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Fowl adenoviruses (FAdV) are prevalent in chickens worldwide, responsible 
for several poultry diseases, including inclusion body hepatitis (IBH), hepatitis-
hydropericardium syndrome (HHS), and gizzard erosion (GE), which result in 
significant economic losses in the poultry industry. Consequently, detection 
and efficient identification of FAdV serotypes are becoming extremely urgent 
to monitor outbreaks and develop vaccination strategies. Conventional PCR 
(cPCR) tests, combined with Restriction Fragment Length Polymorphism (RFLP) 
or sequencing, were developed for FAdV diagnosis. Although these molecular 
tests have considerably improved the accuracy of FAdV diagnosis compared with 
conventional methods, certain drawbacks remain unresolved, including lack of 
sensitivity and post-PCR analysis. Subsequently, advanced molecular technologies 
such as real-time PCR (qPCR), Loop Isothermal Amplification (LAMP), Cross-
Priming Amplification (CPA), Recombinase Polymerase Amplification (RPA), Digital 
Droplet Polymerase Chain Reaction (ddPCR), Dot Blot Assay Combined with cPCR, 
Nanoparticle-Assisted PCR (nano-PCR), PCR-Refractory Quantitative Amplification 
(ARMS-qPCR), CRISPR/Cas13a Technology, and High-Resolution Melting Curve 
(HRM), have been developed to improve FAdV diagnosis.
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1 Introduction

Fowl adenoviruses (FAdVs) belong to Adenoviridae family, and the aviadenovirus genus, 
which comprises avian adenoviruses that share a common antigen (1). Based on whole 
genome analysis and viral neutralization (VN) test, FAdVs are divided into 5 species (A to E) 
and 12 serotypes (1-8a, 8b-11), respectively (2, 3). Countries such as the United States of 
America (USA), the European Union (EU), Australia, and Japan have established their 
classification systems based on local strains. However, this lack of standardization in serotype 
numbering can lead to confusion and misinterpretation when comparing articles and research 
results (4). Therefore, the international committee on taxonomy of viruses (ICTV) has 
published an international classification system that researchers are required to use in their 
publications (5).

Due to their vertical and horizontal transmission (6–10), FAdVs are widespread 
throughout the world (11, 12) and are associated with significant economic losses in the 
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poultry industry. Although most infections are subclinical, some 
FAdV serotypes are associated with impactful poultry diseases such 
as inclusion body hepatitis (IBH) (13, 14), adenoviral gizzard erosion 
(AGE) (15, 16), pancreatic necrosis (17), and hepatitis-
hydropericardium syndrome (HHS) (18). The latter is particularly 
worrying due to its association with high mortality rates from 30 to 
80% (18–20). Consequently, efficient diagnosis of FAdV has become 
highly urgent, as well as developing effective vaccination 
strategies (21).

FAdV diagnosis is initially based on macroscopic features, 
followed by histological examination (22). Furthermore, electron 
microscopy enables a direct visualization of icosahedral viral particles 
in infected tissues, confirming the FAdV diagnosis (3, 23, 24). On the 
other hand, various serological tests have been widely employed for 
FAdV detection, including agar gel immunodiffusion (25), double 
immunodiffusion (26, 27), immunofluorescence (28), counter-
immunoelectrophoresis (29), and agar gel precipitation test (30). 
However, the VN test represents the gold standard for its ability to 
differentiate between FAdV serotypes (31, 32). Despite this accuracy, 
the VN test cannot be used for mass detection due to their significant 
compromises in terms of cost, time, cell culture, and reference strains 
(32). Various versions of enzyme-linked immunosorbent assay 
(ELISA) have been developed to overcome these limitations imposed 
by conventional serological tests (33–36). Although these tests are 
economical, rapid, and suitable for mass detection, they present many 
limitations, notably in terms of cross-reactivity and low sensitivity (37).

Compared with other techniques, molecular techniques offer 
significant advantages in terms of sensitivity, specificity, rapidity, and 
safety (38). Several reports have employed in situ hybridization (ISH) 
to detect FAdV DNA using specific probes (39–41). Unlike other 
molecular techniques, these probes can be  directly applied to 
suspected lesions, enabling the confirmation of FAdV involvement. 
However, this method is no longer widely used today due to the 
complexity of its application and the availability of more convenient 
and reliable diagnostic methods. Polymerase chain reaction (PCR) is 
a widely used technique for the diagnosis of various infections (42). 
On the other hand, novel versions of PCR have recently been applied 
for FAdVs diagnosis, including loop-mediated isothermal 
amplification (LAMP), cross-primed amplification (CPA), 
recombinase polymerase amplification (RPA), droplet digital 
polymerase chain reaction (ddPCR), dot blot assay combined with 
cPCR, nanoparticle-assisted PCR (nano-PCR), PCR-refractory 
quantitative amplification (ARMS-qPCR), and CRISPR technology. 
These tests aim to improve the detection, quantification, and 
genotyping of FAdVs involved in avian diseases. This review covers 
the molecular methods used for FAdV detection and genotyping, 
highlighting their role in overcoming the limitations of traditional 
diagnostic approaches. It also discusses the strengths and drawbacks 
of these molecular techniques, offering a detailed analysis of their 
effectiveness and potential challenges.

2 Conventional PCR

Initially, cPCR was used for FAdV diagnosis due to its sensitivity 
and simplicity. Several PCR assays specifically targeting the hexon 
gene were initially developed for FAdV diagnosis (43–46) (Table 1). 
The hexon gene is the longest gene in the FAdV genome and encodes 

a capsid structural protein, specifically the antigenic determinants of 
either type, group, and subgroup (47). It has 2 functional components: 
Pedestals regions P1 and P2, conserved between FAdV serotypes (4, 
48), and L1-L4 loops that form hypervariable regions (HVR1-4) (49). 
These HVRs have been identified exclusively in the L1 and L2 regions 
(43). Except for the L3 region, these loops are surface exposed and 
interact with the host immune response, making them targeted in 
taxonomy and FAdV genotyping (4). It has been reported that analysis 
of the HVR1 region distinguishes between strains of the same serotype 
from different geographical regions (44).

Primers for cPCR were designed in both conserved and variable 
regions on the FAdV hexon gene. The use of universal primers H1/H2, 
H3/H4, HexonA/HexonB, HexF/HexR, FAdVF JSN/FAdVR JSN, and 
HexL1-F/HexL1-R, which hybridize to conserved regions on the 
hexon gene enabling the amplification of L1 hypervariable regions was 
used for detection of FAdVs. However, To ensure a universal detection, 
most of these primers are degenerated, including various alternative 
sequences to cover all minor variations between the 12 serotypes (43). 
Nevertheless, it was reported that H1/H2 primers failed to amplify 
FAdV-3 from the supernatant of infected cell cultures (43). 
Comparison of the sense primer (H1) with the FAdV-3 hexon gene 
sequence revealed the existence of 3 mismatches located in the last 9 
nucleotides on the 3′ end of H1 (nucleotides at positions 11, 14, and 
17) (43). The same study showed that the MK89/MK90 primers 
amplified only FAdV-1 due to the lack of identity of these primers with 
the other 11 serotypes. This contrasts with the findings of Xie et al. 
(46), who have reported that MK89/MK90 is a universal primer. 
Furthermore, the hexon C/hexon D primers are less specific, as they 
enabled the amplification of the EDS virus, which belongs to group III 
of avian adenoviruses. This lower specificity is probably associated 
with the higher degraded level of the Hexon C/Hexon D primers 
compared to others (43). Consequently, the use of H1/H2, HexonC/
HexonD, and MK89/MK90 primers is not suitable for universal 
detection as they will inevitably lead to false-negative PCR results. 
These tests are often associated with enzymatic digestion or 
sequencing for serotype identification. The use of universal hexon A/
Hexon B primers followed by sequencing of the product remains the 
reference technique used for FAdV serotype identification (12). 
However, a study revealed that Hexon A/Hexon B primers did not 
amplify FAdV-5 (50), raising questions about their effectiveness for 
detecting this serotype.

On the other hand, using specific primers targeting hypervariable 
regions of the hexon gene, in particular, the L1 loop, which shows a 
higher degree of variability than the L2 loop, FAdV-4 was successfully 
detected from HHS cases in India by PCR coupled with Southern 
hybridization (51). Moreover, FAdV-8a, −8b, −1, −2, −4 were 
detected from IBH, HHS, and AGE cases in Japan using serotype-
specific primers targeting specific regions within the hexon gene (52). 
In addition, primers specific to FAdV-1 and FAdV-5 have been used 
in duplex PCR for the simultaneous detection of both serotypes in a 
single reaction. The size of the PCR product differentiates between 
these 2 serotypes in the case of co-infections. This technique has 
proved to be a fast, efficient, specific, and highly effective tool for 
FAdV-5/1 detection (53).

Besides, fiber genes are also used for specific detection of certain 
FAdV serotypes as they encode type-specific neutralizing epitopes, 
non-type-specific neutralizing epitopes, and type-specific neutralizing 
epitopes for the subgenus (54). Primers targeting fiber genes 1 and 
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TABLE 1 Conventional PCR tests used for FAdV detection and associated genotyping techniques.

Technology Detection section Genotyping section

Forward 
primer

Reverse 
primer

Primer sequence 3′ To 5’ Target gene Product 
size (bp)

Results interpretation Genotyping 
technique

Results 
interpretation

References

cPCR (Universal 

Test)

H1 TGGACATGGGGGGCGACCTA Hexon (FAdV1) 1,219  • Detection of 12 serotypes. RFLP Differentiation between 

serotypes except FAV-4 

and FAV-5.

(43, 45)

H2 AAGGG ATTGACGTTGTCCA

cPCR (Universal 

Test)

H3 AACGTCAACCCCTTCAACCACC Hexon (FAdV1) 1,319  • Detection of 12 serotypes. RFLP (HpaII) Differentiation between 

FAV-1, FAV-2, FAV-4, 

FAV-5, FAV-11 and 

FAV-12, but not for the 

others.

(43, 45)

H4 TTGCC TTGGCGAAAGGCG

cPCR (Universal 

Test)

Hexon A CAARTTCAGRCAGACGGT Hexon (FAdV1) 900  • Detection of 12 serotypes. RFLP (BsiWI, Sty1, 

Mlu1, Asp1, Bgl1, 

Sca1)

Successive use of 6 

different endonucleases 

is needed for complete 

differentiation of 12 

FAdV serotypes.

(43)

Hexon B TAGTGATGMCGSGACATCAT

cPCR (Universal 

Test)

Hexon C SKCSACYTAYTTCGACAT Hexon (FAdV-1) 580  • Detection of 12 serotypes.

 • Not specific for FAdV

- - (43)

Hexon D TTRTCWCKRAADCCGATGTA

cPCR (Universal 

Test)

MK89 CCCTCCCACCGCTTACCA Hexon (CELO) 418  • Detection of adenovirus from 

group I, II and III.

- - (46)

MK90 CACGTTGCCCTTATCTTGC

cPCR (Specific 

Test)

FibF1 CAGGGTTACGTCTACTCCCC Short Fiber (FAdV-4) 1,500  • Specific detection of FAdV-4. RFLP (Alu I) Differentiation between 

HPS-FAdV-4 and non-

HPS-FAdV-4 isolates.

(158)

FibR1 TTTGTCACGCGGTGGGGAGG

cPCR (Specific 

Test)

F1 TCA TGA ACG AGG AGG TTG Long Fiber (CELO) 2,382  • Amplification of FAdV-1 long 

fiber gene.

RFLP (Hind I) Differentiation between 

pathogenic FAdV-1 

strains (99ZH) and 

non-pathogenic FAdV-1 

strains (Ote).

(55)

F2 GTT CAT TGA TGA TAC CCC

cPCR (Universal 

Test)

FAVHF GACATGGGGTCGACCTATTTCGACAT Hexon (FAdV-10) 731–743  • Amplification of FAdVs from 

HPS-infected birds.

PCR product 

sequencing + 

Southern 

Hybridization.

Confirm the specificity 

of amplified DNA.

(51)

FAVHR AGTGATGACGGGACATCAT

cPCR (Universal 

Test)

FAdVFJSN AATGTCACNACCGARAAGGC Hexon 830  • Amplification of 96 FAdV field 

strains from chickens in Poland.

PCR product 

sequencing

Isolats belong to 

serotypes FAdV-1, 

FAdV-4, FAdV-5, FAdV-

7, FAdV-8a, FAdV-8b et 

FAdV-2/11 (FAdV-D).

(44)

FAdVRJSN CBGCBTRCATGTACTGGTA

(Continued)
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TABLE 1 (Continued)

Technology Detection section Genotyping section

Forward 
primer

Reverse 
primer

Primer sequence 3′ To 5’ Target gene Product 
size (bp)

Results interpretation Genotyping 
technique

Results 
interpretation

References

cPCR (Universal 

Test)

HexF1 GAYRGYHGGRTNBTGGAYATGGG Hexon (FAdV-1) 800  • Amplification of group I, II and 

III avian adenoviruses.

 • Used to characterize isolates from 

chickens with HPS in Japan.

PCR product 

sequencing

Confirmation of 

serotype 4 from HPS 

cases.

(159, 160)

HexR1 TACTTATCNACRGCYTGRTTCCA

cPCR (Specific 

Test)

Hex L1-F ATGGGAGCSACCTAYTTCGACAT Hexon 590  • Amplification of FAdV associated 

with IBH in broiler chickens 

in Turkey.

PCR product 

sequencing

Confirmation of 

serotype 8b.

(161)

Hex L1-R AAATTGTCCCKRAANCCGATGTA

cPCR (Specific 

Test)

F-primer ACAGCCGTGCGCACCAACTGCCCGAAC Penton (FAdV-4) 498  • Specific amplification of FAdV-4 

associated with HPS in China.

PCR product 

sequencing

Confirmation of the 

FAdV-4

(125, 162)

R-Primer CTGCAGATCCTCGTAGGTAATAAC

Nested PCR 

(Universal Test)

polFouter TNMGNGGNGGNMGNTGYTAYCC DNA Poly 321  • Amplification of all serotypes. PCR product 

sequencing

Determining, for the 

first time, the sequence 

of the gene encoding the 

DNA polymerase of 

FAdV-6, −8b, −7, −8a, 

−2, −3, −6, −1, and 

FAdV-11.

(55)

polRinnner GTDGCRAANSHNCCRTABARNGMRTT

polFinner GTNTWYGAYATHTGYGGHATGTAYGC

polRinnner CCANCCBCDRTTRTGNARNGTRA

Duplex PCR 

(Specific Test)

FAdV 1A TTCGAGATCAAGAGGCCAGT Hexon (CELO) 178  • Specific Amplification of 

serotypes 1

 • Sensitivity is 0.0001.

Electrophoresis The PCR product is 

178-bp for serotype 1 

and 227 bp for serotype 

5.

(53)

FAdV 1B GGTCGAAGTTGCGTAGGAAG

FAdV 5A TAACTGCCGTTTCCACATTCA Hexon (FAdV-5) 227  • Specific Amplification of FAdV-5.

 • Sensitivity is 0.0001.FAdV 5B AGCTGATTGCTGGTGTTGTG

cPCR (Universal 

Test)

52K-F TGT ACG AYT TCG TSC ARA C 52 K + PIII (CELO) 755–794  • Detection of 12 serotypes - - (66)

52K-R TARATGGCG CCYTGCTC

cPCR (Specific 

Test)

F-FAdV-1 ATTTTCAACACCTGGGTGGAGAGCA Hexon (CELO) 828  • Specific amplification of 

serotype 1

- - (52)

R-FAdV-1 CACGTTGCCCTTATCTTGC

cPCR (Specific 

Test)

F-FAdV-4 CCAACGCCACTACCAACT Hexon (KR-5) 290  • Specific amplification of 

serotype 4

- -

R-FAdV-4 CCAGTTTCTGTGGTGGTTG

cPCR (Specific 

Test)

F-FAdV-2 CCCAATATGATTCTACAGTCCA Hexon (SR-48) 719  • Specific amplification of 

serotype 2

- -

R-FAdV-2 GAGATGGGTATTGTGGGTTCGTATTCGG

cPCR (Specific 

Test)

F-FAdV-8a TAACCCCTATGAGAATACCACT Hexon (TR-59) 382  • Specific amplification of 

serotype 8a

- -

R-FAdV-8a ATTGACCGTTCCGTACTCGAT

cPCR (Specific 

Test)

F-FAdV-8b AAGAACGAGGCGCAAAACACAGCTA Hexon (764) 261  • Specific amplification of 

serotype 8b

- -

R-FAdV-8b GTCTAACACGTAGTAAGGCGTTGTTCCA

(Continued)
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TABLE 1 (Continued)

Technology Detection section Genotyping section

Forward 
primer

Reverse 
primer

Primer sequence 3′ To 5’ Target gene Product 
size (bp)

Results interpretation Genotyping 
technique

Results 
interpretation

References

Nested PCR 

(Specific Test)

φPCR-F TGTACGAYTTTGTSCARAC 52 K (FAdV-4) 500  • Specific detection of FAdV-4.

 • Detection limit: 10 copies/μL.

 • Same sensitivity than 

LAMP-LFD.

- - (60)

φaPCR-R TARATGGCGCCYTGCTC

*nPCR-F GCATAGAGCAGCAGGTAT

*nPCR-R CGAACTCATCCTCCTCTC

Nested PCR 

(Specific Test)

φpX-For CAGGAAGCGTCGCCAACATCAT X gene (FAdV-9) 440  • Specific detection of FAdV-9.

 • More sensitive than cPCR and 

same detection range than qPCR

- - (59)

φpX-Rev ACCGTTTCTCCTTCTCCTCGTTGA

*pXin-For CTTACGGGCGGGCGAACAGC 370

*pXin-Rev CGGCACCTGAAACGGGAACC

Multiplex PCR 

(Universal Test)

F-FAdV CAACAGCCTCTCGTACCCAG Hexon 102  • Simultaneous detection of 7 

viruses in ducks.

 • LOD: 104 copies/μL.

 • Reproducible.

 • Specific for FAdV.

- - (58)

R-FAdV CCGATGTAGTTGGGCCTGAG

*Internal primers; ϕ, External primers; RE, Restriction enzymes; CELO, Chicken embryo lethal orphan; NR, Not reported. N = G/A/T/C, M = A/C, R = A/G, W = A/T, S = C/G, Y = C/T, K = G/T, H = A/C/T, D = A/G/T, B = C/G/T.
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2 have been designed to detect FAdV-4 involved in HHS. Moreover, 
PCR combined with Restriction Fragment Length Polymorphism 
(RFLP) of the fiber gene, has allowed distinguishing between 
pathogenic FAdV-1 isolates involved in GE and non-pathogenic 
isolates from healthy chickens (55). The technique has also been 
successfully used to differentiate FAdV-4 pathogenic strains from 
non-pathogenic strains isolated from healthy chickens in Japan, India, 
and Pakistan.

Compared to Uniplex PCR, Multiplex PCR (m-PCR) offers 
significant advantages, such as time savings and the ability to diagnose 
multiple viruses in a single reaction, making it an effective method for 
rapid diagnosis of mixed infections (56, 57). In this context, an m-PCR 
test was developed for the simultaneous detection of 7 viruses causing 
significant economic losses in the poultry industry, including FAdVs 
(58). Specific primers were designed for each virus, and the tests for 
specificity, sensitivity, reproducibility, and repeatability were 
conducted. The m-PCR test showed no cross-reactivity between these 
7 viruses or with other common duck pathogens. In addition, the test 
was able to detect co-infection with several viruses in clinical samples. 
However, the assay is not highly sensitive, with a detection limit of 104 
copies/μL, raising questions about their effectiveness for 
FAdV detection.

A nested PCR targeting X gene and 52 k gene with 2 successive 
cycles using PCR-F/PCR-R as external primers in the first 
amplification cycle and nPCR primers (nPCR-F/nPCR-R) in the 
second cycle has been developed for specific detection of FAdV-9, and 
FAdV-4, receptively (59, 60). This method enhances both specificity 
and sensitivity, with sensitivity being 100 to 1,000 times greater than 
conventional PCR. Other cPCR tests targeting the penton gene and 
the gene encoding for DNA polymerase have also been developed (61).

Although conventional PCR targeting specific genes, such as 
hexon gene and fiber gene, is considered as an efficient, specific, and 
reliable tool for FAdVs diagnosis, its considered a not very-sensitive 
tool. Moreover, these tests require post-PCR steps, including RFLP, 
Electrophoresis, PCR product sequencing, and interpretation of 
sequencing results, which increases the cost, time, complexity of the 
analysis, and the risk of contamination. Additionally, conventional 
PCR cannot quantify the virus, which is necessary for evaluating the 
effectiveness of infection control and surveillance measures. Therefore, 
real-time PCR tests have been developed later to overcome 
these limitations.

3 Real-time PCR

Real-time PCR, also known as quantitative polymerase chain 
reaction (qPCR), represents a significant advance in molecular 
biology, offering a powerful molecular diagnostic tool for the detection 
of various human and animal pathogens (62–64). The method is 
widely adopted due to its high sensitivity, simplicity, reproducibility, 
and specificity (65). Studies have suggested that it is ten times more 
sensitive than cPCR, making it extremely valuable in molecular 
diagnosis (66). qPCR also offers the possibility of performing real-
time quantification, making it an invaluable tool in biomedical 
research, genetic studies, and diagnostic applications where high 
accuracy and sensitivity are crucial (67, 68).

Real-time PCR method using SYBR Green, a fluorescent dye that 
binds to double-stranded DNA emitting detectable fluorescence, was 

initially developed to detect and quantify FAdV-9 genome in various 
tissues (59). In this assay, a region located at the right end of the 
FAdV-9 genome, corresponding to ORF 20A, was used as a target 
(Table 2). However, the qPCR assay was not specific to FAdV-9 since 
it also detected other serotypes, such as FAdV-1, FAdV-2, FAdV-8, and 
FAdV-10. This suggests that the selected region is not specific for 
FAdV-9, and other regions should be examined. In terms of sensitivity, 
the test showed a sensitivity of 9.4 copies/μL, which is comparable to 
nested PCR and 100 times more sensitive than conventional PCR (59).

Subsequently, a universal SYBR Green-based qPCR test was 
developed by targeting a conserved region of the 52 K gene. This assay 
demonstrated high sensitivity and specificity, enabling precise 
detection and quantification of 5 FAdV species (FAdV-A to FAdV-E) 
with a detection limit of 6.73 copies/μL of FAdV DNA using standards 
and control vectors. To establish the standard curve, different regions 
of FAdV genomes are isolated, meticulously prepared, and cloned into 
plasmid vectors. The concentration of the plasmid DNA is determined 
using spectrophotometry, and the number of DNA copies is calculated 
according to the following formula: [(g/μL of DNA)/(length of the 
plasmid in base pairs × 660) × 6.022 × 1023]. The plasmid DNA is then 
diluted to several concentrations and used to establish the standard 
curve, which is included in each qPCR reaction (69). qPCR using 
SYBR Green represents a simple, sensitive, and cost-effective 
quantitative approach. However, SYBER Green can bind to 
non-specific products or contaminants, leading to false-positive results.

Consequently, analysis of melting curves and negative controls is 
required to interpret qPCR results correctly. Other real-time PCR 
methods, using fluorogenic probes complementary to the 
target  sequences and doubly labeled with a fluorophore and a 
quencher, have been developed for specific detection of certain FAdV 
serotypes, such as FAdV-4, FAdV-8b, FAdV-8a, and FAdV-1 (70–72). 
The use of specific primers that hybridize to type-specific regions 
allows qPCR to simultaneously perform real-time molecular detection, 
quantification, and typing in a single reaction. Notably, TaqMan-based 
qPCR demonstrated superior efficiency compared to SYBR Green-
based qPCR, while both methods exhibited similar sensitivity (72).

Recently, a multiplex real-time PCR has been developed, called 
multiplex reverse transcription real-time quantitative PCR (MRT-
qPCR) (69). This technique was designed to detect co-infection of 6 
vertically transmitted or immunosuppressive avian viruses, including 
Marek’s Disease Virus (MDV), Reticuloendotheliosis Virus (REV), 
Avian Reovirus (ARV), Chicken Infectious Anemia Virus (CIAV), 
Infection Bursal Disease (IBD), and FAdVs. Six specific probes were 
designed, each complementary to one virus, and labeled with a unique 
fluorophore, allowing differentiation of the signal emitted by the 6 
probes during the qPCR reaction. A series of validation and optimization 
tests were carried out, confirming the high specificity, sensitivity, and 
repeatability of the MRT-qPCR assay. These characteristics ensure the 
reliability and relevance of this method in diagnosing viral co-infections 
in poultry, making it an excellent first-line screening tool for a wide 
range of viruses before moving on to more genus-specific tests.

4 Recent breakthroughs in molecular 
diagnostics of FAdV infections

Although molecular diagnostic tests, such as conventional PCR 
have considerably improved diagnostic accuracy compared with 
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TABLE 2 Real-time PCR tests used for FAdV detection.

Real-time PCR 
technology

Test objective Forward 
primer

Reverse primer Probe Sequence 5′ to 3′ Target 
gene

Product 
size

Test performance References

Real-time PCR with 

(Syber Green)

Detection of 12 FAdV 

serotypes.

52 K-fw - ATG GCK CAG ATG GCY AAG G 52 K 176  • LOD: 6.73 copies/μL

 • Efficiency: 98%.

 • R2: 0.999.

 • Universal detection 

of FAdV.

 • Specific detection of 

FAdVs only.

(66)

52 K-fw AGC GCC TGG GTC AAA CCG A

Real-time PCR with 

(Syber Green)

Specific detection of 

FAdV-9 serotype.

FAdV-9 F - ATGGTGTTCTATTGGACGCA ORF20A 114  • LOD: 9.4 copies/μL.

 • Efficiency: 100

 • R2: 1

 • Not specific for FAdV-9.

(59)

FAdV-9 R TGTTTGGATGTTGCACCTTT

Real-time PCR with 

(TaqMan)

Specific detection of 

FAdV-4

FAdV-4 F TTACGCTTACGGTGCCTACGT Hexon 87  • LOD:10 copies/μL

 • R2: 0.999

 • Efficiency: 94.9%

 • No cross-reaction with 

FAdV serotypes.

 • Intra-assay ct variation: 

0.22–0.32%.

 • Inter-assay ct variation: 

0.74–1.15%;

(72)

FAdV-4 R CCGCGTTATTCATGATCCAGTA

FAdV-4 S CGACGGTTCCCAGTCCCTCACG

Real-time PCR with 

(TaqMan)

Specific detection of 

FAdV-8b serotype.

FAdV-Hex_143F GTTAGACACCACCGCACAGA Hexon 166  • LOD: 0.001 ng/μL

 • Efficiency: 96%

 • R2: 0.997

(71)

FAdV-Hex_143R GTCACGGAACCCGATGTAGT

FAdV-Hex_143_

Probe

FAM-CCCTCCTTCTGAGTACGGAGAG-

BHQ1

Real-time PCR with 

(Syber Green)

Specific detection of 

FAdV-8.

FAdV-8 F - AAATGGTAAACGCGTGGGATC ORF-1 

A/B

NR  • Specific for serotype 8. (163)

FAdV-8R TTCTCCGTCTCCGATCTGG

Real-time PCR with 

(TaqMan)

Specific detection of 

FAdV-8a.

FAdV - 8aF GACAGAGGTCCTTCCTTCAA- Hexon NR  • LOD: 8 copies/μL

 • Efficiency: 95,1%

 • R2: 0.997

(70)

FAdV - 8aR TCAGGCTATCGGTAAAGTCC-

JSNRT/8a/E AATCCCTACTCGAACACCCC

Real-time PCR with 

(TaqMan)

Specific detection of 

FAdV-1

FAdV - 1 F TTCGAGATCAAGAGGCCAGT Hexon NR  • LOD: 8 copies/μL

 • R2: 0,991,

 • Efficiency: 95,03%

(70)

FAdV - 1 R GGTCGAAGTTCGTAGGAAG

JSN RT1/A AATCCCTACTCCAACACCCC

(Continued)
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traditional methods, certain drawbacks linked to operational 
complexity remain unsolved. Thus, to improve FAdVs detection in 
terms of sensitivity, cost, and process time, other advanced molecular 
tests have been developed.

4.1 Loop-mediated isothermal 
amplification

The LAMP technique was first described by Notomi et al. (73). 
Since then, it has attracted significant interest due to its simplicity and 
rapidity compared to other amplification methods. Unlike PCR, which 
requires a series of temperature cycles, LAMP is an isothermal 
amplification method that proceeds at a constant temperature between 
60°C and 65°C, eliminating the need for a thermocycler (73). The 
LAMP reaction involves 2 external primers (F3 and B3) and 2 pairs of 
internal primers (FIB and BIP). One or 2 additional primer pairs, 
known as ‘loop primers’, can be incorporated to accelerate the reaction 
and improve its sensitivity (74). The LAMP technique consists of 2 
significant steps: synthesis of the initiator serving as a template, 
followed by cyclic amplification, which produces a DNA mixture of 
stem ring DNA and cauliflower DNA of different sizes. This method 
can also be  applied to RNA by Reverse Transcription-LAMP 
(RT-LAMP) (75). Amplification products can be detected by several 
techniques, including agarose gel electrophoresis, which produces 
multiple ladder bands, or by real-Time turbidity measurement due to 
the formation of manganese pyrophosphate precipitates. The addition 
of hydroxy naphthol blue, calcein, or SYBR Green to the reaction 
system also offers colorimetric detection of the product (74).

LAMP assay has been successfully employed to detect many avian 
viruses, including Infectious Bronchitis Virus (IBV) (75), Chicken 
Anemia Virus (76), Avian Influenza Virus (AIV) (77), Newcastle 
Disease Virus (NDV) (78), IBDV (79), and Marek’s Disease Virus 
(MDV) (80). Recently, a LAMP assay was specifically developed and 
optimized for FAdVs detection (81). Based on an analysis of their 
Hexon genes, 4 primer pairs were designed for a conserved region 
(Figure 1). The LAMP reaction was performed in a water bath at 63°C 
for 60 min. The addition of SYBR Green fluorescent dye to the 
reaction gave positive samples a greenish color under ultraviolet (UV) 
light. Additionally, the formation of white sediment due to precipitated 
pyrophosphate was a distinctive feature of positive samples. The test 
shows a detection limit of 238 copies/μL.

To improve the LAMP sensitivity, a real-time LAMP assay has 
been developed for specific FAdV-4 detection (82). The Mg2P2O7 
precipitate produced during the reaction is detected by measuring 
reaction turbidity every 6 s using a real-time turbidimeter. The assay 
shows a detection limit of 75 copies/μL of FAdV-4 DNA. Subsequently, 
a new version of LAMP coupled with lateral flow dipstick (LAMP-
LFD) was developed for rapid and specific detection of fowl 
Adenovirus serotype 4 (60). This test can be completed in 60 min at 
65°C, with a detection limit of 10 copies/μL of FAdV-4 DNA, making 
it more sensitive than real-time LAMP (75 copies/μL) (82), and 1,000 
times more sensitive than conventional PCR. However, it has the same 
detection limit as Nested PCR (60), and specific qPCR (72). Although 
it remains less sensitive than universal qPCR assay (6.9 copies/μL) 
(66), it can potentially require less than half time and reagents. These 
advantages enable LAMP-LFD to be applied in resource-limited areas, 
such as small farms and basic veterinary laboratories (83).
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4.2 Cross-priming amplification method

CPA is a technique primarily developed by Ustar Biotechnologies 
(Hangzhou, China) and initially described for the detection of various 
pathogens such as Mycobacterium, and Penaeid shrimp white spot 
syndrome virus. This technique can be divided into single-crossing CPA 
and double-crossing CPA (84), requiring specific polymerases such as 
Bst, Bsm, or Gsp SSD (85). Recently, a double-crossing CPA assay has 
been optimized explicitly for FAdVs detection (86). The assay uses 5 
specific primers corresponding to a conserved region of the hexon gene 
(151-bp) and induces cross-priming amplification with the formation 
of a hairpin intermediate product (Figure 2). The optimal temperature 
and incubation time were determined at 68°C for 2 h, respectively. The 
amplification product was visualized by adding SYBR Green I to the 
reaction. The test is specific for all FAdV serotypes, and no cross-
reactivity was observed with other avian viruses. Its sensitivity was 
equivalent to that of real-time PCR, reaching 10−2 TCID50 (TCID50: 
Tissue Culture Infectious Dose). However, the CPA method is faster and 
cheaper compared to real-time PCR. Consequently, the CPA-FAdV 
assay has been effectively used to detect 30 field adenovirus strains, 
representing 7 distinct serotypes (FAdV-1, FAdV-2/11, FAdV-4, 
FAdV-5, FAdV-7, FAdV-8a, and FAdV-8b) (86).

4.3 Recombinase polymerase amplification

RPA is an advanced isothermal technique that was discovered in 
2006 by Piepenburg et al. (87). Since the availability of the TwistAmp 
Basic commercial RPA kit in 2014, the RPA technique has been widely 
used in the diagnosis of numerous pathogens, such as Human 
Immunodeficiency Virus 1 (HIV) (88), Ebola Virus (89), Dengue 
Virus (90), Porcine Circovirus Type 2 (91), Pseudorabies Virus (92), 
and Foot-And-Mouth Disease Virus (93). The technique relies on the 
use of T4 phage UvsX recombinase and its cofactor as an essential 
component that binds to forward and reverse primers (94). The 
strands are then exchanged after the Single-Stranded Binding Protein 
(SSB) combines with the parental strand, allowing amplification to 
continue with the template strand.

DNA polymerase initiates the synthesis of the template strand 
from the 3′ end of the primers, forming a new duplex DNA. In this 
way, a specific fragment is amplified exponentially (95). The 
amplification occurs between 37 and 42°C (96). However, the 
amplified signal can be  detected by electrophoresis, lateral flow 
dipstick (LFD), or in real-time using a fluorogenic probe. Real-time 
RPA and RPA-LFD assays have been developed as attractive and 
promising tools for rapid, convenient, and reliable detection of 

FIGURE 1

(A) Position of the LAMP primers on the FAdV target gene. (B) Schematic representation of the Loop-Mediated Isothermal Amplification (LAMP) 
technique. (C) Methods used to detect the LAMP product, including End-point detection (using electrophoresis, addition of fluorescent substrates, 
turbidity measurement, or lateral flow dipstick or (real-time detection)). The gel image presented in this figure are adapted from previous work (81) and 
are included to ensure the figure is comprehensive and meaningful.

https://doi.org/10.3389/fvets.2025.1558257
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Kardoudi et al. 10.3389/fvets.2025.1558257

Frontiers in Veterinary Science 10 frontiersin.org

FIGURE 2

Schematic of single cross-priming amplification technology. (A) Primer design site. (B) Generation of template with cross-primer sites.

M. ovipneumoniae in sheep (97), African Fever Virus (AFV) (98), 
Actinobacillus Pleuropneumonia (99) in swine and Peste Petits 
Ruminants Virus (PPRV) in small ruminants (100). Recently, an RPA 
assay has been developed for FAdV detection (101). Primers targeting 
a conserved region between the 12 serotypes were selected for this 
assay (Figure  3). Amplification was performed under isothermal 
conditions (from 26 to 42°C) without using sophisticated 
thermocyclers in just 14 min. This time is considerably shorter than 
that of conventional PCR (98 min), while offering similar sensitivity 
(as low as 0.1 fg viral DNA). However, its sensitivity remains lower 
than that of real-time PCR (66). The RPA test has revolutionary 
potential for rapid diagnosis of FAdV. Its rapidity, specificity, 
simplicity, and adaptability to moderate temperatures make it an ideal 
technology for large-scale screening of samples, particularly where 
laboratory resources are limited.

4.4 Digital droplet polymerase chain 
reaction

ddPCR represents a significant advance in the precise 
quantification of nucleic acids, particularly useful in cases where 
the quantity of DNA or RNA is very low (102). Unlike quantitative 

real-time PCR, which uses standard curves to estimate the target 
quantity, ddPCR enables absolute quantification by counting the 
number of copies present in each sample (103). This method relies 
on the partition of the PCR reaction into numerous tiny droplets 
of water in oil. Each droplet contains either zero or a single copy 
of the target sequence (Figure 3) (104). After PCR amplification, 
the positive droplets emit a detectable fluorescent signal, while the 
negative droplets do not. Using statistical calculations, the 
absolute number of target copies can be determined with great 
precision (105), highlighting that ddPCR offers exceptional 
sensitivity and reliability, making it an ideal method for robust 
quantitative analysis, even in samples with low viral loads or 
compromised quality (102). This technique has been successfully 
employed for the precise quantification of defective genomic 
segments in influenza A virus, providing a highly sensitive 
approach for detecting these particles in viral stocks (106, 107). 
Additionally, ddPCR has been applied to detect Chicken Anemia 
Virus (CIAV) in vaccines, demonstrating its sensitivity in 
identifying viral contamination (108). Moreover, despite stringent 
biosafety measures, contamination of live attenuated vaccines with 
Fowl Adenovirus serotype 4 (FAdV-4) remains a concern, as 
documented by Yang (109). The use of such contaminated 
vaccines has been implicated in large-scale outbreaks of 
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Hepatitis-Hepatitis Syndrome (HHS) and Infectious Bronchitis-
like Hepatitis (IBH) in poultry populations (110). This is due to 
the use of vaccines manufactured from chicken embryos with 
Specific Pathogens Free (SPF), but susceptible to infection by 
exogenous viruses such as FAdV-4, Avian Leukosis Virus (ALV), 
and Reticuloendotheliosis Virus (REV) (54, 109, 111). These 

contaminating viruses can escape detection by most molecular 
tools, necessitating a highly sensitive detection technique. 
Consequently, a ddPCR assay has been developed for sensitive 
detection of FAdV-4 and FAdV-10 in attenuated vaccines (112) 
(Figure 4). The efficacy of this ddPCR test in detecting FAdV-4 
contamination in attenuated vaccines was evaluated in comparison 

FIGURE 3

(A) RPA primer design. (B) Schematic of the recombinase polymerase amplification technique workflow and product detection by Electrophoresis. The 
gel images presented in this figure are adapted from previous work (101) and are included to ensure the figure is comprehensive and meaningful.

FIGURE 4

Workflow for detecting vaccine contamination by FAdV-4 using Digital Droplet PCR.
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with qPCR and cPCR. Results showed that ddPCR assay could 
detect FAdV-4 contamination at a concentration of 0.1 EID50/1,000 
feathers (EID50 for Median Infectious Dose), while cPCR and 
qPCR could detect FAdV-4 contamination at concentrations of 102 
EID50/1,000 feathers and 1 EID50/1,000 feather, respectively. Thus, 
the ddPCR assay looks 1,000 times more sensitive than 
conventional PCR detection and ten times more sensitive than 
real-Time PCR. In addition, the ddPCR assay showed high 
specificity for FAdV-4/10, generating no positive signals for other 
FAdVs (112). This makes ddPCR an effective diagnostic 
technology, particularly for detecting FAdV-4 contamination in 
live attenuated vaccines. Despite its high cost, the high sensitivity 
and specificity may contribute to the use of this technique for 
virus control.

Dot Blot assay is a widely used technique in molecular biology 
to identify target DNA or RNA.

4.5 Dot blot assay combined with cPCR

The Dot Blot assay is a widely used technique in molecular 
biology to identify a target DNA or ARN fragments with high 
sensitivity (113). The combination of dot blot with PCR 
significantly increases test sensitivity (114). Recently, a Dot Blot 
test has been developed for FAdVs detection (115). The 12 FAdV 
serotypes have been grouped into 6 categories based on their 
hexon gene sequence. Subsequently, a conserved region for each 
category was selected as a probe. Results showed that these probes 
can efficiently identify the corresponding serotypes, with a 
detection limit of 10 copies/μL.

Furthermore, the use of a hybrid probe combining all 6 probes 
at an optimal concentration considerably improved test sensitivity, 
enabling the detection of one copy of DNA for certain serotypes, 
which is more sensitive than conventional PCR. The test’s 
sensitivity was also determined on live attenuated vaccines 
artificially contaminated with FAdV-4. The results showed that 
the Dot Blot test can effectively identify exogenous FAdV-4 with 
an extremely low concentration (1 TCID50), whereas conventional 
PCR can only detect a contaminated vaccine with a viral 
concentration over 100 TCID50 per bottle, demonstrating that the 
Dot Blot test is 100 times higher sensitivity than cPCR. The same 
analysis was repeated using vaccines contaminated with mixed 
serotypes of FAdV, and the same conclusion was reached. In 
addition, the Dot Blot test was successfully used to diagnose 
co-infection of FAdV and vertically-transmitted 
immunosuppressive viruses (CIAV, REV, ALV) in parental flocks 
with IBH (116). In conclusion, the Dot Blot test, designed based 
on traditional PCR, is a simple, sensitive, reliable, efficient, and 
cost-effective tool for the universal detection of all 12 
FAdV serotypes.

4.6 Nanoparticle-assisted PCR

Nano-PCR is an advanced form of PCR in which solid gold 
nanoparticles (1 to 100 nm) from colloidal nanofluids are used to 
improve reaction efficiency, sensitivity, and time (117–119). 

Compared to other PCR techniques, nano-PCR using nanofluids 
reaches the target temperature more rapidly, reducing analysis 
time and nonspecific amplification (120). This technique has been 
successfully employed in the detection of various viruses such as 
Pseudorabies virus (121), Porcine Bocavirus (122), Epidemic 
Diarrhea Virus (123), and Porcine Transmissible Gastroenteritis 
Virus (124).

Recently, a nano-PCR test has been developed to detect 
FAdV-4, using primers specific for the FAdV-4 penton gene (125). 
Test results indicated that nano-PCR has a reasonable specificity, 
repeatability, and high sensitivity (54 copies/μL), which is ten 
times higher than that of conventional PCR (cPCR), making it 
suitable for clinical diagnosis and field surveillance of FAdV-4 
infections. Subsequently, a Triplex Nanoparticle-Assisted PCR test 
has been developed, enabling simultaneous detection of FADV, 
CAV, and IBDV in one reaction (126). This innovative assay 
utilizes PCR primers designed to target specific genes of each 
virus. The test was specific to FAdV, CAV, and IBDV, with a 
detection limit of 27.2 femtograms (fg) for all 3 viruses’ DNA. This 
makes it 1,000 times more sensitive than multiplex PCR using 
identical primers, which provides a simple method for detecting 
FAdV, CAV, and IBDV infections.

4.7 Quantitative PCR refractory 
amplification (ARMS-qPCR)

Quantitative PCR with Refractory Amplification (ARMS-
qPCR) also is an innovative molecular tool specially designed to 
detect and quantify target DNA with high specificity. Unlike 
other real-time PCR techniques, ARMS-qPCR incorporates 
refractory amplification, making it highly sensitive and specific 
for the detection of genetic variations such as Single Nucleotide 
Polymorphisms (SNPs). This technique is particularly valuable 
for diagnosing genetic diseases (127, 128) and monitoring the 
evolution of viruses, bacterial resistance to antibiotics (129), or 
discrimination between strains of the same genotype based on 
changes in a few nucleotides (130). In a recent study, ARMS-
qPCR was used to quantify and distinguish the European 
pathogenic strain (FAdV-1/PA7127) from the apathogenic strain 
(CELO). This distinction is based on SNPs identified in the gene 
coding for the short-fibre protein (Fiber-2) (131) (Figure  5). 
Fecal, liver, and gizzard samples from chickens vaccinated with 
the apathogenic strain (CELO) and challenged with the 
pathogenic strain (FAdV-1/PA7127) were analyzed by ARMS-
qPCR to quantify consensus FAdV-1 DNA as well as FAdV-1 
DNA variants (CELO or PA7127). Two pairs of primers, each 
specific to an FAdV-1 strain, with a hydrolysis probe, were used 
in this assay. Specificity of discrimination between FAdV-1 
strains was ensured using primers targeting SNPs on the 3′ side 
of each primer. The results confirmed the effectiveness of this test 
in discriminating between the vaccine and pathogen strains. 
Furthermore, it was observed that even though chickens were 
fully protected, they continued to excrete the challenge strain. 
This observation was achieved for the first-time using ARMS-
qPCR. By combining the benefits of refractory amplification with 
the precision and quantification capabilities of qPCR, 
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ARMS-qPCR represents a powerful method for monitoring 
vaccines in chicken flocks.

4.8 CRISPR/Cas13a-based lateral flow 
assay

Over the past decade, Clustered Regularly Interspersed Short 
Palindromic Repeats (CRISPR) associated with Cas (CRISPR-
associated) proteins have attracted considerable interest due to 
their exceptional characteristics, notably their ability to cut DNA 
with outstanding sensitivity and specificity (132). This has 
enabled researchers to use it as a molecular scissor for genome 
engineering (133). CRISPR system is an immune system acquired 
by bacteria that protects them against viral invasions (134). It 
works by scanning the DNA of the viral aggressor, degrading it 
with Cas enzymes, and incorporating segments of the foreign viral 
genes into regions called “CRISPR Arrays” in the bacterial genome 
(135, 136). These regions are then transcribed into specific 
non-coding RNAs (lncRNAs), which direct Cas proteins with 
endonuclease activity to identify and degrade viral DNA 
sequences during subsequent reinfections by the same virus (117).

Over the last few years, researchers have discovered that specific 
Cas proteins, such as Cas13a and cas12a, possess additional cleavage 
activity, laying the groundwork for a revolutionary new molecular 
diagnostic method hailed as one of the most impactful “disruptive” 
innovations of our time (137, 138). By combining CRISPR/Cas13a 

technology with RPA (CRISPR/Cas13a or cas12a/RPA) (139), this 
technique has been effectively used to detect AIV (140–142) and other 
human viruses (143–146).

Similarly, CRISPR/Cas13a technology, combined with 
recombinase polymerase amplification (RPA) and lateral flow test 
strips, has been developed for the rapid, sensitive, efficient, and 
simple detection of FAdV-4 (147) (Figure  6). This method 
operates under isothermal conditions at 37°C and enables visual 
detection through lateral flow strips, with a detection limit of 10 
copies/μL. Additionally, a CRISPR/Cas12a assay integrated with 
LAMP has been developed as a fast, convenient, and cost-effective 
platform for detecting FAdV-4, offering a detection limit as low as 
one copy (148) This makes it particularly useful for early viral 
diagnosis and point-of-care testing.

5 Genotyping techniques

Identifying the serotype involved in each case of FAdV infection 
is essential for understanding pathogenicity, monitoring circulating 
strains within each country, and developing effective vaccine strategies 
to control these economically significant diseases (28, 149, 150). 
Typically, virus typing requires isolation in cell culture or embryonated 
eggs, followed by a VN test, which was considered as the gold standard 
protocol for FAdV typing (2, 151). However, this method remains 
laborious, time-consuming, and requires reference strains and 
materials. Furthermore, Cross-reaction between serotypes is very 

FIGURE 5

Diagram illustrating the use of ARMS-qPCR to discriminate between the CELO strain and the PA7127 challenge strain.
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FIGURE 6

CRISPR-Cas13a DNA combined with lateral flow strips for FAdV-4 detection workflow. (A) Recombinase Polymerase Amplification (RPA) performed at 
a single temperature of 37°C. (B) Generation of single-stranded DNA by T7 Polymerase. (C) Target sequences complementary to cRNA bind to the 
CRISPR/Cas13a system. Once the target sequence is present within the system, the non-specific RNA cleavage activity of Cas13a is activated and the 
reporter RNA is cleaved, resulting in the activation of the fluorescence signal. (D) Lateral flow-based detection can be read from strips with a colored 
positive/negative band using a FAM/Biotin.

pronounced between specific serotypes, which makes results 
inconclusive (152).

Initially, REA was used to classify FAdVs based on restriction 
profiles of the whole genome. These restriction profiles, generated 
by BamHI or HindIII enzymes, classified 17 FAdV strains 
representing 12 serotypes into 5 species (Avian Adenovirus A to 
Avian Adenovirus E) (153). The question of whether FAdV 
serotypes 4 and 10 should be considered as distinct serotypes or 
reclassified as a single serotype has been raised (152). This debate 
stems from the observation of cross-neutralization between 
serotypes 4 and 10 based on the use of antisera produced in 
rabbits. Additionally, cross-protection in vivo has been detected 
in chickens vaccinated with the CFA15 strain (serotype 4) and 
subsequently exposed to CFA20 (serotype 10) through natural 
infection, demonstrating a strong serological relationship between 
these 2 serotypes (152). However, whole-genome analysis of both 
serotypes using restriction enzyme analysis with E.R. BamHI, Dra 
I, Sma I, and Bgl II has revealed considerable variations (Figure 7).

Since adenovirus neutralization relies on the hexon and fiber 
proteins, more accurate evolutionary profiles can be expected from 
the L1 loop rather than the entire DNA restriction profile. It has been 
reported that the L1 region shows more significant variability than the 
L2 loop (45). In this context, several conventional PCR assays have 
targeted the HVR regions of the L1 loop, while restriction enzyme 
analysis of these PCR products generates serotype-specific restriction 
profiles (43, 45). Hexon A/Hexon B primers is one of the most widely 
used primers for FAdV genotyping (43). Subsequent digestion of the 
PCR product with BsiWI, Sty1, and Mlu1 generates specific restriction 
profiles for 6 FAdVs serotypes. However, other restriction enzymes 
must be used to differentiate the remaining serotypes: FAdV-2 and 

FAdV-11 (Asp1), FAdV-4 and FAdV-9 (Bgl1), or FAdV-7 and 
FAdV-11 (Sca1).

Nevertheless, one study reported that RFLP using Hexon A/
Hexon B failed to classify FAdV-2 and FAdV-11 with the previously 
mentioned enzymes, and other enzymes must be used (43). Similarly, 
digestion of the PCR product generated by H1/H2 primer with HaeII 
differentiated some serotypes, but identical restriction profiles were 
found for other serotypes. Therefore, we can conclude that multiple 
digestions using various restriction enzymes might be  able to 
distinguish between 12 FAdV serotypes or that other regions showing 
high variability between FAdV serotypes should be  chosen for 
RFLP typing.

Besides, PCR product sequencing, generated by Hexon A/Hexon 
B, followed by analysis using the BLAST bioinformatics tool, is widely 
used as a reliable tool for genotyping FAdV isolates (see Table 3) (44). 
However, this technique, like REA and PCR/RFLP, is considered as a 
multi-step process, making it expensive, time-consuming, and 
resource-intensive.

Recently, a number of studies have shown that real-time PCR 
combined with High-Resolution Melting Curve (HRM) analysis is a 
valuable and cost-effective alternative for rapid and efficient 
genotyping, especially for mass detection, facilitating epidemiological 
investigations (50, 154). This technique involves the integration of a 
DNA intercalating fluorochrome into the amplified DNA. The 
gradual increase in temperature at the end of PCR cycles causes 
denaturation of the DNA, leading to the elimination of the 
fluorochrome and resulting in a decrease in fluorescence. These data 
are recorded by a fluorescence detection system and used to generate 
a melting curve representing fluorescence changes based on 
temperature. Slight variations in DNA levels result in variations in the 
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melting temperature (Tm), thus altering the shape of the curve. By 
comparing the melting curve of a unknown sample with reference 
curves, it is possible to detect genetic variations, DNA mutations, or 
even molecular typing (155, 156). HRM technique is widely used in 
genetic research and molecular diagnostics for its rapidity, sensitivity, 
and affordability. In 2009, Penelope A. Steer established for the first 
time a robust closed-tube PCR-HRM genotyping technique for FAdV 
classification (50). Three primers pairs amplifying 3 different regions 
within FAdVs hexon gene (Hexon A/B, HexL1-s/Hex L1-as, and 
HEX-S F/HEX-S R), and generating 3 products of various sizes (897, 
590, and 191 bp) were tested.

HRM curve analysis of the PCR product generated by the 
HexL1-s/Hex L1-as primer proved to be  highly sensitive and 
specific for FAdV genotyping. All serotypes generated one or 
more significant peaks and were visually distinct from each other 
in their melting curve profiles, with a confidence level greater 
than 99%. The applicability of the HRM/PCR Hex L1 assay was 
also tested on a collection of fields strains from 6 European 
countries: Pakistan, India, Kuwait, Mexico, Peru, Ecuador, an 
Australian vaccine, as well as reference strains representing the 12 
serotypes, demonstrating that HRM/PCR Hex L1 test is a 
successful genotyping tool capable of accurately differentiating 
field isolates from geographically distant regions (50, 154). 
Subsequently, the PCR/HRM Hex L1 technique was employed to 
genotype FAdVs from 26 IBH cases in Australian broiler flocks, 

while cross-neutralization was observed between FAdV-11 and 
FAdV-2 reference sera using the VN test (157). These findings 
confirmed that the PCR/HRM Hex L1 assay is a rapid, cost-
effective, and more reliable alternative for FAdV genotyping, 
offering greater accuracy than the VN test, PCR/RFLP, or 
sequencing for large-scale detection.

6 Conclusion

In general, molecular tools play a crucial role in diagnosing and 
managing FAdV infections in poultry. Unlike conventional diagnostic 
techniques, real-time PCR has revolutionized FAdV diagnosis, 
offering highye sensitivity, specificity, suitability for mass detection. In 
certain cases, more sensitive techniques such as ddPCR are 
recommended, particularly for detecting vaccine contaminants. For 
FAdV genotyping, conventional PCR followed by sequencing remains 
the most reliable method. Additionally, a specific real-time PCR test 
serves as a valuable tool, enabling detection, quantification, and 
genotyping in a single reaction, which makes the serotype 
identification process flexible. However, HRM analysis is an emerging 
technique that allows the detection, quantification, and identification 
of FAdV serotypes in a single step, streamlining the diagnostic process 
and reducing the impact of these infections on the poultry industry. 
Prioritizing multiplex and highly specific tests for agents involved in 

FIGURE 7

Overview of techniques used for FAdVs genotyping. (a) REA digesting the whole genome using BamH1 and HindIII enzymes. (b.1) PCR/RFLP digesting 
the PCR product derived from HexonA/HexonB primers with restriction enzymes. (b.2) Sequencing of PCR product followed by sequence analysis 
using BLAST and alignment with other FAdVs sequences on GenBank. (c.1) Specific qPCR test using a specific primer of serotype (e.g., FAdV4 F/FAdV4 
R specific for FAdV-4). (c.2) Analysis of High-Resolution Melting (HRM) curve derived from the Hex L1 s/Hex L1 as primer. The gel images presented in 
this figure are adapted from previous work (43) and are included to ensure the figure is comprehensive and meaningful.
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TABLE 3 Advanced molecular test for FAdVs diagnosis.

Technique P forward P reverse Probe Sequences 3′…0.5′ Primer Position Target gene Test performance References

Loop-Mediated 

Isothermal 

Amplification.

F2 GTCCCGTCATCACTACTTCG 2405–2424 Hexon  • Specific detection of 

Group I avian

 • Adenoviruses.

 • Rapid detection: 60 min

 • Isothermal amplification in 

water bath at 63\u00B0C 

(no thermocycler)

 • Sensitive: detection limit is 238 

copies/ul

(81)
Flc CACGTCGTGGTCGTACTGGTC 2445–2465

Blc GAGGGCGTGCCTACTTACGC 2493–2512
B2 TTGACATTGCTGAGGTCGG 2554–2572

F3 TACATGCTGGCGGACATGA 2385–2403
B3 CTTGCTGTCCGTTGGTGTA 2577–2595

F Loop GCCTGGTTCCACAGCGC 2424–2440
BLoop TTCCTGCCCGACGGG 2515–2528

LAMP coupled with 

a lateral flow 

dipstick. (LAMP-

LFD)

F3 CGTGGCTGAGAGACCTGAT NR 52 K (FAdV-4)  • Specific test for FAdV-4

 • Rapid detection in 60 min

 • Detection limit is 10 copies/ul

 • 1,000- fold sensitive than cPCR 

and 100- Sensitive than qPCR

(60)
B3 TGCACCCCCAAGTCCAG

FIP TCGTGCACACCGCCGATAC
CATGATCGTGACCGACCCG

BIP CAAGTTGGCCGCGAAGAAC
GCCTGCATCACCCGGTAGA

LAMP Real-Time 

Turbidity

F3 AGTCTGGGCAACGACCTG 1681–1698 Hexon (FAdV-4)  • Specific to FAdV-4

 • lower limit detection is 

75copies/ul

(82)
B3 GAATGTTGATGGTGAGGGC 1897–1879

F1c TTACTGGTGTTGTGATCCATGGG 1778–1755
F2 CGCCAGCATCATCTACAACGAG 1711–1731

B1c CTGATGCTGAGAAACGCCACC-GG 1789–1809
B2 GCACCGAGTATAGAGC 1866–1849

LF AAGTTGGCCATGAGGTTCA 1751–1733
LB GATCAGACCTTCGTGGACT 1813–1831

Cross-Priming 

Amplification 

Method

FAdV-5a ATACTTTGCCATCAAGAATCTGCT 83–106 Hexon (FAdV-1)  • Specific detection of all12 

FAdVs serotypes.

 • Sensitivity equal to real-time 

PCR and bigger to LAMP test.

 • No thermal cycler required

 • Rapid test: reaction time is 2 h.

 • Possibility of differentiating 

between certain serotypes.

(86)
FAdV-4 s AGGTTCACYTGCCGAATAGAC 211–233

FAdV-2a ACGAGTGGGTSCTCAGAAAGGA 130–151
FAdV-3a TCCAGTCTSGGGAACGACCTGC 170–192

FAdV-1 s ACGAGTGGGTSCTCAGAAAGGA 130–151
GATAGAGGCGCCGTCGGCGC 193–211

Recombinase 

Polymerase 

Amplification

FAdV-RPA Fw CKCCYACTCGCAATGTCACCACCGARAAGGCH NR Hexon  • Rapid detection of the 12 

serotypes of FAdVs (14 min)

 • Sensitivity equal to that of cPCR 

(less than 0.1 fg viral DNA) but 

inferior to that of real-time PCR

(101)
FAdV-RPA Rev TKAHGCTGTASCGCACGCCGRTARCTGTTGGGC

(Continued)
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TABLE 3 (Continued)

Technique P forward P reverse Probe Sequences 3′…0.5′ Primer Position Target gene Test performance References

Dot Blot Assay P-F-1 CACGCTTCAGCAGGTC NR Hexon (FAdV-1)  • Specific detection of all 12 

serotypes using 6 probes.

 • 100 times more sensitive than 

cPCR detection of low-dose 

FAdV-4 (at 1 TCID50) in live 

vaccines

(115)
P-R-1 GCAGGTAGTCGGCAAT

P-1 NR
P-F-2-11 CGTCGCCGCTCTTTCA NR Hexon (FAdV-2/11)

P-R-2-11 AGTTACGCCGCTGGGAG
P-2-11 NR

P-F-3-9 TTGCGAAAGTTACAGAC NR Hexon (FAdV-3/9)
P-R-3-9 CCCACGGTTAAGTATG

P-3-9 NR
P-F-4-10 TTTAACAACTGGTCGGAGAC NR Hexon (FAdV-4/10)

P-R-4-10 CGATTTCGTAGGAGGGTA
P-4-10 NR

P-F-5 CCTCCTTCAAGCCCTAC NR Hexon (FAdV-5)
P-R-5 ACCCGTTCTCCCACA

P-5 NR
P-F-6-7-8 ACGGCGGCACGGCTTA NR Hexon (FAdV-6/7/8)

P-R-6-7-8 TCGGGCAGGTAGTCGG
p-6-7-8 NR

Droplet Digital PCR 

Assay (ddPCR).

Hexon-F2 ATCAAAAACCTGCTGCTGCT NR Hexon (FAdV-4/ 

FAdV-10)

 • Detection and absolute 

quantification of FAdV-4 and 

FAdV-10 in live 

attenuated vaccines.

 • 1,000 more sensitive than cPCR 

and 100 more sensitive 

than qPCR

(112)
Hexon-R2 AAGTTGGCCATGAGGTTCAC

Hexon probe CAAAGACCCCAACATGATCCTCCAATC

Amplification 

Refractory Mutation 

Systems 

Quantitative PCR 

(ARMS-qPCR).

CELO-F: CGTGTTCAATATGAACCAAAACAT C D NR  • Quantification and 

differentiation between the two 

FAdV-1 strains (CELO: 

apathogenic strain and PA7127: 

European pathogenic strain) 

using single nucleotide 

polymorphisms (SNPs) in the 

gene coding for the short fiber 

protein.

(131)
CELO-R: AGCCGGTGAAGATAGGCC D

PA7127-F: CGTGTTCAATATGAACCAGAACAC
PA7127-R: CGCCGGTGAGGATAGGCT D

P CCCGAATCGGGAAGCGTAGTAGGG

High-Resolution 

Melting-Curve 

Analyses (HRM).

Hex L1-s ATGGGAGCSACCTAYTTCGACAT 301–323 Hexon  • Differentiation between the 

12 serotypes.

 • More efficient than RFLP 

and VNT.

(50)
Hex L1-as AAATTGTCCCKRAANCCGATGTA 890–868

NR, Not reported; LOD, limit of detection. N = G/A/T/C, M = A/C, R = A/G, W = A/T, S = C/G, Y = C/T, K = G/T, H = A/C/T, D = A/G/T, B = C/.
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conditions like IBH, HHP, and AGE will further streamline the 
diagnostic process and help mitigate the impact of these infections on 
the poultry industry.
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