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Long-tailed ground squirrels (LTGRs, Spermophilus undulatus) are known as 
reservoirs of multiple arthropod-borne pathogens, such as Yersinia pestis and 
Bartonella rochalimae. However, data on the prevalence of spotted fever group 
rickettsiae (SFGR) and Coxiella burnetii in LTGRs and its ectoparasites are limited. 
In two alpine regions of Xinjiang Uygur Autonomous Region (XUAR, northwestern 
China), a total of 346 samples were collected from 142 LTGRs, including 142 livers 
and 204 pooled ectoparasites (Citellophilus tesquorum dzetysuensis: 120 pools 
of 484 fleas; Frontopsylla elatoides elatoides: 19 pools of 71 fleas; Neopsylla 
mana: 1 pool of 4 fleas; and Linognathoides urocitelli: 64 pools of 865 lice). From 
these samples, the DNA was extracted, followed by PCR amplification of different 
genetic markers. Particularly, genes encoding the outer membrane protein A and 
B (ompA, ompB), citrate synthase (gltA), and surface cell antigen 1 (sca1) were used 
to identify the SFGR. Additionly, the capsular outer membrane protein (Com1) gene 
and insertion sequence (IS1111) genes were used to detect Coxiella. Rickettsia 
sibirica subsp. sibirica, Rickettsia felis, and C. burnetii were detected in LTGRs, 
as well as in flea and louse pools. Rickettsia raoultii was found in LTGRs and flea 
pools. Furthermore, Rickettsia slovaca was also identified in the flea pools. This 
study provides molecular evidence for the occurrence of SFGR and C. burnetii in 
LTGRs and their ectoparasites. These findings suggest that R. sibirica, R. slovaca, 
R. raoultii, R. felis and C. burnetii are transmitted between LTGRs (as potential 
reservoirs) and their fleas and lice (as potential vectors).
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1 Introduction

Species of the genus Rickettsia belong to four distinct phylogenetic 
clades: spotted fever group, typhus group, ancestral group, and 
transitional group (1). The spotted fever group rickettsiae (SFGR) 
include over 30 distinct species that may cause severe infections in 
humans, domestic animals and wildlife (2). The majority of SFGR are 
tick-borne, while R. felis is typically transmitted by fleas. Notably, 
some SFGR species can be transmitted by lice and mosquitoes, albeit 
rarely (3–5).

Coxiella burnetii, recognized as the causative agent of Q fever, 
stands out as the most notorious member of its genus (6). As a globally 
distributed pathogen, it can infect a diverse range of mammals, from 
rodents to bats (7, 8). The main vectors of C. burnetii are hard ticks 
(7), but it is also potentially transmitted by fleas and lice (9, 10).

Long-tailed ground squirrels (LTGRs, Spermophilus undulatus) are 
medium-sized ground-dwelling rodents, inhabiting distinct alpine 
habitats in Central Asia, including Kazakhstan, Mongolia, the southern 
region of the Russian Federation and northwestern China (11). 
Previously, LTGRs and arthropods infesting them were shown to act 
as reservoirs or potential vectors for some pathogens, such as Yersinia 
pestis, Borrelia burgdoferi sense lato, Anaplasma phagocytophilum, 
Trypanosoma otospermophili, Blechomonas luni, tick-borne encephalitis 
virus and Hepacivirus C (12–16). However, the evidence of SFGR and 
C. burnetii in LTGRs and their ectoparasites, especially in fleas and lice, 
remains still unknown. The aim of this study was to screen these 
pathogens in liver samples of LTGRs and their associated arthropods.

2 Materials and methods

2.1 Sample collection and identification

In total, 142 LTGRs were captured in July, 2024 in Wenquan County 
and Jinghe County (1200–2,500 m above sea level, both adjacent to 
Kazakhstan), Bortala Mongolian Autonomous Prefecture, northwestern 
China (Supplementary Figure 1). To achieve this goal, Sherman traps 
(H.B. Sherman Traps, Tallahassee, FL, United States) were deployed at 
the entry points of occupied burrows. The survey encompassed a total 
of 150 traps per site, which were inspected once an hour (17).

All captured rodents were identified by experienced zoologists based 
on morphological characteristics, such as body length, fur color, tail 
length and other features (17). Subsequently, the rodent were euthanized 
and killed via cervical dislocation by certified personnel at the enhanced 
biosafety level 2 laboratory, Shihezi University (18). Each sampled 
rodent was then put in individual ziplock bags stored at −80°C. The liver 
was removed from individual LTGR and placed into each labeled tubes. 
The species was confirmed from four liver samples of representative 
rodents by sequencing the cytochrome b (cytb) gene (19). All procedures 
involving wild rodents adhered to the ethical guidelines of Animal Ethics 
Committee of Shihezi University (Approval No. A2022-029-01).

Arthropod ectoparasites (559 fleas, 865 lice and 1,136 ticks) were 
collected from individual rodents through gentle brushing of their fur, 
and then preserved in 70% ethanol. All sampled ticks were used for 
virus research by another team. For morphological identification, the 
fleas and lice were treated with 10% NaOH for 1–3 days and put onto 
slides for microscopical examination (11, 20). Meanwhile, the 
cytochrome c oxidase subunit II (COII) gene for fleas, and the 18S 
ribosomal RNA (18S rRNA) gene for lice were amplified and 
sequenced, in order to confirm their taxonomy (21–23). Subsequently, 
the ectoparasite samples were grouped into pools according to 
individual host from where they were collected, flea or louse species, 
number and sampling sites. Flea pools contained 2 to 5 individuals, 
while lice pools contained 8 to 15 individuals. Finally, fleas were 
allocated into a total of 140 pools and lice into 64 pools which were 
used to screen pathogens as described below.

2.2 Detection, sequencing and 
phylogenetic analysis

Each arthropod pool and liver sample were extracted with 
TIANamp Genomic DNA Kit (TIANGEN, Beijing, China) according 
to the manufacturer’s instructions. Four genetic markers, including 
outer membrane proteins A and B (ompA and ompB), citrate synthase 
(gltA) and surface cell antigen 1 (sca1), were used to detect SFGR (17). 
In addition, the capsular outer membrane protein (Com1) gene and 
the insertion sequence (IS1111) gene were targeted to investigate the 
presence of C. burnetii (24, 25). The primer sequences and PCR 
conditions are shown in Supplementary Tables 1, 2. Negative controls 
consisted of double-distilled water, which consistently showed no 
detectable PCR product in all tests. Positive controls were DNA 
samples of Rickettsia lusitaniae from common pipistrelles and 
Coxiella-like symbiont from ticks, both preserved in our laboratory 
(26, 27). The PCR products were purified using the TIANgel Midi 
Purification Kit (TIANGEN, Beijing, China), and sequenced with 
Sanger and 454-pyrosequenced PCR amplicons (28, 29). The above 
sequencing was conducted three times to check the reproducibility. 
Obtained sequences were compared to reference sequences found in 
GenBank using BLAST.1 Phylogenetic analysis was conducted using 
MEGA 7.0 software, employing the neighbor-joining method and 
1,000 replicates for bootstrap support.

3 Results

3.1 Morphological and molecular 
identification of rodent species and 
associated fleas and lice

All sampled rodents were identified as long-tailed ground 
squirrels (S. undulatus) based on their morphology and a 98.86% 
sequence identity (1,124/1137 bp) to the cytb gene of this species 
found in Russia (OQ695583). A total of 559 fleas were collected. The 
average flea index was 3.94 (559/142). Subsequently, three species 

1 http://www.ncbi.nlm.nih.gov/BLAST/

Abbreviations: LTGR, Long-tailed ground squirrel; SFGR, spotted fever group 

rickettsiae; XUAR, Xinjiang Uygur Autonomous Region; ompA, outer membrane 

protein A; ompB, outer membrane protein B; gltA, citrate synthase; sca1, surface 

cell antigen 1; com1, capsular outer membrane protein; IS1111, insertion sequence.
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were identified after microscopical examination (Figure 1), including 
Citellophilus tesquorum dzetysuensis (484), Frontopsylla elatoides 
elatoides (71) and Neopsylla mana (4). The former flea species was 
morphologically indientified by genal comb absent, reduced frontal 
bristles (1 in males, absent in females), pronotal ctenidium with 18–22 
vertical spines, labial palps extending to or beyond forecoxa. The 
middle was by prominent frontal tubercle, 6–7 frontal bristles, 3 
ocular bristles above eye, pronotal ctenidium with 22 spines, labial 
palps reaching forecoxa apex. The latter was by two genal combs 
(outer comb with short, broad spines; inner comb with narrow, 
posteriorly inclined spines), pronotal ctenidium with 17–20 spines, 
labial palps reaching two-thirds of forecoxa. The COII gene sequences 
of these species exhibited 100, 99.86% (713/714 bp), and 100% 
sequence identities to those of conspecific fleas reported from China, 
respectively (PP475165, MF000677 and MF000670). Furthermore, 
865 lice were also collected. The average louse index was 6.09 
(865/142). All sampled lice in this study were identified as 
Linognathoides urocitelli by molecular detection and morphological 
key features, which included dorsoventrally flattened body, reduced 
eyes, 5-segmented antennae with sexually dimorphic spines on third 
segment (males), thoracic sternal plate with posterior medial lobe, and 
paratergal plates on abdominal segments III-VII bearing spiracular 
openings. The 18S rRNA gene sequence of this species exhibited 
99.81% (522/523 bp) sequence identity to the same louse species from 
LTGR in Mongolia (MK478719).

3.2 Molecular and phylogenetic analysis of 
spotted fever group rickettsiae (SFGR)

Eleven LTGRs (7.75%, 11/142), 12 flea pools (8.57%, 12/140) and 
15 louse pools (23.44%, 15/64) tested positive for SFGR. Among the 
11 SFGR-positive LTGRs, 10 liver samples were also SFGR-positive in 
their associated flea and louse pools. BLAST and phylogenetic analyses 
revealed that R. sibirica and R. felis were present in LTGRs, flea and 

louse pools. Additionally, R. raoultii was identified in LTGRs and flea 
pools. Moreover, R. slovaca was also detected in the flea pools 
(Table 1).

Regarding sequence comparisons based on the four genetic 
markers, Rickettsia sibirica subsp. sibirica showed 100% identity 
compared with the sequence of conspecific bacteria from a tick-bitten 
patient in Russia (KT006594); R. slovaca showed 100% identity to 
R. slovaca from Dermacentor marginatus ticks in Kazakhstan 
(MW922580); R. raoultii showed 99.47–99.50% identity to R. raoultii 
from striped field mouse (Apodemus agrarius) in China (MZ297809); 
and R. felis showed 99.76–100% identity compared with the sequence 
of R. felis from cat fleas (Ctenocephalides felis) in Indonesia 
(MT499365; Figure 2). The detailed similarities and divergences of the 
sequences in this study are shown in Supplementary Table 3.

3.3 Molecular and phylogenetic analysis of 
Coxiella burnetii

C. burnetii was detected in 15 LTGRs (10.56%, 15/142), 58 flea 
pools (41.43%, 58/140) and 20 louse pools (31.25%, 20/64). The 
prevalence of C. burnetii in both LTGRs and their ectoparasites was 
significantly higher than that of SFGR (X2 = 35.09, df = 2, p < 0.05), 
suggesting a more prominent circulation of C. burnetii in these 
region. Based on BLASTn analysis, the IS1111 sequences 
(PQ663250-PQ663252) in this study were closest related to a 
C. burnetii isolate from Rhipicephalus sanguineus ticks in Turkey 
(MZ073364), showing 99.54–99.69% identities (Figure 2).

3.4 Co-infection of Rickettsia sibirica and 
Coxiella burnetii

Notably, two LTGRs (1.41%, 2/142) were co-infected with 
R. sibirica and C. burnetii. More interestingly, their associated three 

FIGURE 1

Photomicrographs of morphologically identified fleas and lice [Citellophilus tesquorum dzetysuensis (A), Frontopsylla elatoides elatoides (B), Neopsylla 
mana (C), Linognathoides urocitelli (D)].
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flea pools (2.14%, 3/140) and two louse pools (3.13%, 2/64) were also 
co-infected with R. sibirica and C. burnetii.

4 Discussion

In this study, 142 LTGRs and their ectoparasites, 559 fleas and 865 
lice were collected in Central Asia. In these samples, four SFGR 
species were detected, including R. sibirica, R. slovaca, R. raoultii, and 
R. felis, as well as C. burnetii. To our best knowledge, (i) R. sibirica, 
R. felis and C. burnetii were identified here for the first time in LTGRs 
and their parasites (fleas and lice); (ii) in this study, first molecular 
evidence is also provided for R. raoultii in LTGRs and their 
ectoparasitic fleas; (iii) additionally, R. slovaca is newly recognized in 
LTGR fleas.

SFGR have worldwide distribution and affect a wide range of wild 
and domestic vertebrates. Although most reports focus on tick-borne 
transmission of SFGR, growing evidence suggests that other 
arthropods-including fleas (notably for R. felis), lice, keds, and 

bugs-may serve as potential vectors (2). R. felis is primarily transmitted 
by fleas, particularly by the cat flea (C. felis) (30). Similarly, molecular 
evidence was provided for R. slovaca in Haematopinus suis lice from 
boars in Algeria and later in Laelaps agilis, Laelaps jettmari and 
Eulaelaps stabularis mites from rodents in Slovakia (31, 32). With 
regard to R. raoultii, its occurrence was detected in fleas from yellow 
necked mouse (Apodemus favicollis) and bank vole (Myodes glareolus) 
in Germany (33). In this study, we reported novel findings of R. sibirica 
and R. felis in C. tesquorum dzetysuensis, F. elatoides elatoides and 
L. urocitelli, as well as R. slovaca and R. raoultii in C. tesquorum 
dzetysuensis and F. elatoides elatoides. In addition, SFGR were 
previously detected in wild boars, birds, dogs and cats, which act as 
reservoirs (34–37). Rodents are also notably recognized as reservoirs 
including yellow necked mouse (Apodemus flavicollis), common vole 
(Microtus arvalis) and European water vole (Arvicola terrestris) (38). 
Interestingly, we found that R. sibirica, R. raoultii and R. felis were 
present not only in the aforementioned arthropods but also in LTGRs. 
Notably, among 11 SFGR-positive LTGRs, 10 liver samples were also 
SFGR-positive in their associated flea and louse pools. This high 

TABLE 1 Information on specimens used in this study, including geographical location of collection site, total number, pool number, hosts, and 
prevalence of pathogens.

Location Species Number of 
specimens 

(pools)

Host species 
(number)

SFGR Coxiella 
burnetii

Co-infection

Jinghe County Citellophilus tesquorum 

dzetysuensis

357 (90) Spermophilus 

undulatus (90)

5/90 (5.56%)

Rickettsia sibirica

43/90 (47.78%) 2/90 (2.22%)

1/90 (1.11%)

Rickettsia slovaca

–

3/90 (3.33%)

Rickettsia raoultii

–

1/90 (1.11%)

Rickettsia felis

–

Frontopsylla elatoides 

elatoides

30 (9) Spermophilus 

undulatus (9)

1/9 (11.11%)

Rickettsia sibirica

7/9 (77.78%) 1/9 (11.11%)

Neopsylla mana 4 (1) Spermophilus 

undulatus (1)

– 1/1 (100%) –

Linognathoides 

urocitelli

785 (58) Spermophilus 

undulatus (58)

12/58 (20.69%)

Rickettsia sibirica

19/58 (32.76%) 2/58 (3.45%)

2/58 (3.45%)

Rickettsia felis

–

Spermophilus undulatus 101 (−) – 7/101 (6.93%)

Rickettsia sibirica

9/101 (8.91%) 2/101 (1.98%)

1/101 (0.99%)

Rickettsia raoultii

–

1/101 (0.99%)

Rickettsia felis

–

Wenquan 

County

Citellophilus tesquorum 

dzetysuensis

127 (30) Spermophilus 

undulatus (30)

– 6/30 (20%) –

Frontopsylla elatoides 

elatoides

41 (10) Spermophilus 

undulatus (10)

1/10 (10%)

Rickettsia sibirica

1/10 (10%) –

Linognathoides 

urocitelli

80 (6) Spermophilus 

undulatus (6)

1/6 (16.67%)

Rickettsia sibirica

1/6 (16.67%) –

Spermophilus undulatus 41 (−) – 2/41 (4.88%)

Rickettsia sibirica

6/41 (14.63%) –
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concordance suggests that ectoparasites may play a critical role in 
either acquiring pathogens from infected hosts or transmitting SFGR 
within rodent populations. Although we have detected these SFGR in 
LTGRs and their ectoparasites, further experiments are still needed to 
confirm the role of these arthropods as vectors.

C. burnetii, listed as category B bioterrorism agent in 
United States, has diverse infection routes including air-borne and 
venereal transmission (39). Furthermore, it is transmitted by 
infected arthropods, such as ticks, fleas, lice and mites (10, 40–42). 
Previously, C. burnetii was found in Haematopinus eurysternus lice 
from a cow in Egypt (10). More recently, a report revealed the 
presence of C. burnetii in fleas collected from Norway rat (Rattus 
norvegicus), black rat (Rattus rattus) and Cyprus red fox (Vulpes 
vulpes indutus) in Cyprus (43). In this study, we  extend these 
findings with the novel detection of C. burnetii in C. tesquorum 
dzetysuensis, F. elatoides elatoides, N. mana and L. urocitelli. 
Additionally, C. burnetii was previously identified in deer, sheep, 
cattle, goats, birds and rabbits, which serve as reservoirs (7). 
Rodents also have an important role as reservoirs, as exemplified by 
the flying squirrel (Pteromys volans), red squirrel (Sciurus vulgaris), 
and red-backed vole (Myodes gapperi) (44). In our research, LTGRs 
have been found to harbor C. burnetii as well. Crucially, all 
C. burnetii-positive LTGRs in this study concurrently carried 
infected fleas or lice, suggesting a potential bi-directional 
transmission between hosts and ectoparasites.

Rodents serve as hosts for several species of blood-sucking 
arthropods, and infected ectoparasites may transmit pathogens to 
these mammals through their bites. Consequently, naïve ectoparasites 
themselves can become infected after biting these rodent reservoirs, 

leading to new opportunities for pathogens to spread by horizontal 
transmission (Supplementary Figure 2). Examples of such pathogens 
include R. slovaca, R. raoultii, R. felis and R. monacensis (33, 45). 
Therefore, the concurrent detection of pathogens in hosts, fleas, and 
lice is of significant importance, underscoring the complexity of 
pathogen transmission and the potential roles of these vectors in 
pathogen spillover and host shift.

5 Conclusion

In this study, we present the first molecular evidence of SFGR and 
C. burnetii in LTGRs and their ectoparasites. Our findings suggested 
that R. sibirica, R. slovaca, R. raoultii, R. felis and C. burnetii are 
transmitted between LTGRs (as potential reservoirs) and fleas and lice 
(as potential vectors) infesting them.

Data availability statement

The datasets presented in this study can be  found in online 
repositories. The names of the repository/repositories and accession 
number(s) can be found at: https://www.ncbi.nlm.nih.gov/, Rodent 
species cytb: PQ653469; flea species COII: PQ653470- 
PQ653472; louse species 18S rRNA: PQ640277; SFGR ompA: 
PQ677906-PQ677914; SFGR ompB: PQ677915-PQ677923; SFGR 
gltA: PQ677924-PQ677932; SFGR sca1: PQ677933-PQ677941; 
Coxiella burnetii Com1: PQ653473-PQ653475; Coxiella burnetii 
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FIGURE 2

Phylogenic tree of spotted fever group rickettsiae (SFGR) and Coxiella burnetii from long-tailed ground squirrels and their ectoparasites [the ompA-
ompB-gltA-sca1 concatenated sequences for SFGR (A), the Com1 concatenated sequences for C. burnetii (B), the IS1111 concatenated sequences for 
C. burnetii (C)]. The new sequences provided in the present study are indicated by a black triangle (containing the accession number).
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SUPPLEMENTARY FIGURE 1

The locations for capturing rodents and associated ectoparasitic arthropods 
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