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Superovulation and embryo transfer technologies provide strong support for 
improving the productivity of cattle population. A non-invasive diagnostic method 
for superovulation prediction is necessary to improve its efficiency. Compared 
to macromolecular substances, there has been an increasing number of studies 
on small molecular metabolites as biomarkers. This study aimed to identify key 
biomarkers associated with superovulation outcomes in cows through serum 
metabolomics analysis. In this study, 36 induced estrus cows were selected, and 
the blood samples were collected at three time points: before FSH injection, before 
artificial insemination, and before embryo collection. Then, the cows were classified 
into high embryonic yield (HEY) and low embryonic yield (LEY) groups based on 
the total number of embryos. Furthermore, a serum untargeted metabolomics 
analysis of the two groups was conducted using liquid chromatography with 
tandem mass spectrometry (LC–MS/MS). A total of 372 embryos were collected. 
The metabolomics analysis revealed that 1,158 metabolites were detected, and 617 
were annotated. In the before FSH injection samples, 121 differential metabolites 
were identified between the two groups. In the before artificial insemination 
samples, 129 differential metabolites were identified. In the before embryo collection 
samples, 201 differential metabolites were identified. A total of 11 differential 
metabolites were shared between the before FSH injection and before artificial 
insemination samples, while five differential metabolites were shared across all three 
samples. The majority of the differential metabolites were significantly enriched 
in pathways related to amino acid and fatty acid metabolism, digestive system 
secretion, and ovarian steroidogenesis. This study showed that phosphatidylcholine 
[PC; 14:0/22:1(13Z)], phosphatidylethanolamine [PE; DiMe (11, 3)], triacylglycerol 
[TG; 15:0/16:0/22:4 (7Z, 10Z, 13Z, 16Z)], phosphatidylinositol [PI; 16:0/22:2 (13Z, 
16Z)], and phosphatidylserine [PS; 18:0/20:4(8Z, 11Z, 14Z, 17Z)] were differentially 
expressed in the serum during the superovulation period. These could serve as 
potential biomarkers for embryonic yield prediction in bovine superovulation. 
The lipid and amino acid metabolic pathways may have an impact on the ovarian 
response. The results of this study could provide novel screening indexes of 
donors for bovine superovulation, although the accuracy of the relevant factors 
requires further investigation.
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Introduction

The cattle industry is an important part of animal husbandry. 
Superovulation and embryo transfer technologies provide powerful 
support for improving the productivity of cattle population. 
However, the efficiency of bovine superovulation is affected by 
multiple factors, including genetics, age, body condition, diseases, 
and management, likely through their influence on the uterine 
environment, oocyte quality, and embryo development (1). To 
improve the screening efficiency of donors for bovine 
superovulation, several strategies have been established, including 
small follicle detection by ultrasound (2), genotype analysis (3–5), 
reproductive hormone detection (AMH, P4, E2, and FSH) (6–13), 
blood vitamin levels (14), paraoxonase-1 (15), serum biochemical 
parameters (16), and partial metabolic parameters (17, 18). 
However, the ovarian antral follicle count does not have a linear 
correlation with the outcome of embryo production (19). The 
prediction efficiency of reproductive hormone levels varies with 
age (11). In addition, the detection time is also important. 
Compared to macromolecular substances, there have been an 
increasing number of studies on small molecule metabolites 
as biomarkers.

Metabolites are the end products of various biochemical 
reactions in cells. Their composition and activity are influenced 
by both internal and external factors. Many studies have been 
conducted on the metabolome and bovine reproduction, 
including reproductive performance (17, 18, 20), pregnancy 
prediction (21–24), and reproductive disorders (1, 25–27). In the 
research by Horn et al., the preovulatory serum metabolome was 
analyzed in cows with different body condition scores to explain 
the mechanisms by which extreme body conditions affect 
reproductive capacity (18). However, more studies are necessary 
to identify reliable metabolic biomarkers related to bovine 
superovulation and to more comprehensively reveal the 
regulatory mechanisms, as metabolites are affected by 
many factors.

In this study, differences in serum reproductive hormones and 
metabolites between high embryonic yield (HEY) and low embryonic 
yield (LEY) HuaXi cows were analyzed during the superovulation 
period to identify key biomarkers related to superovulation outcomes. 
The study results may provide novel screening indexes of donors for 
bovine superovulation.

Results

Embryo production

In this study, 36 cows were selected and treated using the standard 
superovulation process (Figure 1). The results are shown in Table 1. A 
total of 372 embryos were collected, with an average of 10.33 ± 1.25 
embryos per cow. Of these, 286 embryos were viable, with an average 
of 7.94 ± 1.16 embryos per cow. Finally, 11 cows were assigned to the 
HEY group, while 9 cows were assigned to the LEY group.

Untargeted metabolic profiling of the 
cows’ serum during superovulation

To explore the serum metabolic differences between HEY and LEY 
groups, untargeted metabolomics analysis was performed. In total, 
13,222 features were detected, of which 5,654 metabolites were annotated 
(Supplementary Table S1). According to the Human Metabolome 
Database (HMDB) analysis, the most enriched category was lipids and 
lipid-like molecules (353 metabolites), followed by organic acids and 
derivatives (75 metabolites) and benzenoids (69 metabolites; 
Supplementary Figure S1A). According to the Kyoto Encyclopedia of 
Genes and Genomes (KEGG) analysis, the most enriched pathway was 
metabolic pathways (206 metabolites), followed by glycerophospholipid 
metabolism (135 metabolites) and the biosynthesis of secondary 
metabolites (75 metabolites; Supplementary Figure S1B).

Multivariate statistical analysis

Principal component analysis (PCA) was conducted to determine 
the separation and aggregation of samples between HEY and LEY 
groups. The first principal component (PC1) and the second principal 
component (PC2) were 12.3 and 8.2%, respectively (Figure  2A). 
Orthogonal partial least squares discriminant analysis (OPLS-DA) was 
performed to further investigate the variables responsible for 
classification and to achieve better group separation. For the before FSH 
injection samples, the R2 of the OPLS-DA model was 0.996 and the Q2 
was 0.736 (Figure 2B). In the before artificial insemination samples, the 
R2 and Q2 were 0.996 and 0.796, respectively (Figure 2C). In the before 
embryo collection samples, the R2 and Q2 were 0.988 and 0.553, 

FIGURE 1

CIDR (Zoetis, New Zealand) was inserted into the vagina on day 0 (D0). Between days 9 and 12, a total of 500 μg of FSH (Stimufol®, Belgium) was 
injected in eight doses, with each dose decreasing by 10%. On the fifth FSH injection (morning of D11), 300 μg of PG (Reprobiol, New Zealand) was 
injected synchronously. The CIDR was removed at the time of the final FSH injection. Estrus detection occurred on D13, and AI was performed twice 
(12 h interval). On D20, embryos were collected via uterus flushing after the cows were anesthetized with a caudal spinal injection of lidocaine 
hydrochloride.

https://doi.org/10.3389/fvets.2025.1552045
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Su et al. 10.3389/fvets.2025.1552045

Frontiers in Veterinary Science 03 frontiersin.org

respectively (Figure 2D). The results showed that serum metabolites 
could be used to distinguish between the two groups.

Identification of differential metabolites

The liquid chromatography with tandem mass spectrometry (LC–
MS/MS) data were used to analyze the metabolites of different 
substances. Differential metabolites were screened based on the 
following criteria: VIP ≥ 1, FC > 1.2 or < 0.83, and p ≤ 0.05. A 
comprehensive statistical analysis was performed.

In the before FSH injection samples, 121 differential metabolites 
were identified, of which 23 were upregulated in the HEY group and 
98 were upregulated in the LEY group (Figure  3A; 
Supplementary Table S2). In the before artificial insemination samples, 
129 differential metabolites were identified, of which 28 were 
upregulated in the HEY group and 101 were upregulated in the LEY 
group (Figure 3B; Supplementary Table S3). In the before embryo 
collection samples, 201 differential metabolites were identified, of 
which 53 were upregulated in the HEY group and 148 were 
upregulated in the LEY group (Figure 3C; Supplementary Table S4).

Among the differential metabolites at three sampling time points, 
there were 11, 16, and 66 shared differential metabolites between the 
before FSH injection and before artificial insemination samples, the 
before artificial insemination and before embryo collection samples, 
and the before FSH injection and before embryo collection samples, 
respectively (Figure. 3D; Supplementary Tables S5–S7). In addition, 
five shared differential metabolites were identified across all three 
sampling time points. Among them, phosphatidylcholine [PC; 
14:0/22:1(13Z)] was upregulated in the HEY group, while 
phosphatidylethanolamine [PE; DiMe (11, 3)], triacylglycerol [TG; 
15:0/16:0/22:4 (7Z, 10Z, 13Z, 16Z)], phosphatidylinositol [PI; 
16:0/22:2 (13Z, 16Z)], and phosphatidylserine [PS; 18:0/20:4(8Z, 11Z, 
14Z, 17Z)] were upregulated in the LEY group at all three time points 
(Figure 3D; Table 2).

Functional enrichment of the differential 
metabolites

The functional enrichment of differential metabolites was 
performed following the method described by Kanehisa et al. (28). 
The results showed that 21 pathways were enriched in the before 
FSH injection samples. Among these, nine pathways were 
significantly enriched, including inositol phosphate metabolism, 
phosphatidylinositol signaling system, and 
glycosylphosphatidylinositol (GPI)-anchored biosynthesis, among 
others (Figure 4A). A total of 24 pathways were enriched in the 
before artificial insemination samples. Among these, three 
pathways were significantly enriched, including fatty acid 

biosynthesis, phototransduction–fly, and shigellosis (Figure 4B). A 
total of 24 pathways were enriched in the before embryo collection 
samples. Among these, 13 pathways were significantly enriched, 
including inositol phosphate metabolism, fat digestion and 
absorption, and regulation of lipolysis in adipocytes, among others 
(Figure 4C).

Discussion

In bovine superovulation, the physiological status of the donor 
plays an important role in the outcome. Metabolites in the blood can 
reflect the physiological status of the body (29). Here, we found that 
there were distinct serum metabolites between bovine donors with 
different embryo yields at the time points before FSH injection, before 
artificial insemination, and before embryo collection. 
Phosphatidylcholine [PC; 14:0/22:1(13Z)], phosphatidylethanolamine 
[PE; DiMe (11, 3)], triacylglycerol [TG; 15:0/16:0/22:4 (7Z, 10Z, 13Z, 
16Z)], phosphatidylinositol [PI; 16:0/22:2 (13Z, 16Z)], and 
phosphatidylserine [PS; 18:0/20:4(8Z, 11Z, 14Z, 17Z)] were the shared 
differential metabolites. The functions of these differential metabolites 
include fatty acid and protein metabolism and GPI-anchor 
biosynthesis, among others.

Several studies have shown that lipids present in follicular fluid 
are associated with the development of oocyte, and the concentration 
of lipids in the blood can reflect the concentration of follicular fluid. 
Furthermore, obesity is associated with irregular reproductive cycles. 
In obese horses, oocytes had lower concentrations of lipids consistent 
with PC and PE, while lipids consistent with TG tended to be higher 
(30). In patients with polycystic ovary syndrome, lipid profiling of 
follicular fluid showed differences in PC, PS, PI, and PE, strongly 
suggesting that these lipids may serve as biomarkers for pregnancy 
outcomes (31). In a study comparing human lipid profiles of follicular 
fluid between young poor ovarian responders and normal responders, 
lipids related to PC, PE, and PI were differentially expressed. These 
lipids may be involved in hormonal responses and oocyte development 
processes (32). PE, a glycerophospholipid, plays a role in the 
biosynthesis of PC (33). In this study, PE-NMe(11D3/11D3) was 
identified as a differential metabolite and may serve as a biomarker for 
the ovarian response during bovine ovulation.

A study on PC in bovine follicular fluid found variations during 
superovulation and estrous synchronization treatments, indicating that 
superovulation could increase the phospholipid content in follicular fluid 
(34). Additionally, a human superovulation study showed that some 
PC-related lipids in follicular fluid had higher concentrations in the 
successful group (32). In an ovine superovulation study, we found that 
certain PC-related metabolites in donor serum were significantly 
different between HEY and LEY populations (35). In this study, we found 
that PC [14:0/22:1(13Z)] was significantly higher in the HEY group than 
in the LEY group at all three time points. PC [14:0/22:1(13Z)] is a 

TABLE 1 Statistics of embryonic production after superovulation in cows (mean ± S.D.).

Donor 
number

Total 
embryos

Average 
total 

embryos

Total 
viable 

embryos

Average 
viable 

embryos

HEY 
donor 

number

Average 
total 

embryos 
of HEY

Average 
viable 

embryos 
of HEY

LEY 
donor 

number

Average 
total 

embryos 
of LEY

Average 
viable 

embryos 
of LEY

36 372 10.33 ± 1.25 286 7.94 ± 1.16 11 18.64 ± 2.15 14.91 ± 2.35 9 2.78 ± 0.46 2.22 ± 0.36
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glycerophospholipid in which a PC moiety occupies the glycerol 
substitution site. Phospholipids are ubiquitous in nature and are key 
components of the lipid bilayer in cells. They also play crucial roles in 
metabolism and signaling (36). Taken together, PC [14:0/22:1(13Z)] may 
serve as a serum biomarker for bovine superovulation.

Lipid metabolism provides the energy source during oocyte 
maturation. Lipids in oocytes are primarily triglycerides composed of 
specific fatty acids, which differ by species (37). In cumulus–oocyte 
complexes (COCs), TG are metabolized by lipases and through 
β-oxidation in mitochondria for ATP production (37). In dairy cows, 
follicular fluid TG levels were lower than those in serum, but there was 
a significant correlation between the two (38). In humans, studies have 
indicated that the majority of serum metabolites, including TG, are also 
present in follicular fluid, albeit at reduced levels (39). In adult zebrafish, 
high blood TG levels had negative effects on their offspring (40). 
Interestingly, Calonge et al. (41) found that the lipid profiles in follicular 
fluid and plasma inversely and significantly influenced ovarian response 
and the number of matured oocytes recovered. In this study, we found 
that TG composition [15:0/16:0/22:4(7Z,10Z,13Z,16Z)] was higher in 
the LEY group comparted to the HEY group. This suggests that 
excessively high blood TG levels affect the ovarian response during 
bovine superovulation.

PI could help maintain the low activity levels of the Hippo 
pathway (42). Emerging studies have discovered that the Hippo 

pathway plays an important role in regulating ovarian physiology and 
fertility (43). The process of oocyte maturation depends on follicle 
development. Previous studies have demonstrated that the Hippo 
pathway regulates the activation and growth of follicles (44–47). 
Related research has suggested that the upstream Hippo component, 
SAV1/MST1/2, contributes to the suppression of ovarian granulosa 
cell proliferation, while the Hippo effector YAP1 is essential for the 
proliferation of these granulosa cells (48). In summary, the serum 
metabolites related to PI may regulate follicle development through 
the Hippo pathway. In this study, we  found that the level of PI 
[16:0/22:2 (13Z, 16Z)] was significantly higher in the HEY group than 
in the LEY group at all three sampling time points. This finding may 
be associated with the outcome of embryo production.

Conclusion

Serum metabolomics analysis provides a feasible approach to explore 
the predictors of superovulation in bovine. This study showed that PC 
[14:0/22:1(13Z)], PE [DiMe (11, 3)], TG [15:0/16:0/22:4 (7Z, 10Z, 13Z, 
16Z)], PI [16:0/22:2 (13Z, 16Z)], and PS [18:0/20:4(8Z, 11Z, 14Z, 17Z)] 
were differentially expressed in the serum during the superovulation 
period. These could serve as potential biomarkers for embryonic yield 
prediction in bovine superovulation. The lipid and amino acid metabolic 

FIGURE 2

Multivariate statistical analysis results of the metabolome. (A) PCA results. B–D: OPLS-DA results from three sampling time points: (B) before FSH 
injection; (C) before artificial insemination; and (D) before embryo collection. HEY1: High embryonic yield group at the sampling before FSH injection. 
LEY1: Low embryonic yield group at the sampling before FSH injection. HEY2: High embryonic yield group at the sampling before artificial 
insemination. LEY2: Low embryonic yield group at the sampling before artificial insemination. HEY3: High embryonic yield group at the sampling 
before embryo collection. LEY3: Low embryonic yield group at the sampling before embryo collection.

FIGURE 3

Differential metabolite analysis results. (A–C) Volcano plots for three sampling time points: (A) Before FSH injection; (B) before artificial insemination; 
and (C) before embryo collection. (D) Venn diagram of the differential metabolites across three sampling time points. HEY1: High embryonic yield 
group at the sampling before FSH injection. LEY1: Low embryonic yield group at the sampling before FSH injection. HEY2: High embryonic yield group 
at the sampling before artificial insemination. LEY2: Low embryonic yield group at the sampling before artificial insemination. HEY3: High embryonic 
yield group at the sampling before embryo collection. LEY3: Low embryonic yield group at the sampling before embryo collection.
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TABLE 2 Shared differential metabolites across three sampling time points.

Metabolite ID MS1 name MZ Sampling time Relative 
abundance of 

HEY group

Relative 
abundance of 

LEY group

Fold 
changea

p valueb VIPc Up. downd

POS_788.6168_5.679 PC[14:0/22:1(13Z)] 788.62 Before FSH injection 1661555.38 1179292.10 1.41 0.0220 9.05 up

Before artificial insemination 1940812.82 1320729.14 1.47 0.0222 8.94 up

Before embryo collection 2104757.61 1350278.94 1.56 0.0240 8.33 up

NEG_811.5229_7.6312 PE [DiMe(11,3)] 811.52 Before FSH injection 19015.44 52112.66 0.36 0.0011 2.38 down

Before artificial insemination 31786.16 61470.94 0.52 0.0347 1.88 down

Before embryo collection 16952.03 52399.75 0.32 0.0036 2.11 down

NEG_884.7788_7.6502 TG[15:0/16:0/22:4(7Z,10Z,13Z,16

Z)]

884.78 Before FSH injection 11372.16 21573.02 0.53 0.0315 1.25 down

Before artificial insemination 15427.56 37777.81 0.41 0.0332 1.78 down

Before embryo collection 9420.85 25223.36 0.37 0.0025 1.40 down

NEG_889.575_7.8226 PI[16:0/22:2(13Z,16Z)] 889.57 Before FSH injection 533499.10 1606997.01 0.33 0.0022 14.04 down

Before artificial insemination 907624.75 2356853.26 0.39 0.0348 12.79 down

Before embryo collection 482513.64 1404412.95 0.34 0.0060 10.55 down

NEG_810.5216_7.6216 PS[18:0/20:4(8Z,11Z,14Z,17Z)] 810.52 Before FSH injection 55926.94 147153.83 0.38 0.0006 4.07 down

Before artificial insemination 85709.53 170426.08 0.50 0.0446 3.14 down

Before embryo collection 51423.13 152406.47 0.34 0.0037 3.57 down

aThe fold change between the high embryonic yield group and the low embryonic yield group (a higher ratio indicates a higher level of expression of a compound in the high embryonic yield group).
bp-value represents the significance level of the difference between the two groups.
cVariable importance in projection of the two groups.
dCompared to the low embryonic yield group, the high embryonic yield group showed upregulated or downregulated expression of this metabolite.
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pathways may have an impact on the ovarian response. The study results 
may provide novel screening indexes of donors for bovine superovulation, 
although the accuracy of the relevant factors requires further investigation.

Methods

Experimental location and cows’ 
management

This study was conducted at the Livestock Experimental Base of 
Inner Mongolia University in Hohhot (Inner Mongolia, China). This 
region has a tropical mid-temperate, semi-arid continental monsoon 
climate, characterized by long dry winters and short rainy summers.

A total of 36 sexually mature and clinically healthy Huaxi cows, aged 
2 to 4 years, were used in this study. The cows’ diet was designed to meet 
their nutritional needs, with unified management during feeding in the 
barn. The cows were fed a total mixed ration consisting of 15.00% alfalfa 
hay, 50.00% whole corn silage, and 35.00% cow concentrate supplement, 
resulting in a forage-to-concentrate ratio of 65:35.

Superovulation protocols

The cows were treated as follows (Figure  1): A CIDR (Zoetis, 
New Zealand) was inserted into the vagina on day 0 (D0). Between days 
9 and 12, a total of 500 μg of FSH (Stimufol®, Belgium) was injected in 
eight doses, with each dose decreasing by 10%. On the fifth FSH 
injection (morning of D11), 300 μg of PG (Reprobiol, New Zealand) 
was injected synchronously. The CIDR was removed at the time of the 
final FSH injection. Estrus detection occurred on D13, and artificial 
insemination (AI) was performed twice (12 h interval). On D20, 
embryos were collected via uterus flushing after the cows were 
anesthetized with a caudal spinal injection of lidocaine hydrochloride.

Blood sampling

Blood samples were collected in the mornings on D9, before FSH 
injection; on D13, before artificial insemination; and on D20, before 
embryo collection. The samples were collected in vacuum blood 
collection tubes. Then, the samples were centrifuged at 10000 × g for 
10 min to obtain the serum. All serum samples were stored in liquid 
nitrogen until further use.

LC–MS/MS measurements for serum 
metabolomics

Based on the total embryonic yield, the cows with ≥ 13 embryos 
were classified into the high embryonic yield (HEY) group, and the 
cows with ≤ 5 embryos were classified into the low embryonic yield 
(LEY) group. Six cows from each group (n = 6) were selected for 
serum metabolomics analysis. The LC–MS/MS-based serum 
metabolomics analysis was performed by LC-Bio Co. Ltd. (Hangzhou, 
China), following the methodology described by Xu et al. (35).

Briefly, the serum samples were purified with methanol and diluted 
in LC–MS grade water. UHPLC–MS/MS analyses were performed 
using a Vanquish UHPLC system (Thermo Fisher Scientific, Germany) 
coupled with an Orbitrap Q ExactiveTM HF mass spectrometer (Thermo 
Fisher Scientific, Germany). The solvent gradient was set as follows: 2% 
B, 1.5 min; 2–85% B, 3 min; 100% B, 10 min; 100–2% B, 10.1 min; and 
2% B, 12 min. The Q ExactiveTM HF mass spectrometer was operated in 
both positive and negative polarity modes, with a spray voltage of 
3.5 kV, a capillary temperature of 320°C, a sheath gas flow rate of 35 psi, 
an auxiliary gas flow rate of 10 L/min, an S-lens RF level of 60, and an 
auxiliary gas heater temperature of 350°C.

Data processing and metabolite 
identification

Briefly, raw data files generated through UHPLC–MS/MS were 
processed using Compound Discoverer 3.1 (CD3.1, Thermo Fisher 
Scientific, Germany). Then, the peaks were matched with mzCloud,1 
mzVault, and MassList databases to obtain accurate qualitative and 
relative quantitative results. Statistical analyses were performed using 
R statistical software (version R-3.4.3), Python (Python 2.7.6 version), 
and CentOS (CentOS release 6.6).

Data analysis

The Kyoto Encyclopedia of Genes and Genomes (KEGG),2 the 
LIPID MAPS (Lipidmaps),3 and the Human Metabolome Database 

1 https://www.mzcloud.org/

2 http://www.kegg.com

3 www.lipidmaps.org

FIGURE 4

KEGG enrichment results of differential metabolites. (A) Before FSH injection; (B) before artificial insemination; (C) before embryo collection.
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(HMDB)4 were used to annotate the biological functions of the 
metabolites. Bioinformatic analysis was performed using R software 
(v.4.0.2) or the OmicStudio tools available at https://www.omicstudio.
cn/tool. The metabolism data were statistically analyzed using the 
two-sided Wilcoxon rank sum test and finally visualized using the 
ggpubr package (version 0.6.0). The metabolites with a variable 
importance in projection (VIP) > 1, a p-value < 0.05, and a fold change 
(FC) ≥ 1.2 or ≤ 0.83 were considered differential metabolites. Volcano 
plots were used to filter the metabolites of interest based on 
log2(FoldChange) and -log10(p-value) of metabolites using ggplot2 in 
R language. A Venn diagram of the differential metabolites was created 
at http://bioinformatics.psb.ugent.be/webtools/Venn/. The functions 
of differential metabolites were analyzed using the KEGG database.
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