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Introduction: Heat stress poses a significant challenge to the development of 
dairy industry, affecting cows’ well-being and overall productivity, leading to 
substantial economic losses. In this study, the impact of a specifically formulated 
anti-heat stress lick block supplement on milk production, milk quality, feed 
intake, rectal temperature, respiratory rate, and rumen fermentation in cows 
exposed to heat-stress was evaluated.

Methods: Twenty-four healthy Holstein lactating dairy cows were divided into 
two blocks based on milk yield (low and high), Parity (2–3 parity), and lactation 
days (114 ± 8 d). The cows in each block were randomly assigned to either 
a control group without lick block supplementation or a treatment group 
receiving lick block. The trial lasted for 6 weeks, including a 2-week adaptation 
phase followed by 4 weeks of feeding treatment.

Results: Heat stress levels varied from severe (THI > 88) to moderate heat stress 
(THI > 80) in the first 2 weeks, gradually decreasing to mild heat stress (THI > 72) 
in the following weeks. With the decrease in heat stress, dry matter intake (DMI) 
and milk production increased (Week: p < 0.05), the rectal temperature and 
respiratory rate of cows decreased (Week: p < 0.05). Lick block supplementation 
tended to increase DMI (p = 0.09), and improved milk yield (p < 0.05) without 
affecting (p > 0.05) milk composition, leading to increased milk yields of fat, 
protein, and lactose (p < 0.05). Although the overall rectal temperature of 
cows in the lick block group did not differ from the control group (p > 0.05), 
the respiratory rate of cows in the lick block group significantly decreased 
(p < 0.05) in the second and third weeks. Supplementation with the lick block 
increased (p < 0.05) rumen pH and decreased (p < 0.05) NH3-N and propionate 
concentrations in dairy cows, and tended to lower the acetate-to-propionate 
ratio (p = 0.07), total VFA concentration (p = 0.07), and butyrate concentration 
(p = 0.09).

Conclusion: Supplementation of anti-heat stress lick block alleviated the 
detrimental effects of heat stress on dairy cows within a certain range of 
temperature and humidity.
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1 Introduction

Holstein cows exhibit robust adaptability to cold but show poor 
tolerance to heat. High temperatures and humidity can disrupt the 
cows’ physiological equilibrium, leading to heat stress (1, 2). Previous 
studies have demonstrated that temperatures exceeding 25°C can 
easily induce heat stress in dairy cows, resulting in metabolic 
disorders, endocrine dysfunction, and negative impacts on the 
production performance, and health of dairy cows (3–5). In recent 
years, with the continuous growth of milk production, the heat 
generated by cows themselves has also been increasing. Additionally, 
the intensification of the global greenhouse effect has further increased 
the susceptibility of cows to heat stress. The thermal humidity index 
(THI) threshold, previously utilized to assess heat stress in cows, has 
been reduced from 72 to 68 (6). Gunn et al. predicted that milk yield 
losses across the United States will accelerate, with an average rate of 
174 ± 7 kg/head/decade, due to the challenge of heat stress (7). 
Ranjitkar et al. also predicted that milk yield in China may decrease 
by 6.5 kg/head/day in 2050, with losses increasing to 7.2 kg/head/day 
in 2070 (8). At this rate, it must cause huge economic losses to the 
dairy industry and seriously hinder its healthy and sustainable 
development. Therefore, finding effective means to alleviate heat stress 
in dairy cows and reduce its effects on production performance and 
health is very important.

The current dairy farms primarily employ physical solutions like 
fans, sprinklers, and wet curtains to cool the cowshed, which were 
widely adopted and cost-effective practices in ranches (9). 
Additionally, some nutritional strategies are leveraged to further 
mitigate heat stress in cows including improving dietary energy levels 
(10), incorporating feed additives (11), and adding traditional herbal 
supplements (12). Several recent studies also point to the potential of 
various mineral elements, micronutrients, and vitamins in alleviating 
heat stress. For example, increasing the level of potassium (K) and 
sodium (Na) in the diet can enhance dry matter intake and milk yield 
of dairy cows exposed to heat stress, alleviating the detrimental effects 
of heat stress (13). Chromium (Cr) has been demonstrated to enhance 
cows’ production performance, immune function, glucose 
metabolism, and antioxidant capacity. Supplementation with an 
appropriate dose of Cr could alleviate the adverse effects of heat stress 
and enhance production performance (14). Vitamin C serves as a 
stress protectant for livestock (15), while vitamin E acts as a biological 
antioxidant and free radical scavenger, safeguarding cells and lipid-
rich membranes from oxidative damage induced by heat stress (16). 
Furthermore, vital trace elements such as zinc (Zn), copper (Cu), 
manganese (Mn), and selenium (Se) have been shown to have the 
potential to alleviate heat stress (17). The mineral and trace elements 
in the diet can usually meet the production and health needs of cows. 
However, heat stress can lead to a decrease in feed intake and result in 
picky eating behavior. Therefore, it is necessary to supplement 
additionally to alleviate the effects of heat stress.

Lick block is a feed product made by combining salt, minerals, 
vitamins, and other nutrients in a specific proportion. Livestock can 
freely lick according to their health condition and physiological needs 
to supplement specific nutrients for livestock (18). At present, in 
countries with developed animal husbandry such as the United States, 
the Netherlands, and Australia, feeding lick blocks have become a 
necessary supplementary feeding technique for grazing and farming 
livestock. The Food and Agriculture Organization of the United 

Nations (FAO) has also promoted this low-cost and fast-acting 
technology to over 70 countries in Asia and Africa, achieving significant 
success (19). Supplementing lick block can promote saliva secretion in 
cows, facilitate digestion and rumination, alleviate rumen acidosis, 
maintain rumen acid–base balance, and be beneficial to the health of 
cattle and sheep (20). This experiment designed an anti-heat stress lick 
block targeting the needs of cows for minerals, trace elements, vitamins, 
and other nutrients under heat stress, and subsequently conducted an 
animal experiment to evaluate its anti-heat stress effect.

2 Materials and methods

2.1 Animals, diets, and experimental design

The Animal Care and Use Committee of Nanjing Agricultural 
University approved the experimental procedures used in this study 
(Protocol number: SYXK2017-0007).

Twenty-four healthy Holstein lactating dairy cows were divided 
into two blocks based on milk yield (low block: milk 
yield = 15.72 ± 1.46 kg; high block: milk yield = 20.65 ± 2.44 kg), 
Parity (2–3 parity), and lactation days (114 ± 8 d). The cows in each 
block were then randomly assigned to two groups: (1) CON group: 
not offered lick block; LB group: offered lick block. The anti-heat 
stress compound nutrition (HSCN) lick block used in the experiment 
was cooperatively designed by Nanjing Agricultural University and 
China Salt Jintan Co. Ltd., and the compositions are shown in 
Supplementary Table S1. The HSCN lick block primarily provides 
minerals and vitamins that contain NaCl, 894 g/kg; K, 15 g/kg; Co, 
75 mg/kg; Cu, 500 mg/kg; I, 75 mg/kg; Fe, 2200 mg/kg; Mn, 2000 mg/
kg; Se, 25 mg/kg; Zn, 4000 mg/kg; Cr, 15 mg/kg; VC, 3000 mg/kg; 
VA, 200000 IU/kg; VD, 80000 IU/kg; VE, 2000 IU/kg. All dairy cows 
were housed in indoor pens measuring 1.2 m × 2.2 m, featuring 
woodchip bedding, and had ad libitum access to fresh, clean water. 
Dairy cows were fed three times daily (0630; 1430; 2030) with the 
total mixed ratio (TMR) formulated by the NASEM standards (21), 
and the composition and nutrient content of the TMR are shown in 
Table  1. Feeding trials were conducted for 6 weeks, consisting of 
2 weeks for adaptation followed by 4 weeks of feeding treatment.

2.2 Sampling and measurement

2.2.1 Temperature and humidity index
The temperature and relative humidity in the barn were recorded 

at 0700 h, 1,400 h, and 1900 h daily throughout the experimental 
period using an automatic temperature and humidity recorder 
(TH20R; Shenzhen Huahanwei Technology Co., Ltd., Shenzhen, 
China). The THI was calculated according to the Specification for the 
Technical Assessment of Heat Stress in Dairy Cows (Ministry of 
Agriculture of the People’s Republic of China, 2013). THI = 0. 81*T + 
(0. 99*T-14.3) * RH + 46.3, where T = ambient temperature in °C and 
RH = relative humidity expressed as a proportion, i.e., 75% humidity 
is expressed as 0.75.

2.2.2 Respiratory rate and rectal temperature
The respiratory rate (RR) and rectal temperature (RT) of the cows 

were measured at 0700 h, 1,400 h, and 1900 h twice a week. RR was 
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measured according to the movement of the abdomen and thorax of 
the cows for 1 min and repeated twice. RT was measured using an 
animal thermometer (Dong-e–e-jiao Ahua Medical Instrument Co., 
Ltd., Jinan, Shandong, China).

2.2.3 Feed intake and diet composition
Feed intake was measured and feed samples were collected twice 

a week throughout the experimental period. The samples were mixed, 
dried at 60°C for 48 h, and then crushed for determination of dry 
matter (DM), crude ash (Ash) and crude protein (CP), crude fat (CF) 
content in the samples according to the methods of AOAC (22). 
Neutral detergent fiber (NDF) and acid detergent fiber (ADF) content 
were analyzed according to the method described by Van Soest 
et al. (23).

2.2.4 Milk yield and composition
Milk yield and composition were measured on the last 2 days of 

each week. Milk yield was measured using a Tunisian flowmeter 
(JHF-G17, Sichuan Jinhaifeng Animal Husbandry Technology Co., 
Ltd., Sichuan, China) during the three daily milkings. The flowmeters 
were calibrated before use. The milk samples were preserved with 
2-bromo-2-nitropropane-1,3 diol and stored at 4°C. Milk samples 
collected three times daily were mixed at a ratio of 4:3:3. The milk 

composition was determined using a near-infrared analyser 
(MilkoScanTM 7RM, Foss Electric, Denmark) following the 
standard procedure.

2.2.5 Rumen fermentation parameters
At the end of the trial, rumen fluid was collected using an oral 

stomach tube according to the method described by Shen et al. (24). 
Once collected, rumen fluid pH was measured immediately using a 
pH meter (Ecoscan pH 5, Eutech Instruments, Singapore). After 
filtering with four layers of gauze, the rumen fluid was dispensed and 
stored at −20°C for subsequent VFA analysis. 1 mL of rumen fluid was 
thawed with running water and the NH3-N concentration was 
determined calorimetrically using ammonium chloride as standard 
(25). Volatile fatty acids (VFA) were determined using a gas 
chromatograph (Agilent 7980A, United  States) using the method 
described by Shen et al. (26).

2.3 Statistical analyses

Data for DMI, milk yield, milk composition, RR, and RT were 
analyzed using the SAS Mixed procedure of SAS version 9.4 with week 
as repeated measures using compound symmetry covariance structure 
selected based on Akaike’s information criterion for optimal fit. The 
model included fixed effects of treatment, block, week, treatment × 
week interaction, treatment × block interaction, as well as random 
effect of dairy cow within treatment × block. Data for rumen 
fermentation parameters were analyzed using the SAS Mixed 
procedure of SAS version 9.4. The model included fixed effects of 
treatment, block, treatment × block interaction, and random effect of 
dairy cow within block × treatment. The freedom degrees were 
determined utilizing the Kenward-Roger option. p < 0.05 indicated 
significant differences, and 0.05 ≤ p ≤ 0.10 indicated a trend 
of variation.

3 Results

3.1 Environmental temperature and 
humidity index

In the first 2 weeks of the experiment, dairy cows experienced 
severe (TH I > 88) to moderate heat stress (THI > 80) (Figure  1), 
gradually transitioning to moderate to mild heat stress (THI > 72) in 
the third and fourth weeks.

3.2 Effects on feed intake and milk yield

There was no interaction between the weeks and treatment on 
the effects of DMI and milk yield (Figure 2). Both DMI and milk 
yield show an increase (week: p < 0.01) as the degree of heat stress 
decreased from the first to the fourth week (Figures 1, 2). There was 
no difference in the initial milk yield difference between two 
groups. Offer the HSCN lick block to dairy cows increased 
(p < 0.01) the milk yield from the first week to the fourth week 
(Figure  2A), with an increased tendency (p = 0.09) of DMI 
(Figure 2B).

TABLE 1 Ingredient and chemical composition of the basal diet.

Item The basal diet

Ingredient (% of DM)

Corn silage 28.00

Chinese wild rye 10.50

Alfalfa hay 13.00

Corn grain 20.00

Soybean meal 10.00

DDGS 6.00

Wheat bran 3.00

Caramel meal 6.00

Premix1 2.50

Sodium bicarbonate 0.80

Saccharomyces cerevisiae 0.15

Mould inhibitor 0.05

Nutrient composition (% of DM)

DM 49.95

CP 15.46

RDP 10.26

RUP 5.20

NDF 32.26

ADF 18.11

EE 3.41

Ash 9.75

NEL, Mcal/kg 1.61

1Formulated to provide (per kilogram of premix): NaCl, 160 g; Ca, 175 g, P, 30 g; Mg, 30 g; 
VA, 340000 IU; VE,65000 IU; VE, 1500 IU; Cu, 600 mg; Co, 12 mg; I, 40 mg; Se, 20 mg; Zn, 
2,760 mg; Mn, 1, 600 mg.
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3.3 Effects on milk composition of dairy 
cows

No interaction (p > 0.10) of week × treatment was detected on 
any of the analyzed milk fat, milk protein, milk lactose, total 
solids, and milk urea nitrogen of dairy cows (Table  2). 
Supplementation lick block increased (p < 0.05) the milk yield of 

dairy cows including 3.5% FCM and ECM without (p > 0.05) 
affecting milk composition, which led to an increase (p < 0.01) in 
the total synthesis of milk fat, milk protein, lactose, and 
total solids.

3.4 Effects on somatic cell counts and 
somatic cell scores

No interaction (p > 0.10) of week × treatment was detected on any 
of the analyzed SCC and SCS of dairy cows (Figure 3). The SCC and 
SCS of milk did not differ between the first to fourth weeks of the 
experimental period.

3.5 Effects on respiratory rate and rectal 
temperature

No interaction (p > 0.10) of week × treatment was detected on the 
RR, but there was an interaction (p < 0.05) of treatment × time on the 
RT (Figure 4). Independent analyses showed that the lick block group 
had lower (p < 0.05) RR than the control group in the second and 
third weeks. RT decreased (Week: p < 0.05) with the decrease in the 
degree of heat stress from the first to the fourth week, and no 
difference (p > 0.05) was observed in the RT between the two groups.

3.6 Effect on rumen fermentation 
parameters

Dairy cows offered access to an HSCN lick block had a greater 
rumen pH and lower NH3-N and propionate concentration (p < 0.05). 
Meanwhile, the acetate-to-propionate ratio (p = 0.07), total VFA 
concentration (p = 0.07), and butyrate concentration (p = 0.09) had a 
declining trend in the LB group (Table 3).

FIGURE 1

The temperature and humidity index in the cowshed at 0700 h, 1,400 h, and 1900 h during the experiment.

FIGURE 2

Dry matter intake (A) and Milk yield (B) of dairy cows offered and not 
offered access to HSCN lick block. *Indicates a statistically significant 
difference (p < 0.05).
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4 Discussion

Heat stress causes a sharp drop in feed intake, resulting in poor 
nutrient intake, decreased productivity, and poor offspring growth. It 
can also trigger inflammatory responses in the body that affect the 
health of dairy cows (1). When the THI exceeds 68, cows exhibit signs 
of heat stress such as elevated body temperature, increased respiratory 
rate, and water intake, while decreasing feed intake, and milk yield 
(27). This study incorporates specific ratios of potassium, selenium, 
chromium, zinc, vitamin A, and vitamin E, which have the potential 

to reduce heat stress, to formulate an anti-heat stress lick block. These 
blocks were provided for free access to cows potentially experiencing 
heat stress, with the aim of assessing the effectiveness of the anti-heat 
stress intervention.

During the duration of the experiment, the THI remained 
consistently between 69 to 90, signifying continuous heat stress 
exposure for dairy cows. Previous studies have shown that cows 
exposed to heat stress have significantly lower feed intake and milk 

TABLE 2 Milk yield and composition of dairy cows offered and not offered access to HSCN lick block.

Item Treatment SEM p- value

CON LB Trt Week Trt × Week

Milk yield, kg 16.33 19.60 0.496 <0.01 <0.01 0.99

3.5% FCM1, kg 16.48 19.11 0.418 <0.01 <0.01 0.89

ECM2, kg 16.71 19.44 0.398 <0.01 <0.01 0.94

Milk fat, % 3.47 3.31 0.092 0.23 <0.01 0.24

Milk protein, % 3.18 3.17 0.073 0.95 <0.01 0.78

Milk lactose, % 4.82 4.91 0.049 0.21 0.41 0.12

Milk solids, % 12.40 12.28 0.163 0.61 0.02 0.82

Milk fat yield, kg/d 0.627 0.753 0.019 <0.01 <0.01 0.99

Milk protein yield, kg/d 0.517 0.620 0.015 <0.01 <0.01 0.94

Milk lactose yield, kg/d 0.790 0.962 0.026 <0.01 <0.01 0.85

Milk solids yield, kg/d 2.019 2.406 0.054 <0.01 <0.01 0.98

Milk urea nitrogen, mg/dL 13.08 13.09 0.241 0.96 <0.01 0.07

13.5% FCM = (0.432 + 0.165 × percentage of fat) × kg of milk (40). 2ECM = 0.327 × milk yield + 12.86 × fat yield + 7.65 × protein yield (41).

FIGURE 3

Somatic cell counts (A) and Somatic cell score (B) of dairy cows 
offered and not offered access to HSCN lick block.

FIGURE 4

The respiratory rate (A) and rectal temperature (B) of dairy cows 
offered and not offered access to HSCN lick block. *Indicates a 
statistically significant difference (p < 0.05).
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yield. The higher the level of heat stress, the greater the decline in these 
metrics (28, 29). In the current study, dairy cows exposed to heat stress 
in the LB group had a higher feed intake and milk yield compared to 
the CON group, likely due to the lick block offered. This suggests that 
the heat stress experienced by the cows was mitigated. Additionally, a 
previous study indicated that heat stress negatively affects milk quality 
by lowering both milk fat and milk protein levels (30). In contrast, this 
study found that offering lick blocks to dairy cows enhanced the 
synthesis of milk fat and protein. This improvement was most likely 
related to the lower level of heat stress experienced by the cows. With 
a lower degree of heat stress, cows were more efficient in synthesizing 
milk fat and milk protein; meanwhile, the higher feed intake provided 
more substrates for the synthesis of milk fat and protein.

Somatic cell count serves as a crucial indicator for assessing the 
health status of dairy cows. Transforming somatic cell numbers to 
obtain a somatic cell score, which adheres more closely to a normal 
distribution and facilitates statistical analysis, is a common practice 
(31). A previous study demonstrated a significant negative correlation 
between somatic cell score and milk yield, indicating that higher 
somatic cell scores are associated with decreased milk production 
(32). In the current study, a lower somatic cell score corresponded to 
an increase in milk yield as heat stress lessened, corroborating the 
findings of Bellagi et al. (33). It is noteworthy that the LB group had a 
lower somatic cell score compared to the CON group for the first 
3 weeks. Although this difference was only numerical, it suggested to 
some extent that heat stress in cows was alleviated.

A previous study revealed a notable increase in cows’ respiratory 
rate at high THI levels (34). Concurrently, the challenge of effectively 
dissipating the cows’ excess metabolic heat in such conditions leads to 
elevated body temperatures among dairy cows (35). Throughout the 
experimental duration, the cows experienced persistently high THI 
levels. Remarkably, lactating dairy cows offered access to HSCN block 
had a lower respiratory rate, potentially indicating that the provision 
of the lick block mitigated heat stress in the cows. However, contrary 
to expectations, there was no substantial variation in body temperature 
between two groups. This unexpected outcome may be attributed to 
the high barn temperatures during the experiment, which impeded 
effective heat dissipation.

Rumen homeostasis is crucial for ensuring the efficient digestion of 
nutrients and the overall health of ruminants. Rumen pH as an 

important indicator of rumen homeostasis influenced by multiple 
factors such as diet type, animal feeding and drinking, and animal 
health. Previously, a study highlighted the impact of heat stress on 
altering animals’ feed intake behavior, showing a decrease in forage 
intake and an increase in concentrate intake (36). Excessive concentrate 
intake can trigger a short-term surge in VFA production in the rumen, 
causing a rapid decline in rumen pH and escalating the risk of rumen 
acidosis. Additionally, the increased respiratory rate and decreased 
salivary secretion of dairy cows caused by heat stress will also decrease 
the concentration of carbonates available for exchange in blood and 
saliva, ultimately resulting in lower rumen pH (2). Supplementary lick 
blocks have previously been found to increase salivary secretion, which 
contains many buffering substances that help maintain rumen 
homeostasis (20). Meanwhile, the decline in respiratory rate allowed for 
more carbonates to be used for exchange in the blood entering the 
rumen, which may explain the elevated rumen pH.

The ratio of concentrate to roughage in the diet affects the content 
of acetate, propionate, and butyrate produced during rumen 
fermentation. When feeding diets with higher fiber levels, the total 
VFA in the rumen will decrease, while the pH and acetate levels will 
increase. In contrast, when the ratio of concentrate (starch) is 
increased, the proportion of propionate increases dramatically (37, 
38). In the present study, although the proportion of concentrate and 
roughage consumed by the cows was not measured, dairy cows in LB 
group had a lower concentrations of rumen TVFA, propionate, and 
butyrate and a great concentration of acetate. This potentially indicates 
that dairy cows in the LB group exhibited less picky eating behavior 
and consumed more roughage, which was similarly reported in a 
study by Nonaka et  al. (39). The supplementation of lick block 
alleviated the heat stress and improved the body and rumen health of 
the dairy cows, and the tendency to decrease the total acid 
concentration also may be  related to the enhancement of rumen 
absorption function. Additionally, in the present study, the reduced 
ammonia-nitrogen concentration in the lick block treatment may 
be related to the improved rumen fermentation, which resulted in 
more ammonia being used to synthesize microbial proteins.

5 Conclusion

Supplementation with anti-heat stress lick block improved rumen 
fermentation and reduced the respiratory rate of dairy cows, resulting 
in increased feed intake, milk yield, and both milk fat and milk protein 
yields. Therefore, the supplementation of anti-heat stress lick block has 
a beneficial effect on alleviating heat stress in dairy cows and 
enhancing productivity.
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Item Treatment SEM p- value
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