheep, Kabashi sheep, and Tuva sheep). The top 1% of SVs 
with the highest FST values were selected as candidate regions for 
further analysis, revealing that 358 loci were subject to selection, 
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corresponding to 502 candidate genes. The FST threshold for the 
selected regions was 0.104 (Figure 4B).

3.4.3 Shared and unique SVs detected
We identified a 67-bp deletion (FST = 0.188) in the intron of the 

MTNR1A gene, which was a shared high-FST SV between the two 
groups (Figure 4C). Additionally, a 72-bp deletion (FST = 0.385) in 
the intron of the ADCY5 gene, which is associated with 

reproductive traits, showed high differentiation between Hu sheep 
and the other breeds, as well as among Hu sheep, Kazakh sheep, 
and Yunnan semi-fine wool sheep. Moreover, a 731-bp deletion 
(FST = 0.153) upstream of the FSHR gene, which is related to 
reproduction, was highly differentiated between Kazakh sheep and 
the other five breeds (Supplementary Table  1). Genotype 
frequencies for these three SVs were also statistically analyzed 
(Figures 4D–F).

FIGURE 1

(A) Global geographic distribution of the seven sheep breeds. (B) Types of structural variants (SVs). (C) Chromosomal distribution of the SVs. (D) Minor 
allele frequency distribution across the genomes of 73 ewes. (E) Length distribution of the deletions and inversions.
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3.5 Annotation and functional enrichment 
of candidate genes

GO term and KEGG pathway enrichment analyses were 
performed on the selected regions using the DAVID and KOBAS 
websites. GO enrichment analysis between Hu sheep and the other 
breeds, as well as between Hu sheep and Kazakh sheep or Yunnan 
semi-fine wool sheep, identified 36 GO terms, mainly related to 
processes such as protein binding, ATP binding, mitochondrion, and 
regulation of transcription by RNA polymerase II (Figure  5A). 

Meanwhile, KEGG pathway enrichment analysis revealed 31 
pathways, primarily associated with the WNT signaling pathway, 
Relaxin signaling pathway, GnRH signaling pathway, and ovarian 
steroidogenesis (Figure 5B). GO enrichment analysis between Kazakh 
sheep and the other five breeds identified 35 GO terms, mainly linked 
to processes such as protein binding, metal ion binding, nucleus, and 
protein phosphorylation (Figure  5C). Finally, KEGG pathway 
enrichment analysis revealed 17 pathways, mainly related to ovarian 
steroidogenesis, steroid hormone biosynthesis, Hippo signaling 
pathway, and circadian entrainment (Figure 5D).

FIGURE 2

(A) The number of structural variants (SVs) in each breed. (B) The proportion of SVs in each breed. (C) A Venn diagram of the SVs in the seven breeds.

FIGURE 3

(A) Principal component analysis. (B) Phylogenetic tree analysis.
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3.6 Functional validation of high-frequency 
SVs associated with reproductive traits

We identified three high-frequency SVs associated with 
reproductive traits, including a 731-bp DEL upstream of the FSHR 
gene. This variant was found to be most prevalent in the Yunnan fine 

wool sheep population (AF = 0.70), followed by the Kazakh 
(AF = 0.68) and Kabashi (AF = 0.68) sheep populations. The 
frequencies were lowest in the Tuva sheep (AF = 0.25) and Hammari 
sheep (AF = 0.25) populations. Dual-luciferase reporter assays 
demonstrated that the 731-bp DEL led to a reduction in enhancer 
activity, with significantly higher luciferase expression observed in 

FIGURE 4

(A) A Manhattan plot for Hu sheep and the other breeds as well as between Hu sheep and Kazak sheep or Yunnan semi-fine wool sheep. (B) A 
Manhattan plot for Kazakh sheep and five other breeds. (C) A Venn diagram. (D) Genotype frequencies of the 72-bp deletion. (E) Genotype frequencies 
of the 67-bp deletion. (F) Genotype frequencies of the 731-bp deletion.
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cells carrying the FSHR-DEL variant than in those with the FSHR-WT 
genotype, suggesting that the 731-bp sequence has enhancer activity 
and promotes FSHR gene expression (Figure  6A). Similarly, our 
findings revealed that both the 67-bp DEL in the intron of the 
MTNR1A gene and the 72-bp DEL in the intron of the ADCY5 gene 
resulted in a significant reduction in luciferase expression in cells with 
the MTNR1A-DEL and the ADCY5-DEL compared to that in WT 
cells (Figures 6B,C). These results indicated that both DNA fragments 
act as enhancers in HeLa cells.

4 Discussion

SVs represent an important source of genetic diversity and have 
been extensively studied in plants and animals over recent years (23). 
In this study, we  used three software tools—Manta, Lumpy, and 
Delly—to detect SVs and then generated a SV set by considering only 
those detected by all three tools. This approach aimed to improve 
detection accuracy and minimize false positives. A total of 107,166 
SVs were identified. In terms of variation types and quantities, DELs 
accounted for the highest proportion at 48.39%, while TRAs 

represented only 0.03%. We detected genomic SVs in seven sheep 
breeds, with the highest number found in Hu sheep and the lowest in 
Tuva sheep. However, when breed-specific variations were considered, 
Tuva sheep exhibited the highest number of unique variations, 
followed by Hu sheep. This high number of unique SVs in Tuva sheep, 
a local breed with a unique genetic background, likely reflects the 
accumulation of a large number of breed-specific variations due to 
long-term natural selection and genetic drift. A Venn diagram analysis 
indicated that 4,857 SVs were shared among the seven breeds, with 
additional shared SVs detected between specific breeds. Due to the 
limitations of currently available methods for the detection of INSs, it 
is necessary to combine long-read sequencing and third-generation 
sequencing to improve SV detection in the future.

PCA was performed to assess the genetic relationships among the 
seven sheep breeds. The results showed that, except for Hammari and 
Kabashi sheep, which clustered together, the other five breeds 
exhibited significant genetic differentiation. Further analysis based on 
phylogeny confirmed the PCA results, with the seven populations 
grouped into six branches. Hammari and Kabashi sheep were again 
placed in the same branch, suggestive of a high degree of genetic 
similarity between the two. The consistency between the PCA and 

FIGURE 5

(A,B) GO functional enrichment analysis and KEGG pathway enrichment analysis of selected genes between Hu sheep and the other breeds, as well as 
between Hu sheep and Kazak sheep or Yunnan semi-fine wool sheep. (C,D) GO functional enrichment analysis and KEGG pathway enrichment 
analysis of selected genes between Kazakh sheep and the other five breeds.
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phylogenetic tree results suggests that Hammari and Kabashi sheep 
may share a closer evolutionary origin or experience more frequent 
gene flow. This genetic relationship may be linked to their geographic 
distribution, historical breeding, or ecological adaptations. Moreover, 
the significant genetic differentiation observed among the other five 
breeds likely reflects breed-specific selective pressures and the long-
term environmental effects on these populations.

In this study, we  identified several candidate genes related to 
reproductive traits, including MTNR1A, FSHR, and ADCY5. 
Previously, Lukic et al. (24) identified the MTNR1A gene as playing a 
significant role in regulating seasonal reproduction in sheep using a 
genome-wide analysis. The MTNR1A gene, which encodes the main 
receptor for melatonin, regulates melatonin signaling, influencing the 
activity of the hypothalamic-pituitary-gonadal axis in sheep. 
Consequently, MTNR1A regulates the reproductive cycle and 
performance of these animals and enables them to better adapt to 
seasonal environmental changes. Arjoune et al. (25) used genotyping 
and statistical analysis to explore the genetic polymorphisms of the 
MTNR1A gene in two Mediterranean sheep breeds and examined how 
these polymorphisms affect reproductive performance. The authors 
reported that certain MTNR1A genotypes were significantly associated 
with favorable reproductive traits, such as higher lambing rates, better 
fertility, and more stable estrous cycles. Abuzahra et  al. (26) 
summarized existing studies on the relationship between MTNR1A 
and lambing rates in sheep, reviewing the role of the MTNR1A gene 
in reproductive performance, particularly lambing rates, and analyzed 
how its polymorphisms influence reproductive capacity. Their findings 
suggested that MTNR1A plays a crucial role in regulating sheep 
reproductive cycles and efficiency. Employing whole-genome 
sequencing, Guo et  al. (27) found that the FSHR gene is closely 
associated with reproductive traits (e.g., parity) in sheep and plays a 
significant role in selective breeding. Ma et al. (28), using specific locus 
amplified fragment sequencing (SLAF-seq), identified novel genes 
associated with lambing rates in Xinjiang sheep populations, including 
FSHR, which influence reproductive performance by regulating 
reproductive processes. He et al. (29) demonstrated through qRT-PCR 
that the expression level of the FSHR gene was significantly higher in 
high-reproduction sheep than in low-reproduction ones and identified 

several polymorphic sites in this gene that were closely related to 
reproductive performance. Similarly, Tao et al. (30) found a significant 
correlation between SNPs in the FSHR gene and reproductive traits in 
different sheep breeds using genotyping, qPCR, and bioinformatics 
analysis. Pan et al. (31) further characterized the FSHR gene, analyzed 
its expression patterns across various tissues and conditions, and 
systematically explored the potential association between FSHR 
polymorphisms and lambing rates. They concluded that the expression 
characteristics and genetic variations of the FSHR gene significantly 
influenced reproductive performance in sheep. Finally, Du et al. (32), 
using comparative transcriptomic analysis, identified a seasonal 
expression pattern of the ADCY5 gene in the adrenal tissues of Sunit 
sheep, confirming it as a key candidate gene influencing 
seasonal reproduction.

In this study, we  identified 107,166 genomic SVs, greatly 
expanding our understanding of the genetic variation across 
different sheep breeds. The identified high-frequency SVs 
associated with reproductive traits offer valuable insights into 
potential candidate genes for use in Xinjiang native sheep breeding. 
Overall, this study provides a valuable genetic resource for 
understanding sheep domestication and reproductive traits and 
contributes to the dissection of the genetic basis of important 
phenotypic traits.
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FIGURE 6

(A) Dual-luciferase reporter assay of the 731-bp sequence in HeLa cells. (B) Dual-luciferase reporter assay of the 67-bp sequence in HeLa cells. 
(C) Dual-luciferase reporter assay of the 72-bp sequence in HeLa cells.
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