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The present study involved crossing Alpine goats with Yunshang black bucks from 
Yunnan Province to produce Alpine-Yunshang dual-purpose F1 (AYF1) goats. The 
AYF1 goats were compared with Saanen and Toggenburg goats by evaluating 
milk yield, composition, and molecular markers in order to identify metabolites 
using liquid chromatography–mass spectrometry (LC–MS) technology. A total 
of 18 goats were selected, with 6 goats from each breed forming 3 groups. Daily 
milk yield was recorded, and milk composition was analyzed on days 60 and 
120 of lactation. The results showed that on day 60, Saanen and AYF1 goats had 
significantly higher protein and fat contents than Toggenburg goats. On day 120, 
AYF1 goats had higher fat content, while Saanen goats had higher protein content 
compared to Toggenburg goats. There were no differences (p > 0.05) in milk yield 
among the breeds during the first, second, and fourth months; however, the Saanen 
breed yielded more milk during the third month compared to the other breeds 
(p < 0.05). Metabolomics analysis revealed a total of 1,108 distinct metabolites in 
the positive ion mode and 360 in the negative ion mode. The majority of these 
metabolites were found at higher levels in Saanen goats compared to other 
breeds. The relative abundance of 2-phenylacetamide, 5-aminolevulinic acid, 
and ureidopropionic acid was significantly higher in Saanen goats compared to 
AYF1 goats (p < 0.05). In the initial screening, 55 common and 17 useful differential 
metabolites were identified. A total of 17 metabolites, including 12 metabolic 
pathways and 7 functional classifications, were investigated using the KEGG platform. 
Metabolomics analysis showed that Saanen dairy goats produced higher levels 
of L-fucose, 4-acetamidobutanoic acid, L-tyrosine, and D-galactose, suggesting 
their involvement in milk production. In contrast, AYF1 goats had higher levels 
of sucrose, L-proline, ectoine, and biotin, suggesting their possible role in the 
metabolism of milk constituents. These findings offer insights into breed-specific 
milk metabolite profiles, highlighting the potential of AYF1 goats as a beneficial 
dual-purpose genotype for enhanced dairy and metabolic performance.
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Introduction

Small ruminants play a crucial role in production systems, 
particularly in developing regions of Asia, Africa, and Latin America 
(1). These animals are raised primarily by poor, small-scale producers 
and are regarded as valuable assets for smallholders, helping to 
generate income, secure food availability, and enhance resilience to 
climate change (2, 3). The rearing of these animals significantly 
contributes to household food security and promotes sustainable 
economic development. These animals play a crucial economic and 
ecological role in smallholder farming systems and agricultural 
practices (4).

Goat milk is increasingly recognized for its high nutritional 
content, ease of digestion, and better tolerance in individuals who 
are allergic to cow’s milk (5). It is considered a functional food, 
providing various health benefits due to its richness in medium-
chain fatty acids, oligosaccharides, essential amino acids, and highly 
bioavailable minerals (6). On average, goat milk contains 
approximately 12.2% total solids, with nearly 3.8% fat, 3.5% protein, 
4.1% lactose, and 0.8% ash (7). In addition, the smaller particle size 
of goat milk fat globules makes them easier to digest compared to 
those found in cow milk (8).

Metabolic profiling technologies have emerged as essential tools 
for investigating physiological traits, dietary effects, and animal health 
(9). This approach involves a systemic investigation of both 
endogenous and exogenous metabolites in biological fluids, utilizing 
modern analytical chemistry techniques such as liquid 
chromatography–mass spectrometry (LC-MS) (10, 11). By enabling 
the easy collection of biofluids and tissues, this method offers a 
comprehensive approach to the differentiation of mammalian milk 
based on the composition of small molecules (12, 13). Despite the 
extensive use of metabolomics technology, studies on goat milk are 
limited, which ultimately contrasts with the significance of goat milk 
in the global agricultural food economy (14, 15). However, identifying 
the molecular metabolites in goat milk can provide insights into 
various aspects of production and compositional characteristics of 
animals, providing opportunities for future advancements in the 
development of dairy goats (10).

Goats are predominantly reared for meat and dairy products, such 
as goat milk cake, which serves as a primary source of income for 
smallholder farmers in Yunnan province (16–18). A growing number 
of upland farmers in this region rely on livestock as a source of cash 
income, social security, a safeguard for future expenditures, and 
support for marriages and education. The majority of farmers reported 
that livestock farming serves as their main source of income in this 
region (16). In addition, the diverse geographical environment of this 
province makes it an ideal site for livestock production (19). Therefore, 
studying milk production and composition traits in different goat 
breeds can provide insights for genetic improvement and the 
development of nutritional strategies in dairy goat breeding.

The Yunshang black goat, a locally recognized meat breed in 
Yunnan, is known for its black coat, strong stress resistance, 
adaptability to rough forage, and moderate milk production (20). In 
this study, Alpine goats were crossed with Yunshang black bucks to 
produce Alpine-Yunshang dual-purpose F1 (AYF1) goats, and LC–
MS-based metabolic profiling was employed to compare their milk 
composition with Saanen and Toggenburg goats for the identification 
of breed-specific biomarkers and metabolic pathways.

Materials and methods

Animal ethics statement and experimental 
design

In this study, we  utilized Yunshang black goats, a recently 
developed and approved breed in China, primarily selected for meat 
production traits (20). Alpine goats (dairy type) were mated with 
Yunshang black bucks (meat type) to produce dual-purpose F1 
(AYF1) goats. A total of 18 goats were selected from a larger 
population maintained at a commercial farm in Yunnan Province, 
China. The experimental groups included Saanen, Toggenburg, and 
Alpine-Yunshang dual-purpose F1 (AYF1) goats. From each breed, six 
goats of similar age (approximately 24.15 ± 0.7 months) and body 
condition were selected, ensuring uniformity in physiological status 
across the groups. All selected goats gave birth within the same period 
to maintain consistency in the lactation stage during sampling. 
Natural mating was practiced within each breed group using male 
goats of the same genetic background. All goats were housed in 
individual pens under similar environmental and management 
conditions, with ad libitum access to feed and clean water (Table 1) to 
meet the nutrient requirements. The experimental goats were milked 
twice daily, in the morning and evening.

Milk yield and composition

The milk yield of all goat breeds that gave birth during the same 
period was recorded daily for 4 months. Manual milking was 
performed twice daily on the experimental animals. To investigate 

TABLE 1 Ration ingredients and proximate composition of the 
experimental diets.

Ration ingredients, % dry matter (DM) basis

Items (%)

Alfalfa hay 10.64

Oat grass hay 9.81

Corn silage 17.83

Corn flour 19.68

Fresh alfalfa 5.16

Goat concentrate supplement 36.71

Limestone 0.21

Proximate composition and nutritive value, % DM

Crude protein (CP) 14.27

Metabolizable energy, Mcal/kg DM 2.72

Ether extract (EE) 2.75

Ash 6.88

Nutrient detergent fiber (NDF) 30.90

Acid detergent fiber (ADF) 20.78

Ca 0.71

P 0.50

Premix provided per kg of diet: vitamin A 1,000 IU, vitamin D 200 IU, vitamin E 20 IU, iron 
40 mg, copper 15 mg, iodine 2 mg, and manganese 40 mg.
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milk composition, milk samples were collected in the morning on 
days 60 and 120, with a 2-month interval. All these samples were 
stored at 4°C and then kept at 20°C in the laboratory until further 
analysis. Milk composition components, including fat, protein, 
lactose, total solids, solids-not-fat, and urea, were measured using a 
MilkoScan FT-120 (FOSS Electric A/S, Denmark).

Plasma metabolism parameters

On day 120 of lactation, 5 mL of blood was collected from each 
animal into EDTA-coated tubes. Plasma was separated by 
centrifugation at 4,000 rpm for 15 min and stored at 4°C. A 
non-targeted LC-MS-based metabolomics approach was employed to 
analyze small molecule components in these samples.

Metabolomics sample preparation

The samples were prepared according to the procedure previously 
described (21). First, the samples were thawed at 4°C and mixed 
thoroughly. To each sample, 400 μL of methanol was added, and these 
samples were then stored at −20°C for further processing. After 
10 min of centrifugation at 12,000  rpm, the supernatant was 
transferred into a new 2-mL centrifuge tube. A solution of 2-chloro-
l-phenylalanine (4 ppm) was prepared with 80% methanol–water to 
re-dissolve the sample, and the supernatant was filtered through a 
0.22 μm membrane and transferred to a detection bottle for LC-MS 
detection analysis.

Liquid chromatography conditions

Liquid chromatography was performed on an ACQUITY UPLC® 
HSS T3 column (150 × 2.1 mm, 1.8 μm; Waters, Milford, MA, 
United  States) at 40°C using an ACQUITY UPLC System. The 
injection volume was 2 μL, with a flow rate of 0.25 mL/min. LC-ESI 
(±)-MS analysis utilized mobile phases of acetonitrile with 0.1% 
formic acid and water with 0.1% formic acid. Chromatographic 
separation followed a gradient program: 0–1 min, 2%; 1–9 min, 
2–50%; 9–12 min, 50–98%; 12–13.5 min, 98%; 13.5–14 min, 98–2%; 
and 14–20 min, 2%. Acetonitrile and 5 mM ammonium formate were 
used for the LC-ESI (−)-MS analysis with the following gradient: 
0–1 min, 2%; 1–9 min, 2–50%; 9–12 min, 50–98%; 12–13.5 min, 98%; 
13.5–14 min, 98–2%; and 14–17 min, 2% (22).

Mass spectrum conditions

Metabolite detection was performed using a Q Exactive™ mass 
spectrometer (Thermo Fisher Scientific, United States) equipped with 
an electrospray ionization (ESI) source. Data were acquired in the Full 
MS data-dependent MS/MS (ddMS2) mode. The sheath gas flow rate 
was set to 30 arbitrary units (arb), and the auxiliary gas flow rate was 
set to 10 arb. Spray voltages were +3.50 kV for the positive ion mode 
(ESI+) and −2.50 kV for the negative ion mode (ESI−). The capillary 
temperature was maintained at 325°C. The MS1 scan range was set 
between m/z 81 and 1,000 with a resolving power of 70,000 (FWHM), 

followed by 10 data-dependent MS2 scans per cycle with a resolving 
power of 17,500 (FWHM) (23).

Quality control

To ensure analytical consistency, quality control (QC) samples 
were prepared by pooling equal volumes of extracts from all individual 
samples. Blank and QC samples were initially analyzed to evaluate 
system stability and reproducibility. During the run, all experimental 
samples were injected in a randomized order, with the QC samples 
interspersed at regular intervals after every three injections.

Metabolite data processing and 
multivariate analysis

The raw data were converted to the mzXML format using the 
MSConvert function within the ProteoWizard software package. 
Subsequently, the data underwent feature detection, retention time 
adjustment, and alignment using XCMS (22). Metabolites were 
identified by comparing accurate mass (30 ppm) and MS/MS data to 
databases such as the Human Metabolome Database (HMDB) (24),1 
MassBank (25), LIPID MAPS (26, 27), mzCloud, and KEGG (28). To 
correct any systematic bias, quality control-based robust LOESS signal 
correction (QC-RLSC) (29) was applied during data normalization. 
For accurate metabolite identification post-normalization, only ion 
peaks with relative standard deviations (RSDs) below 30% in quality 
control (QC) were retained.

Analysis and modeling using multivariate data were carried out 
utilizing Ropls software (30). After data normalization, statistical 
models incorporating principal component analysis (PCA), 
orthogonal partial least squares discriminant analysis (OPLS-DA), 
and partial least squares discriminant analysis (PLS-DA) were 
developed. The metabolic profiles were represented in score plots 
where each point denoted a unique sample. Loading plots and S-plots 
were utilized to highlight key metabolites influencing the clustering 
patterns. To prevent overfitting, the models underwent thorough 
evaluation via permutation testing. The assessment of model 
performance included the examination of cumulative R2X and R2Y 
values for descriptive purposes [ideal R2X (cum) = 1], as well as 
cumulative Q2 values alongside permutation testing for predictive 
capabilities [ideal Q2 (cum) = 1]. To ensure accuracy, the 
non-permuted model should exhibit higher Q2 and R2 values at the 
Y-axis intercept compared to the permuted model. Through variable 
importance in projection (VIP) analysis, significant metabolites were 
identified using OPLS-DA, with noteworthy variables defined by 
p-values < 0.05 and VIP values > 1.

Pathway analysis

As indicated (31), MetaboAnalyst evaluated several metabolites 
for pathways using robust pathway enrichment analysis and pathway 

1 http://www.hmdb.ca
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topology analysis. The metabolites found in the metabolomics analysis 
were mapped using the KEGG pathway for the biological interpretation 
of higher systemic functions. The metabolic pathways and related 
metabolites were visualized using the KEGG Mapper program.

Statistical analysis

Milk yield and composition data were analyzed using one-way 
analysis of variance (ANOVA) in SPSS Statistics 18.0 to assess 
differences between the goat breeds. When significant differences were 
detected (p < 0.05), Tukey’s Honest Significant Difference (HSD) post-
hoc test was employed to identify specific group differences. The 
results are presented as means ± standard deviations, with statistically 
distinct groups denoted by different lowercase letters.

For the metabolomics data, multivariate statistical analyses, 
including principal component analysis (PCA), partial least squares 
discriminant analysis (PLS-DA), and orthogonal PLS-DA (OPLS-DA), 
were performed using the R package ropls. Significant metabolites 
were identified based on variable importance in projection (VIP) 

scores greater than 1 and p-values less than 0.05. Pathway enrichment 
and topology analyses were carried out using MetaboAnalyst, with 
metabolite mapping conducted via the KEGG database.

Results

Milk composition and yield in the dairy 
goats

Milk fat, protein, lactose, total solids, non-fat solids, and urea 
concentrations in the experimental groups were analyzed on days 60 
(Figure 1A) and 120 of lactation (Figure 1B). On day 60 of lactation, 
the AYF1 and Saanen goats (2.79 and 3.16%) had significantly higher 
milk protein contents (p < 0.05) compared to the Toggenburg (2.75%) 
goats. Similarly, the Saanen goats had significantly higher fat content 
than the Toggenburg goats (p  < 0.05). There were no significant 
differences (p > 0.05) observed among the groups for the other milk 
composition traits. On day 120 of lactation, the AYF1 goats exhibited 
(p  > 0.05) higher milk fat content compared to the Saanen and 

FIGURE 1

(A) Milk composition of the different goat breeds on day 60 of lactation, (B) milk composition of the different goat breeds on day 120 of lactation, and 
(C) milk yield of the different goat breeds during the first 4 months of lactation.
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Toggenburg goats, while the Saanen goats had higher protein content 
(p > 0.05) than the Toggenburg goats.

No differences were observed among the different groups for milk 
yield during the first, second, and fourth months of lactation. 
However, during the third month, the milk yield of the Saanen goats 
was found significantly (p < 0.05) higher than that of both Toggenburg 
and AYF1 goats (Figure 1C).

Metabolite data quality control and quality 
assurance

Quality control (QC) is necessary in metabolomics research based 
on mass spectrometry to obtain reliable, high-quality metabolomics 
data. In this study, mixed QC samples were used for QC in LC–MS 
detection. The non-targeted metabolite detection approach offered great 
stability and better data quality, as shown by the small differences 

between the QC samples and aggregated data. The PCA analysis chart’s 
dense distribution of the QC samples demonstrated the validity of the 
data (Figure 2A). The proportion of typical peaks with a relative standard 
deviation (RSD) of 30% in the QC samples reached 83.5%, as shown by 
the quality assurance analysis of the metabolic group data (Figure 2B), 
demonstrating the reliability of the data. The metabolomics data were 
clustered using PLS-DA, a supervised pattern recognition technique. 
The data from each experimental group were evenly distributed and 
concentrated, demonstrating the validity of the metabolomics data, of 
which PC1 represented 21.1% and PC2 represented 7.2% (Figure 2C).

Variance analysis

After confirming the accurate molecular weight based on MS/MS 
fragments, we identified and annotated metabolites using standard 
databases, such as the Human Metabolome Database, MassBank, 

FIGURE 2

(A) PCA score plot of the metabolite data for the QC sample. The red point represents the QC sample, while the colored points represent the samples 
from the three different breeds. QC stands for quality control; PCA stands for principal component analysis. The axes that represent the variations are 
“principal Components,” with PC1 accounting for the greatest variation in the data and PC2 accounting for the second greatest variation. (B) The 
signature peak with an RSD < 30% in the metabolome of this trial dataset accounted for 83.5%. The quality assurance (QA) results show the distribution 
of RSD (relative standard deviation %) in the metabolomics data. The left ordinate represents the proportion, the right ordinate represents the specific 
number, and the abscissa represents the range of the RSD values. (C) PLS-DA scoring chart. The first principal component interpretation is represented 
by the abscissa, and the second principal component interpretation is represented by the ordinate direction. The experimental samples are represented 
by points, with different colors indicating the respective groups. The samples between the groups are more dispersed, indicating that the results are 
more reliable when the samples within each group are more aggregated.
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LIPID MAPS, and mzCloud. Differential metabolites were identified 
from the major substance list. The p-value and VIP threshold in the 
statistical test were screened, and the results of the screening are 
presented in Table  2 (Supplementary Figure S1). A total of 38 
differential metabolites were identified between the Saanen and 
Toggenburg goats, including 24 upregulated and 14 downregulated 
metabolites. Between the Saanen and AYF1 goats, 68 metabolites were 
significantly altered, with 47 upregulated and 21 downregulated. The 
comparison between the Toggenburg and AYF1 goats showed 34 
differential metabolites (15 upregulated and 19 downregulated). In 
total, 55 unique metabolites were found, which were differentially 
expressed across all three breeds.

A correlation heatmap was constructed to visualize the 
relationships among the identified differential metabolites across all 
experimental goat groups. The heatmap shows the distribution of 
the 55 unique metabolites across the three experimental groups 
(Figure 3; Supplementary Figure S2). Each square represents the 
Pearson correlation coefficient between a pair of metabolites, with 
red indicating positive correlations and blue indicating negative 
correlations. The intensity of the color and the size of the circle 
correspond to the strength of the correlation, ranging from −1 
(strong negative) to +1 (strong positive). The majority of the 
differential metabolites in the Saanen goats were substantially 
higher compared to the Toggenburg and AYF1 goats. Of the 55 
shared differential metabolites across the experimental groups, 17 
useful differential metabolites were screened by eliminating those 
with limited biological relevance. These selected metabolites were 
further subjected to one-way ANOVA for comparative analysis 
(Table  3). Among the 17 screened differential metabolites, the 
majority were more abundant in the Saanen goats compared to the 
Toggenburg and AYF1 goats. Among these metabolites, D-galactose, 
cholesterol, 5-Aminolevulinic acid, trans-1, 2-cyclohexanediol, and 
L-tyrosine were more abundant in the Saanen goats compared to 
the AYF1 goats, while sucrose, L-proline, ectoine, and biotin were 
significantly higher in the AYF1 goats than in the other breeds 
(p < 0.05). Pathway analysis and functional classification of the 
selected metabolites were performed on the KEGG platform, with 
12 metabolic pathways and seven functional classifications across 
the 17 metabolites. These included the following: two benzene and 
alternative derivatives, three carboxylic acids and derivatives, two 
organic oxygen compounds, two steroids and steroid derivatives, 
one fatty acyl and its derivatives, and one biotin and its derivative 
(Tables 4, 5).

Discussion

The results comparing the milk composition of the different dairy 
goat breeds showed that milk protein differed between the Toggenburg 
and AYF1 goats. However, the milk contents of the three dairy goats 
were comparable for other indices under identical feeding conditions. 
The Saanen and Toggenburg goats had similar protein, lactose, and 
total solids contents, but their fat content was higher than previously 
recorded for the same breeds (32). Variation in the composition of milk 
has been reported across different breeds (32–35). Previous research 
indicated that the Nubian breed exhibited higher levels of milk fat 
(4.37%), total protein (3.87%), and total solids (13.5%), whereas the 
Alpine breed displayed lower values for milk fat (2.7%), total protein 
(2.53%), and total solids (10.1%) (36). Similarly, variations in milk 
yield and composition have been reported among Arsi-Bale, Somali, 
Toggenburg-Arsi-Bale cross, and Boer goats at different lactation 
stages. Arsi-Bale goats exhibited a protein content of 4.8%, which was 
significantly higher than that of the other breeds. Milk from the 
crossbreed had lower total solids (13.88%) and fat (3.65%) compared 
to Arsi-Bale, Boer, and Somali goats, which had 16.27, 15.44, and 
14.48% total solids and 5.15%, 4.70%, and 4.90% fat, respectively (33). 
A notable variation in milk composition was observed, with the Anglo-
Nubian breed exhibiting higher levels of fat (4.25%), protein (3.4%), 
and total solids (12.5%). This was followed by the Saanen breed, raised 
in Southeastern Brazil, and the Alpine breed, which averaged 3.7% fat, 
2.95% protein, and 11.8% total solids (34). Several factors have been 
reported to influence milk components, such as breeds (37), seasonality 
across different regions of the world (38), production systems (39), 
climate, nutritional quality of food, and other management factors (37).

In this study, pathway analysis and functional classification of the 
selected metabolites were carried out using the KEGG platform. A total 
of 17 metabolites were analyzed, and these included two benzene and 
alternative derivatives, three carboxylic acids and derivatives, two 
organic oxygen compounds, two steroids and steroid derivatives, one 
fatty acyl and its derivative, and one biotin and its derivative. It has been 
reported that L-proline, 5-Aminolevulinic acid, ectoine, and biotin play 
vital functions in animals (40). The AYF1 goats exhibited notably 
higher levels of L-proline compared to the Saanen and Toggenburg 
goats, which may be associated with enhanced disease resistance (41). 
The Saanen goats exhibited notably higher concentrations of gentisic 
acid and D-galactose compared to the other groups. Gentisic acid 
possesses cardioprotective effects; for example, in individuals with 
compromised lung structure, it can delay the progression from cardiac 
hypertrophy to heart failure. It achieves this by suppressing the renin–
angiotensin–aldosterone system (RAAS), thereby preventing cardiac 
dysfunction and fibrosis. Due to its low toxicity, gentisic acid may hold 
potential as a preventive or therapeutic agent against heart failure (42).

In the comparison of the differential metabolites among the three 
dairy goat breeds, biotin levels in the AYF1 dairy goats were significantly 
higher than in the other two breeds. Recent studies have documented 
the involvement of biotin in functions beyond its usual catalytic 
functions. The effects of pharmaceutical biotin on glucose and lipid 
metabolism, hypertension, reproduction, development, and immunity 
have been established in multiple studies (40). It can be speculated that 
the stress resistance of the AYF1 goats was significantly better than that 
of the other two breeds. Caprylic acid levels were observed to be higher 
in the Toggenburg goats compared to the other groups. Goat milk is 
known to be rich in medium-chain fatty acids, especially caprylic acid 

TABLE 2 Statistical summary of the differential metabolites among the 
different goat breeds.

Comparison Upregulated Downregulated Total

Saanen vs. 

Toggenburg

24 14 38

Saanen vs. AYF1 47 21 68

Toggenburgy vs. 

AYF1

15 19 34

Saanen vs. 

Toggenburg vs. 

AYF1

/ / 55
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(C8:0) and capric acid (C10:0). Caprylic acid is metabolized quickly for 
energy and has antimicrobial properties (7).

In the present study, 55 common differential metabolites were 
detected across the three experimental groups. Among these 
differential metabolites, 17 metabolites were selected as informative 
through a screening process. These metabolites were further analyzed 
using the KEGG platform for pathway mapping and functional 
categorization, resulting in the identification of 12 metabolic pathways 
and seven functional classifications associated with the selected 
metabolites. A study was conducted to assess the impact of specific 
grazing patterns and their corresponding nutritional effects on goat 
milk (5). Using gas chromatography–mass spectrometry (GC-MS) 
techniques, the authors identified and quantified 25 distinct milk 
metabolites in milk. Our study showed that the Saanen goats had 
significantly elevated levels of L-fucose, 4-acetamidobutanoic acid, 
D-galactose, and L-tyrosine compared to the Toggenburg and AYF1 

goats. This suggests that these four metabolites may contribute to milk 
production. In addition, sucrose, L-proline, ectoine, and biotin were 
more pronounced in the AYF1 dairy goats compared to the other two 
groups. This suggests that these four metabolites may be involved in 
the control and metabolism of milk constituents.

Clinical significance of the findings

The main clinical findings of the current investigation indicate 
that distinct metabolites impact the metabolism of various breeds 
when subjected to the same environmental conditions. This influence 
can enhance their ability to modulate milk output and composition. 
Our study investigated the potential roles of sucrose, L-proline, 
ectoine, and biotin in the regulation and metabolism of milk 
constituents, as well as the performance and composition of milk in 

FIGURE 3

Differential metabolite-associated thermogram. The ordinate and oblique ordinate represent the names of the differential metabolites, and the color 
represents the correlation, with red representing positive correlations, blue representing negative correlations, and the intensity of the color reflecting 
the strength of the correlation.
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TABLE 4 KEGG pathways and functions of the 17 differential metabolites in the different dairy goats.

Name KEGG pathway Functional role

5-Aminolevulinic acid ABC transporters Carboxylic acids and derivatives

4-Acetamidobutanoic acid Arginine and proline metabolism Carboxylic acids and derivatives

Malonate Beta-Alanine metabolism —

Ureidopropionic acid Beta-Alanine metabolism Organic carbonic acids and derivatives

Caprylic acid Biosynthesis of alkaloids derived from terpenoid and polyketide Fatty Acyls

L-proline Carbapenem biosynthesis Carboxylic acids and derivatives

Cholesterol Cholesterol metabolism, Steroid degradation Steroids and steroid derivatives

Ectoine Microbial metabolism in diverse environments —

L-fucose Microbial metabolism in diverse environments Organooxygen compounds

Trans-1,2-Cyclo-hexanediol Microbial metabolism in diverse environments —

2-Phenylacetamide Microbial metabolism in diverse environments Benzene and substituted derivatives

D-galactose Mineral absorption —

Dehydroepiandrosterone Ovarian steroidogenesis Steroids and steroid derivatives

L-tyrosine Protein digestion and absorption Carboxylic acids and derivatives

Sucrose Taste transduction, Carbohydrate digestion and absorption Organooxygen compounds

Gentisic acid Tyrosine metabolism Benzene and substituted derivatives

Biotin Vitamin digestion and absorption, ABC transporters Biotin and derivatives

dairy goats. The relative abundance of L-fucose, 4-acetamidobutanoic 
acid, D-galactose, and L-tyrosine was shown to be  higher in the 
Saanen dairy goats compared to the other two groups. This 
observation suggests a potential association between these four 
metabolites and milk production. Further investigation is required to 
annotate the LC-MS signals corresponding to these metabolites. This 
can be  achieved by increasing the number of samples collected 
monthly. This study employed LC-MS technology to establish 

molecular markers for subsequent variety screening and to identify 
potential metabolites in the plasma of the dairy goats subjected to 
identical settings and conditions.

Examining these metabolic pathways may provide insights 
into dairy products’ in vivo metabolism. Gaining a comprehensive 
understanding of milk metabolites derived from various dairy 
breeds could prove to be an excellent resource in the assessment 
of milk characteristics. This could also improve formula quality 

TABLE 3 Results of the single-factor analysis of variance for the different metabolites across the different groups.

Metabolites Saanen breed Toggenburg breed AYF1 breed

L-fucose 30232419 ± 1271835.78a 25318266.56 ± 2892473.88b 24816769.20 ± 3403230.84b

Malonate 201440256.35 ± 54129261.47a 142312546.78 ± 30430103.11a 114857962.97 ± 38126235.28b

4-Acetamidobutanoic acid 29059153.19 ± 4931502.57a 23704911.88 ± 9271683.42b 15177384.48 ± 4354388.38b

Ureidopropionic acid 23007959.28 ± 3246752.47a 20595990.91 ± 3810303.1a 15827511.7 ± 2763194.73b

Gentisic acid 3004911550.67 ± 616284251.54a 2,226,911,484 ± 264457067.08ab 2081641593.17 ± 112665217.84b

D-galactose 233895971.88 ± 63708649.17a 172831094.27 ± 29816363.1b 139264033.53 ± 46295539.04c

Sucrose 1365029.71 ± 854019.68c 3760539.71 ± 841319.2b 4858725.03 ± 1819232.3a

Cholesterol 12660516.65 ± 4616415.09a 7055410.95 ± 2786037.83b 4922879.17 ± 2831400.98b

L-proline 14121713.65 ± 8877933.06c 32516403.74 ± 26149426.31b 63294201.05 ± 39648346.13a

5-Aminolevulinic acid 426163498.93 ± 50827962.48a 415842577.83 ± 61996645.14a 288456833.07 ± 67864614.31b

Ectoine 43811115.69 ± 13777253.06c 101142375.75 ± 61998650.33b 241052988.25 ± 104465671.53a

Biotin 5060934.01 ± 2311568.4c 5525142.74 ± 1938525.56b 9538274.67 ± 1962357.79a

2-Phenylacetamide 41922489.84 ± 2270294.52a 30961675.06 ± 6734126.32a 29028344.78 ± 5389058.17b

trans-1,2-Cyclohexanediol 7496221.85 ± 366173.4a 7360746.26 ± 317051.41a 6938964.89 ± 280565.16b

Caprylic acid 146671371.6 ± 71816689.81a 169,554,169 ± 181427578.26a 29481774.66 ± 17430931.24b

Dehydroepiandrosterone 4521055.26 ± 226486.31b 4288575.1 ± 324597.41b 5684838.89 ± 865282.91a

L-tyrosine 73079471.29 ± 21369170.07a 40305951.31 ± 6111608.91b 51693101.62 ± 9385396.69b

a,b,cDifferent superscripts within the rows indicate levels of significance at a p-value < 0.05 (Tukey HSD test).
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and facilitate the development of formulas that closely resemble 
human milk. The current study has the potential to serve as a 
reference point for the advancement and evaluation of 
commercial baby formulas and functional dairy products. 
Furthermore, these findings will be utilized as the foundation for 
our subsequent inquiry into the serum metabolomics of milk 
from these specific breeds. Milk metabolites are associated with 
specific dairy animal species and impact the nutritional 
composition of infant formulas. The objective of this study was 
to investigate the variations in metabolites present in the milk of 
different dairy goat breeds using LC/MS metabolomics. The aim 
was to gain a comprehensive understanding of the metabolomes 
from multiple milk sources. In addition, it was to identify unique 
metabolic pathways across goat breeds. This work aimed to 
elucidate the different functional constituents present in milk. 
This will establish a basis for the development of a powdered 
formula for newborns that closely mimics human milk, 
promoting optimal infant well-being. The data enhanced our 
understanding of the potential metabolic pathways that may 
explain the differences in milk performance observed among the 
Saanen, Toggenburg, and AYF1 goats. The findings will offer 
novel enhancement strategies, along with new possibilities for 
growth within the dairy industry.

Conclusion

This study showed that the Saanen breed produced more milk than 
the Toggenburg and AYF1 goats. Through metabolomic differential 
analysis, four metabolites, including L-fucose, 4-acetamidobutanoic 
acid, D-galactose, and L-tyrosine, were identified as potentially linked 
to dairy goat productivity. Similarly, sucrose, L-proline, ectoine, and 
biotin may be associated with the regulation of milk composition. These 
results suggest that the identified metabolites could play key roles in 

enhancing and regulating animal milk production and constituents. 
Additional studies are warranted to confirm these initial findings and 
fully elucidate the roles of these metabolites. Further research with 
larger sample sizes for each group and expanded breed comparisons is 
recommended to validate these findings and better assess breed-specific 
performance traits.
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TABLE 5 Distribution of the main differential metabolites in the KEGG pathway across the different dairy goats.

Pathway name Total Hits p-value Impact Compound name

Phenylalanine metabolism 60 5 0.0002 0.0833
L-tyrosine; Phenylacetaldehyde; 2-Phenylacetamide; 

Phenylacetylglutamine; 3-Hydroxyphenylacetic acid

Styrene degradation 24 3 0.0012 0.125 Phenylacetaldehyde; 2-Phenylacetamide; 3-Hydroxyphenylacetic acid

Carbapenem biosynthesis 32 3 0.0027 0.0938 L-Glutamic acid; L-proline; L-Glutamic gamma-semialdehyde

Cholesterol metabolism 10 2 0.0033 0.2 Cholesterol; Taurochenodesoxycholic acid

Vitamin digestion and absorption 39 3 0.0048 0.0769 Biotin; Cholesterol; beta-Carotene

Arginine and proline metabolism 78 4 0.0049 0.0513
L-Glutamic acid; L-proline; L-Glutamic gamma-semialdehyde; 

4-acetamidobutanoic acid

ABC transporters 137 5 0.0071 0.0365 L-Glutamic acid; Sucrose; Biotin; L-proline; 5-Aminolevulinic acid

Fatty acid biosynthesis 58 3 0.0145 0.0517 Malonate; Oleic acid; Caprylic acid

Carbohydrate digestion and absorption 27 2 0.0236 0.0741 Sucrose; D-galactose

Mineral absorption 29 2 0.027 0.069 D-galactose; L-proline

Tyrosine metabolism 78 3 0.0317 0.0385 L-tyrosine; Gentisic acid; 3-Hydroxyphenylacetic acid

Beta-Alanine metabolism 32 2 0.0325 0.0625 Malonate; Ureidopropionic acid

Total, the total number of metabolites in the target metabolic pathway; Hits, the total number of differential metabolites in the target metabolic pathway; p-value, the p-value of the 
hypergeometric distribution test—the smaller the p-value, the more significant the effect of the detected differential metabolites on the pathway; Impact, the greater the impact value of the 
metabolic pathway, the greater the impact of the detected differential metabolites on the target pathway; compound name, the name of the differential metabolites detected in the target 
metabolic pathway.
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