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AMPK and CAMKK activation 
participate in early events of 
Toxoplasma gondii-triggered NET 
formation in bovine 
polymorphonuclear neutrophils
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Lisbeth Rojas-Baron , Magdalena Grabbe , Carlos Hermosilla  and 
Anja Taubert 

Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany

Toxoplasma gondii is an obligate intracellular apicomplexan parasite that infects 
humans, eventually causing severe diseases like prenatal or ocular toxoplasmosis. 
T. gondii also infects cattle but rarely induces clinical signs in this intermediate host 
type. So far, the innate immune mechanisms behind the potential resistance of 
bovines to clinical T. gondii infections remain unclear. Here, we present evidence 
on sustained activation of bovine polymorphonuclear neutrophils PMN by T. gondii 
tachyzoites, which is linked to a rise in cytoplasmic calcium concentrations, an 
enhancement of calcium/calmodulin-dependent protein kinase kinase 2 (CAMKK) and 
AMP-activated protein kinase (AMPK). NETosis is a specific form of programmed cell 
death, characterized by the release chromatin from the nucleus to the extracellular 
space resulting in formation of neutrophil extracellular traps (NETs). NETs can kill 
and entrap pathogens. In our experiments, NETosis was triggered by T. gondii, 
and this effector mechanism was enhanced by pre-treatments with the AMPK 
activator AICAR. Moreover, tachyzoite-mediated bovine neutrophil DNA release 
depended on MAPK- and store operated calcium entry- (SOCE) pathways since it 
was diminished by the inhibitors UO126 and 2-APB, respectively. Overall, we here 
provide new insights into early polymorphonuclear neutrophils responses against 
T. gondii for the bovine system.
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1 Introduction

Toxoplasma gondii is a protozoan apicomplexan parasite able to infect virtually all warm-
blooded animals including humans. The definitive host of T. gondii are felids and it is estimated 
that at least one third of humanity is currently infected with T. gondii. However, T. gondii 
prevalence varies greatly amongst populations and it is influenced by ethnocultural habits (1, 
2). One transmission route to humans is the consumption of raw and/or undercooked meat 
derived from livestock infected with T. gondii cysts. Virtually all edible portions of an animal 
can contain viable T. gondii tissue cysts that can survive in food animals for years (2). T. gondii 
infection in naturally infected cattle normally is free of symptoms, suggesting that cattle are 
resistant to clinical toxoplasmosis. The seroprevalence of toxoplasmosis in cattle is unclear, 
varies greatly from region to region and is highly dependent on the type of the bioassay (3).
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One of the causes of the hypothesized resistance of cattle to 
clinical T. gondii infection is the innate immune response. Among the 
cells of the innate immune system, polymorphonuclear neutrophils 
(PMN) form a first line of cellular defence against pathogens (4). PMN 
are direct immune effector cells, and own at least three effector 
mechanisms: phagocytosis, degranulation and neutrophil extracellular 
trap (NET) formation. In addition, PMN can produce reactive oxygen 
species (ROS), which may directly kill microorganisms, and release 
cytokines, which modulate other innate and also adaptative immune 
responses. For example, PMN-derived factors enhance dendritic cell 
(DC) recruitment and antigen presentation, T cellular cytokine 
production and B cell expansion (5).

PMN are capable to produce and release NETs, denominated as 
NETosis or NETotic process. First described as a suicidal mechanism 
to extracellularly kill pathogens (6), NETs are composed of chromatin 
fibres which contain enzymes mainly present in azurophilic granules, 
such as neutrophil elastase (NE), cathelicidin (LL-37) and 
myeloperoxidase (MPO) (7, 8). The DNA backbone of NETs mainly 
originates from the multilobulated nuclei but can also contain 
mitochondrial DNA (9). Initially described as an antimicrobial 
mechanism, activators of NET formation were expanded to viruses 
(10), fungi (11), crystals (12) and parasites (13). Among parasites, 
protozoan apicomplexa like Neospora caninum (14), Benoitia besnoiti 
(15, 16), Eimeria bovis (17, 18) and Cryptosporidium parvum (19) – 
among others  – were shown to induce NETs in different animal 
species, thereby indicating the conserved nature of NET formation as 
antiparasitic defence mechanism. T. gondii stages were also reported 
to induce NETosis in humans (20), mice (20, 21), cattle (22, 23), sheep 
(22), donkeys (24), dolphins (Tursiops truncatus) (25), harbour seals 
(Phoca vitulina) (26) and in definitive hosts of T. gondii, domestic cats 
(27, 28).

Several early events (≤ 30 min) of the multistep process of NETosis 
were identified. Amongst others, an increased ROS production seems 
necessary with the consequent stimulation of MPO that later mediates 
NE translocation from PMN granules to the nucleus (8, 29). Also, the 
activation of protein-arginine deaminase 4 (PAD4), which later will 
induce chromatin decondensation and nuclear membrane disruption 
(8), was identified as pivotal factor of NET formation. One important 
chemical mediator of NET formation is calcium. A rise in intracellular 
calcium concentration ([Ca2+]i) was shown to be involved in LPS- but 
not in Candida albicans-induced NETosis (30). In line, chelation of 
extracellular calcium led to impaired NETosis (8). Moreover, 
treatments with calcium ionophores like A23187 and ionomycin 
caused NET release (30) and PAD4 activation depended on a high 
calcium concentration (31, 32). Consequently, an increase in 
intracellular calcium, either via the release from intracellular stores or 
by influx from the extracellular space, is key for NETosis. Thus, the 
identification of cellular targets of calcium during NETosis will 
contribute to the knowledge on molecular mechanisms of PMN 
activation and NET release (32). Downstream of a [Ca2+]i rise, several 
kinases were demonstrated to be involved in NET formation like Akt 
(33), Raf–MEK–ERK pathway (34) and phospho-inositide 3-kinase 
(PI3K) (35). For bovine PMN, chemical inhibition experiments have 
shown that calcium signalling and downstream activation of molecular 
pathways like calcium/calmodulin-dependent protein kinase kinase 
(CAMKK), AMP-activated kinase (AMPK) and MAPKK pathways 
play a pivotal role in E. bovis- and B. besnoiti-induced PMN activation 
(36–38). AMPK activation is key to PMN chemotaxis and bacterial 

killing and also counteracts the inhibition of chemotaxis induced by 
LPS (at concentrations higher than 30 ng/mL) (39, 40). Chemical 
inhibition of AMPK in human PMN reduced fMLP and PMA-induced 
ROS production (41). AMPK also regulates autophagy since it directly 
activates the autophagic pre-initiation complex ULK-1 through 
phosphorylation (42). Interestingly, autophagy and NET formation 
seem intrinsically linked and a concomitant occurrence is observed in 
parasite- (37, 38) and PMA-stimulated PMN (43–45).

In the current work we provide new evidence on the involvement 
of an intracellular calcium concentration rise, CAMKK and AMPK 
activation, modulation of autophagic proteins like ULK-1 and 
Beclin-1 and several canonical signalling pathways like PI3K and 
store-operated calcium entry (SOCE) in T. gondii-induced NETosis of 
bovine PMN.

2 Materials and methods

2.1 Ethics statement

The current study was performed in accordance with the Justus 
Liebig University Giessen Animal Care Committee Guidelines. 
Protocols were approved by the Ethics Commission for Experimental 
Animal Studies of the Federal State of Hesse (Regierungspräsidium 
Giessen; GI 18/10 Nr. V 2/2022; JLU-No. 0002_V) and are in 
accordance with European Animal Welfare Legislation: ART13TFEU, 
and currently applicable German Animal Protection Laws.

2.2 Bovine PMN isolation

Peripheral blood was collected from six different animals in 
heparinized sterile plastic tubes (Kabe Labortechnik, Nümbrecht, 
Germany) from the jugular vein of healthy adult dairy cows. Then, 
20 mL of heparinized blood was mixed with 20 mL of sterile PBS 
containing 0.02% EDTA (Carl Roth, Karlsruhe, Germany), carefully 
layered on top of 12 mL of Histopaque-1077 separation solution 
(density = 1.077 g/L; Cat#10771, Sigma-Aldrich, UK) and centrifuged 
[800× g, 45 min, room temperature (RT)] without brake. After 
removal of plasma and the buffy coat containing peripheral blood 
mononuclear cells, the cell pellet was suspended in 20 mL of lysis 
buffer (5.5 mM NaH2PO4, 10.8 mM KH2PO4; pH 7.2) and gently 
mixed for 60 s to lyse erythrocytes. Osmolarity was rapidly restored 
by the addition of 10 mL of hypertonic buffer (462 mM NaCl, 5.5 mM 
NaH2PO4, 10.8 mM KH2PO4; pH 7.2) and 10 mL of Hank’s balanced 
salt solution (HBSS, 14065–049, Gibco, Paisley, UK). The lysis step was 
repeated at least twice, increasing the number of erythrocyte-lysis step 
repetitions until no visible erythrocytes were present on the samples. 
PMN were then suspended in 5 mL of HBSS, counted in a Neubauer 
chamber, and allowed to rest on ice for 30 min before any 
experimental use.

2.3 Toxoplasma gondii tachyzoite 
maintenance

Toxoplasma gondii (RH strain) tachyzoites were maintained by 
serial passages in human foreskin fibroblasts (HFF). Therefore, 
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T. gondii tachyzoites were obtained by scrapping the T. gondii-
infected HFF monolayer. Then the parasite- and HFF-containing 
solution was passed through a syringe with a 25G needle to release 
T. gondii from the host cells. Then, the solution containing 
harvested T. gondii was filtered through a 3 μm filter and 
centrifuged at 3000 × g for 10 min. The parasite pellet was 
suspended in RPMI medium, and used for bovine PMN 
confrontation after the determination of the concentration in a 
Neubauer chamber. All experiments were performed at a ratio of 
1:4 (PMN: T. gondii).

2.4 Flow cytometry-based measurements 
of PMN intracellular calcium 
concentration

PMN were adjusted to a concentration of 1 × 107 PMN/mL 
and incubated with 1 μM FLUO-4 AM (Invitrogen, UK) for 
30 min at 37°C and 5% CO2. Then FLUO-4-loaded PMN were 
washed twice in HBSS and suspended again at a concentration of 
1 × 107 PMN/mL. For each assay, 5 × 105 PMN (50 μL of PMN 
suspension) were dispensed in flow cytometry tubes adjusting the 
volume to 400 μL with HBSS. After recording a baseline for 15 s, 
PMN were stimulated with T. gondii (1:4 PMN: tachyzoite ratio), 
or with the calcium ionophore A23187 (25 μM, Sigma, Germany) 
thereby immediately registering changes in fluorescence intensity 
in the FL-1 channel. All calcium influx related experiments were 
performed in a BD Accuri C6 plus flow cytometer (BD 
Biosciences, Heidelberg, Germany) equipped with a 
non-pressurized peristaltic pump, allowing to add T. gondii 
without interrupting sampling. After experimentation, the mean 
intensity of fluorescence (MFI) after 5 min of stimulation was 
determined and graphed.

2.5 Protein extraction and Western 
blotting (WB)

PMN-T. gondii interactions were performed in 1 mL of RPMI 
media without phenol red (Sigma Aldrich Cat#R7509, Great 
Britain) in 1.5 mL-Eppendorf tubes (Greiner Bio-One Cat#682201, 
Frickenhausen, Germany). For protein extraction, 5 × 106 PMN 
were confronted with 20 × 106 T. gondii tachyzoites (1:4 
PMN:parasite ratio). After the desired incubation time, proteins 
from T. gondii-exposed and non-exposed bovine PMN (n = 6) 
were extracted in RIPA buffer (50 mM Tris–HCl, pH 7.4; 1% 
NP-40; 0.5% Na-deoxycholate; 0.1% SDS; 150 mM NaCl; 2 mM 
EDTA; 50 mM NaF; all Roth, Karlsruhe, Germany) supplemented 
with a protease inhibitor cocktail (Sigma-Aldrich). Then, the cell 
pellet was lysed using an ultrasound sonicator (20 s, 5 cycles). 
Thereafter, the samples were centrifuged (10,000× g, 10 min, 4°C) 
to sediment remnant intact cells. The supernatants were collected, 
and their protein content was quantified via the Pierce™ Bradford 
Plus Protein Assay Kit (Cat#23236, Thermo Scientific, Rockford, 
IL, USA) according to the manufacturer’s instructions. For 
immunoblotting, samples were supplemented with 6 M urea. After 
boiling (95°C, 5 min), total protein (40 μg per slot) was 
electrophoresed in 12% or 15% polyacrylamide gels (100 V, 

90 min) using a Mini-PROTEAN Tetra Cell system (Biorad, 
Feldkirchen, Germany). Proteins were then transferred (300 mA, 
2 h) to polyvinylidene difluoride (PVDF) membranes (Millipore, 
Darmstadt, Germany) using a semidry blotting instrument (Mini-
transfer blot, Biorad, Feldkirchen, Germany). The blots were first 
incubated in blocking solution (3% BSA in TBS containing 0.1% 
Tween, all Sigma-Aldrich; 1 h, RT) and then reacted overnight at 
4°C with primary antibodies [anti-AMPKα (Cat#50081 1:1000, 
Cell Signaling, Leiden, The Netherlands), anti-CAMKK 
(Cat#ab96531, 1:1000 Abcam, Cambridge, UK), anti-pCAMKK 
(Cat#abPA5-64569, 1:1000 Thermo Fischer), anti-Beclin-1 
(Cat#3495, 1:1000 Cell Signaling, Leiden, The Netherlands), anti-
p-Beclin-1 (Cat#14717, 1:1000 Cell Signaling, Leiden, The 
Netherlands), and anti-ULK1 (Cat#8054, 1:1000 Cell Signaling, 
Leiden, The Netherlands)] diluted in blocking solution. The 
detection of vinculin (Cat#sc-73614, 1:1000, Santa Cruz, Texas, 
LA, USA) was used for normalization of the samples. Signal 
detection was accomplished by incubation for 30 min at RT in the 
corresponding secondary antibodies conjugated with peroxidase 
(Cat#31430, 1:40,000 and Cat#31460, 1:40,000, both Pierce) and 
then applying an enhanced chemiluminescence detection system 
(ECL® plus kit, RPN2132, GE Healthcare, Buckinghamshire, UK). 
Protein signals were recorded in a ChemoCam Imager (Biorad, 
Feldkirchen, Germany). Protein masses were controlled by a 
protein ladder (PageRulerplus pre-stained protein ladder covering 
~10–250 kDa; Thermo Fisher Scientific, Rockford, IL, USA). 
Quantification of protein band intensities was performed by 
Image J software (Fiji version using the gel analyzer plugin).

2.6 Immunofluorescence-based 
detection and quantification of 
Toxoplasma gondii-induced NET 
formation

Unstimulated bovine PMN (negative control) and PMN 
confronted with T. gondii (1:4 PMN: tachyzoite ratio) were incubated 
(37°C, 5% CO2) on 15 mm glass coverslips pre-coated with 0.01% 
poly-L-lysine in 6-well cell culture plates (Greiner Bio-One) in a final 
volume of 1 mL RPMI media without phenol red (Sigma Aldrich 
R7509, Great Britain) in the presence or absence of 1 mM of 
AICAR. After 4 h of co-culture, the samples were fixed with 4% 
paraformaldehyde (15 min, RT). After the fixation step, the samples 
were carefully washed thrice with sterile PBS and incubated in 
blocking/permeabilization solution (PBS containing 3% BSA, 0.3% 
Triton X-100; Sigma-Aldrich, St. Louis, MI, USA) for 1 h at RT. Then, 
samples were incubated in primary antibodies (anti-histone-
H1-DNA, 1:200 Cat# MAB3864, Merck-Millipore, Darmstadt, 
Germany; anti-neutrophil elastase, NE, Cat# ab6872, Abcam, 
Cambridge, UK) diluted in blocking/permeabilization solution 
(overnight, 4°C, humidified chamber). Then, the samples were 
washed thrice in sterile PBS and incubated for 30 min at RT, protected 
from light, with corresponding secondary antibodies (anti-rabbit IgG 
Alexa 488, 1:500, Cat# A11008, and anti-mouse IgG Alexa 594, Cat# 
A11005, both Thermo Fisher, Eugene, ON, USA). Samples were 
mounted in glass microscopy slides and the DNA counterstaining 
was accomplished by 4′,6-diamidin-2-phenylindol (DAPI) present in 
mounting medium (Fluoromount G, 00–4,959-52, Thermo Fisher, 
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Waltham, MA, USA). Images were acquired by a Nikon Eclipse Ti2-A 
inverted microscope equipped with a ReScan confocal microscopic 
instrumentation (RCM 1.1 Visible, Confocal.nl) and a motorized 
z-stage (DI1500). Three channels were recorded for signal detection: 
DAPI/Blue/405-laser, AlexaFluor488/Green/Argon-488-laser, and 
AlexaFluor594/Red/HeNe-543-laser. Images were acquired by a 
sCMOS camera (PCO edge) using a CFI Plan Apochromat 60 X 
lambda-immersion oil objective (NA 1.4/0.13; Nikon), controlled by 
NIS-Elements v 5.11 (Nikon, Tokyo, Japan) software. Samples were 
imaged via z-stack optical series with a step size of 0.2–0.3 microns 
in depth. The z-series were displayed as maximum z-projections, and 
all settings (gamma, brightness, and contrast) were applied at 
identical conditions when comparing image sets using Image J 
software, Fiji version (46). Measurements of defined parameters (e.g., 
area, integrated density and numbers) were performed with Fiji/
Image J software (version: 1.53c). Histone H1-DNA and DAPI signals 
were acquired at the same time point for each image. A manual 
threshold was applied to each channel using the clustering algorithm 
of Otsu (47). Sharpness of the images was adjusted and the percentage 
of cells releasing NETs for each experimental condition was assessed, 
as described by Brinkmann et al. (48) by determining the number of 
cells positive in the DNA-H1 channel and the total number of cells in 
the DAPI channel. Cells positive for DNA-H1 and with an expanded 
non-multilobulated nucleus were defined as NETotic.

2.7 Quantification of extracellular DNA 
release

Using 96-well flat bottom plates (Greiner Bio-One, Germany), 
2 × 105 bovine PMN were cocultured with T. gondii (1:4 PMN: 
tachyzoite ratio) in RPMI 1640 medium at a final volume of 
200 μL. PMN only and plain media samples were used as negative 
controls. For chemical inhibition experiments, PMN were pretreated 
with the MAPK inhibitor UO126 (50 μM, 30 min; Sigma-Aldrich), 
the PI3K inhibitor LY294002 (1 μM, 30 min; CST) or the SOCE 
inhibitor 2-APB (50 μM, 30 min; Sigma) before exposure to T. gondii. 
To prove that the source of the fluorescence signal is extruded DNA 
from PMN, a well containing DNase I  (90 U/sample, Roche 
Diagnostics) was included in the experimental setting. DNA was 
quantified via PicoGreen-based dsDNA quantitation reagent (5 μM, 
Invitrogen)-derived fluorescence intensities being assessed at an 
excitation wavelength of 500 nm and emission wavelength 525 nm 
using an automated plate monochrome reader (Varioskan Flash; 
Thermo Scientific) after 4 h of co-culture. Results are expressed in 
relative fluorescence units (RFU).

2.8 Statistical analysis

Statistical significance was defined by a p-value <0.05. In Western 
blot experiments, the p-values were calculated via paired, two-tailed 
t-tests, comparing control PMN vs. PMN incubated with T. gondii. 
ANOVA followed by Dunnet multiple comparisons tests were applied to 
calcium influx and DNA release data. Bar graphs represent the 
mean ± SD, and statistical analysis was performed by GraphPad software 
(v. 7.03).

3 Results

3.1 Exposure to Toxoplasma gondii induces a 
rise in intracellular calcium concentration 
[Ca2+]i in bovine PMN

After confrontation of PMN with T. gondii, a rapid increase in 
neutrophil intracellular calcium concentration [Ca2+]i was observed, 
being represented by fluorescence changes after 5 min of co-incubation 
(Figure 1A). On a statistical level, this reaction proved significant when 
compared to negative controls (Figure 1A). As expected, stimulation of 
bovine PMN with the calcium ionophore A23187 (5 μM) caused a 
stronger and sustained increase in [Ca2+]i (Figure 1A), thereby proving 
as reliable positive control in the bovine system.

3.2 PMN exposed to Toxoplasma gondii 
show an increased AMPK and CAMKK 
phosphorylation

AMPK phosphorylation was studied at 30 min of PMN-parasite-
interaction in T. gondii-exposed PMN (6 biological replicates) by 
WB-based analyses of PMN protein extracts (Figure  1B). A high 
heterogeneity between the biological replicates was observed, and the 
overall effect was that pAMPK, but not total AMPK, revealed a 
significantly enhanced expression after 30 min of co-culture (Figure 1C).

Given that cellular AMPK activity is regulated upstream by CAMKK 
(besides other regulators and signaling pathways), we also evaluated the 
expression and phosphorylation status of CAMKK at 30 min of PMN 
exposure to T. gondii (Figure 1B). Densitometric analysis of respective 
protein bands in WB (Figure 1D) indicated that both phosphorylated 
and non-phosphorylated CAMKK was upregulated in T. gondii-
confronted PMN at 30 min of co-incubation, thereby indicating a 
sustained activation of CAMKK.

3.3 Analyses of autophagy-related proteins in 
Toxoplasma gondii-exposed PMN

Since PMN exposure to T. gondii induced AMPK expression in 
bovine PMN, we also studied kinetics of early autophagic processes 
induced by T. gondii by evaluating the expression of Beclin-1 (in the 
phosphorylated and unphosphorylated form), and of ULK-1 at 5, 15, and 
30 min of bovine PMN-T. gondii co-cultures (Figure 2A). The early 
expression profiles of these autophagy-related proteins showed an 
upregulation trend for ULK-1 after 30 min of co-incubation. However, 
after the densitometric analyses, none of the studied proteins showed a 
statistically significant increase in protein expression (Figures 2A–D).

3.4 Pharmacological AMPK activation 
enhances Toxoplasma gondii-induced NET 
formation

To further confirm the role of AMPK in the process of early 
NETosis, we assessed potential additive effects of PMN AICAR 
pre-treatments on T. gondii--triggered NET formation (Figure 3). 
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Therefore, bovine PMN were either directly exposed to T. gondii 
or additionally pre-treated with AICAR. Thereafter, NET 
formation was evaluated by immunofluorescence microscopy 
detecting DNA (blue, DAPI), NE (green) and DNA-histone 

complexes (magenta). Posterior image analyses used a semi-
automatic method for NET quantification (Figure 3) (48). Current 
data showed that AICAR treatments had an additive effect on 
T. gondii-induced NETosis since T. gondii -driven NET formation 

FIGURE 1

Toxoplasma gondii exposure induces cytoplasmatic calcium increase, AMPK and CAMKK phosphorylation in bovine PMN. Fluo-4 AM-loaded bovine 
PMN (A) (n = 3) were confronted with T. gondii or stimulated with the calcium ionophore A23187 for positive control. Fluo 4-AM derived fluorescence 
was measured by a flow cytometer and the mean of the fluorescence intensity after 5 min of co-incubation was represented as bar graph (A). Bovine 
PMN isolated from peripheral blood from 6 different animals (n = 6) were exposed to T. gondii at 1:4 PMN: T. gondii ratio. After 30 min of co-
incubation, protein extracts were generated from PMN and tested for AMPK, p-AMPK, CAMKK and p-CAMKK expression by Western blotting. The 
expression of vinculin was used as internal reference protein. (B) Representative Western blot and (C) densitometric analysis of protein bands for AMPK, 
p-AMPK. (D) Densitometric analysis for CAMKK and p-CAMKK. Bars in the graph represent the mean ± SD. p values were calculated by applying a 
Mann–Whitney test.
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was significantly enhanced by AICAR supplementation when 
compared to T. gondii alone exposure (Figure  3B) and to 
non-exposed bovine PMN.

3.5 Toxoplasma gondii-induced DNA 
release depends on MAPK- and 
SOCE-related pathways

To further expand and complement the results on the AMPK 
pathway, we also evaluated the effects of chemical inhibitors of the 
MAPK- (UO126), PI3K- (LY294002) and SOCE- (2-APB) related 
pathways. Current data confirmed that T. gondii exposure indeed 
induces DNA release from bovine PMN. This DNA release is 
dependent on both, the MAPK pathway and SOCE (Figure 4). DNA 
release as the main component of T. gondii-induced NETs was 
confirmed by DNAse I  treatments that significantly diminished 
extracellular DNA counts (Figure  4; PMN + T. gondii vs. 
PMN + T. gondii + DNAse I).

4 Discussion

The NETotic process includes at least three well-defined phases. 
One of the major NETosis-driving forces is the entropic swelling of 
chromatin and the intracellular ATP reserve consumption. Here, 
we presented new data for the bovine system on early events of PMN 
exposure to T. gondii (within the time frame of 30 min) on the level of 
intracellular calcium concentration ([Ca2+]i), AMPK, CAMKK 
activation and the autophagic process.

[Ca2+]i controls several bovine PMN functions like ROS 
production, degranulation and NETosis (36, 49). In the current study, 
exposure of bovine PMN to T. gondii indeed induced a rapid increase 
in [Ca2+]I in PMN, which was later accompanied by an activation of 
both CAMKK and AMPK, with the former being commonly reported 
as Ca2+-dependent. Hence, CAMKK is able to activate AMPK in 
response to a rise in [Ca2+]i, independent of the AMP/ATP ratio (50). 
One of the underlying main mechanisms that mediates a transient, 
fast rise in [Ca2+]i in PMN, is the so-called store-operated calcium 
entry (SOCE). SOCE, in turn, is well-documented to control ROS 
production, chemotaxis, degranulation and NET formation (36, 51, 
52). The blockage of T. gondii tachyzoite-induced DNA release by the 
SOCE inhibitor 2-APB is in line with former data on parasite-driven 
NET formation using stages of the related parasites E. bovis (36) and 
C. parvum (53), thereby indicating a conserved role of SOCE in 
protozoa-induced NETosis. One of the targets of free cytosolic Ca2+ is 
the CAMK family of enzymes. In PMN, CAMK activities have been 
associated with PMN development and maturation (54), superoxide 
production (55), phagocytosis, migration, and adhesion. CAMKK is 
activated by IL-8 (56), fMLP and platelet activating factor (PAF) but 
not by phorbol 12-myristate-13-acetate (PMA) (57) in PMN and 
regulates functions via an ERK-MAP kinase-dependent mechanism 
(56). Previously, we already reported the activation of the CAMKK 
and AMPK pathways in bovine PMN being confronted with 
tachyzoites of the T. gondii-closely related parasite B. besnoiti (37, 38). 
Hence, thus current data confirms this observation and expands the 
proposed mechanisms to T. gondii-activated bovine PMN.

AMPK is a metabolic master regulator in eukaryotes. Besides its 
metabolic activity, in PMN AMPK induction enhances chemotaxis, 
bacterial killing, phagocytosis and MMP-8 secretion (39, 58). In the 
bovine system, PMN stimulated by agonists of hydroxycarboxylic acid 
receptor 2 (HCA2) and β-hydroxybutyrate showed an increased 
AMPK activity (59). Moreover, AMPK activity induces 

FIGURE 2

Studies on autophagy-related proteins on T. gondii-exposed PMN. 
Bovine PMN isolated from peripheral blood from four different 
animals (n = 4) were exposed to T. gondii at 1:4 PMN: T. gondii ratio. 
After 0–30 min of incubation, total protein extracts were generated 
from PMN and tested for Beclin-1, p-Beclin-1 and ULK1 expression 
by Western blotting. The expression of vinculin was used as internal 
reference protein. (A) Representative Western blot and densitometric 
analysis of protein bands for Beclin-1 (B), p-Beclin-1 (C,D) ULK1 at 0, 
5, 15 and 30 min of co-incubation. Bars in the graph represents 
mean ± SD. p values were calculated by unpaired two-tailed t-tests 
comparing control PMN vs. PMN incubated with T. gondii at each 
time point.

https://doi.org/10.3389/fvets.2025.1557509
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Conejeros et al. 10.3389/fvets.2025.1557509

Frontiers in Veterinary Science 07 frontiersin.org

autophagy-related proteins like LC3, ATG5 and Beclin-1  in a low 
glucose (2.5 mM) setting (60). Mechanistically, AMPK promotes 
autophagy by directly activating ULK-1 during autophagosome 
formation (61). In agreement, in the current study T. gondii -exposed 
PMN showed enhanced AMPK phosphorylation after 30 min 
co-incubation, thereby correlating with an increase in autophagy-
related proteins, such as ULK-1. Indeed, autophagy and NET 
formation have been demonstrated to be intrinsically linked, most 
probably due to some overlapping at protein level (38, 43, 45). In 
principle, current results in the context of previous studies (37), 
indicate that autophagy-related activation is stronger in B. besnoiti-
confronted than in T. gondii-confronted bovine PMN. However, it 
remains currently entirely unclear, which specific parasite-derived 

factors may trigger this differences on autophagy-
dependent mechanisms.

Pharmacological activation of AMPK in PMN by AICAR 
treatments results in cytoskeletal rearrangement and leading edge 
formation (39). Recently, we  have shown that plain AICAR 
treatments result in PMN activation in the bovine system by 
significantly upregulating both, i. e. oxygen consumption rates 
(OCR) and extracellular acidification rates (ECAR) in bovine 
PMN exposed to B. besnoiti (37). In the current study, PMN 
treatments of T. gondii -exposed PMN with AICAR resulted in 
additive effects in case of NET formation. This finding is coherent 
with similar observations on B. besnoiti-confronted bovine PMN 
(37). In contrast to above mentioned findings, AICAR treatments 

FIGURE 3

AICAR treatments enhance T. gondii-induced NET formation in bovine PMN. (A) Immunofluorescence images showing DNA (blue, DAPI), neutrophil 
elastase (NE, green) and DNA-histone complexes (magenta) in PMN (negative control), PMN-T. gondii -cocultures and AICAR-pretreated bovine PMN 
(30 min before T. gondii exposure). (B) The percentage of NET-releasing PMN was calculated by a semi-automated quantification method via image 
analysis (Image J, Fiji version) and is represented as bar graph, mean ± SD. p-values were calculated using a ANOVA test followed by a Tukey multiple 
comparison test.
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led to diminished ROS production in PMA-activated human 
PMN, suggesting an overall stimulus-dependent response. In the 
human system, T. gondii -induced NET formation showed to 
be  ROS- and glycolysis-dependent with the participation of 
gasdermin D and NE (20). Interestingly, the percentage of PMN 
performing NETosis in response to encounter in human 
neutrophils is higher (approximately 20%) (20) than in bovine 
ones, as presented here (10%), indicating a possible host species-
specific effect, besides the potential impact of differential 
experimental settings. Referring to the here stated inhibition of 
parasite-driven extracellular DNA release by treatments with 
both the SOCE inhibitor 2-APB and the MAPK pathway inhibitor 
UO126, current findings are in line with observations on bovine 
PMN confronted with other coccidian stages, such as E. bovis 
sporozoites and N. caninum tachyzoites (36, 62). The observed 
lack of effect on the LY294002 (PI3K inhibitor) treatment is 
probably due to the small sample size and thus more biological 
replicates or microscopic analyses of NET formation are 
necessary to propose more precise conclusions. Altogether, these 
results suggests a conserved nature of these canonical activation 
pathways in bovine PMN driven by encounter with different 

apicomplexan parasites species and stages. Notably, another 
protozoan but non-related parasite, Leishmania donovani, 
induces autophagy in human PMN, depending on ROS 
production, AMPK activation and PI3K/Akt and ERK/MAPK 
signaling pathways (35). The authors were able to demonstrate 
that the augmented autophagy was a prerequisite for later 
macrophage-mediated uptake of infected PMN, thus promoting 
L. donovani infection (35, 63).

Several methods exist in the literature describing how NET 
formation can be studied or quantified. Immunodetection of NET 
markers as NE and MPO on the NET-forming chromatin fibers is 
recommended as the first choice for NET visualization and 
quantification (64). Automatic microscopic analyses for NET 
quantification developed for human and mouse PMN cannot 
be directly transferred to other systems as the equine and bovine 
without adjustments due to specie-specific differences in cellular 
and nuclear morphology (65, 66). On the other hand, techniques 
detecting free DNA as the main component of NETs are fast and 
cost effective in screening the effect of molecules on NET 
formation in virtually all species, but are less sensitive than 
microscopic analysis (64). The main drawback, however, is that 
DNA detected by probes as picogreen or Sytox orange are not able 
to discriminate between NET-DNA, DNA derived from necrosis 
or pathogen-derived DNA and thus the results must be interpreted 
with caution (65).

Altogether, current findings highlight the complex interplay 
between protozoan parasites and host-dependent innate immune 
responses. Overall, current data are consistent with the hypothesis 
that T. gondii encounter activates bovine PMN via a CAMKK-/
AMPK−/ /NETosis-dependent mechanism.
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