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Transfusion therapy is vital for both humans and animals, though it poses significant 
risks, including the development of storage lesions in packed red blood cells 
(pRBCs). This study examines hematological and biochemical changes during the 
storage of canine pRBCs, focusing on intraerythrocytic reactive oxygen species 
(ROS) and the impact of pre-storage leukoreduction. Eleven pRBC units were 
each divided into two aliquots, resulting in a total of 22 units, eleven leukoreduced 
(LR-pRBC) and eleven non-leukoreduced (nLR-pRBC), which were analyzed over 
42 days. Results showed increased hemolysis, lactic acidosis, and potassium efflux 
(All, p < 0.01), with more severe lesions in nLR-pRBCs due to leukocyte presence. 
Notably, intraerythrocytic ROS levels increased in both groups (p < 0.05), driven 
by hemoglobin autoxidation (p < 0.05), though they decreased in later storage 
stages due to hemolysis and membrane vesiculation. The study highlights that pre-
storage leukoreduction mitigates storage lesions, suggesting its implementation 
to enhance pRBC storage safety. Further research is necessary to understand the 
role of antioxidant systems in controlling intraerythrocytic ROS and preventing 
storage lesions.
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1 Introduction

Transfusion therapy is essential for both humans and animals, yet it carries the risk of 
severe complications (1, 2). Recent advancements in transfusion medicine have enhanced the 
availability and safety of blood products for canine patients. These improvements encompass 
blood typing, cross-matching, appropriate transfusion methods, dosage optimization, and 
leukoreduction (3, 4). As the demand for blood products rises, ensuring the safety of 
hemocomponents becomes increasingly critical. Unfortunately, standards for the storage of 
canine red blood cells (RBCs) are currently limited and not universally established.

The routine storage period of canine RBC units varies depending on the anticoagulant and 
preservation solution employed, typically ranging from 35 to 42 days (3, 4). During storage, 
various alterations occur in the properties of blood cells and the storage media, collectively 
referred to as “storage lesions,” which can compromise cell function and integrity (2, 4, 5). 
These changes include metabolic and biochemical shifts such as decreases in pH, glucose 
consumption, increases in lactate and potassium levels, and reductions in adenosine 
triphosphate (ATP) and 2,3-diphosphoglycerate (DPG). Morphological changes in RBCs 
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during storage manifest as decreased deformability, echinocytosis, 
microparticle formation, and ultimately hemolysis, often attributed to 
oxidative injury (6, 7).

Oxidative injury in RBCs primarily arises from hemoglobin 
autoxidation, leading to the production of superoxide anions and 
reactive oxygen species (ROS). Antioxidant enzymes and molecules 
within RBCs play a crucial role in regulating these oxidative reactions; 
however, their dysfunction during storage makes RBCs more 
vulnerable to oxidative stress (8, 9). Additionally, leukocytes present 
in the blood bag contribute to storage lesions by releasing enzymes, 
cytokines, and oxygen radicals. Processed blood that has undergone 
leukocyte depletion exhibits lower levels of interleukins, bioactive 
proteins, oxidized hemoglobin, and erythrocyte ROS indices (10–14).

While previous studies in humans have sought to measure 
intraerythrocytic ROS during blood storage (15–18), no research has 
specifically focused on ROS in canine RBCs during this process. The 
current study aims to assess hematological and biochemical changes, 
quantify intraerythrocytic ROS and antioxidants, and explore the 
effects of pre-storage leukoreduction on storage lesions and ROS in 
canine RBCs throughout the storage period.

2 Materials and methods

2.1 Study design

This study involved an in  vitro analysis of hematological and 
biochemical changes in canine packed red blood cells (pRBCs) during 
storage. The effect of leukocytes on various parameters was evaluated, 
with pRBC units categorized into leukoreduced pRBC (LR–pRBC) 
and non-leukoreduced pRBC (nLR–pRBC) units.

Eleven whole blood (WB) units were included, collected from 
healthy volunteer dogs using a quadruple bag collection system (14) 

integrated with a hard-type leukoreduction filter (In-line System, 
Changyoung Medical, Eumseong, Korea). The WB units were 
treated with citrate phosphate dextrose (CPD) solution as the 
anticoagulant and gently mixed in the primary bag. After 
stabilization at 4°C for at least 2 h, pRBCs were separated via 
centrifugation at 3,015 rpm for 8 min at 22°C (Component R6, 
Hanil Scientific Inc., Gimpo, Korea) and gently mixed with 88.9 mL 
of saline adenine glucose–mannitol (SAG–M) solution. The 
separated eleven packed red blood cell (pRBC) units were further 
divided into two aliquots. One half of the pRBCs was passed through 
a leukoreduction filter (RCM1, Haemonetics, MA, USA) and stored 
as LR–pRBC units, while the remaining half was stored unfiltered in 
a satellite bag as nLR–pRBC units. As a result of this process, eleven 
units each of LR-and nLR-pRBC were prepared and stored vertically 
in a blood refrigerator at 2–6°C for 6 weeks, with gentle agitation 
every 2 days during storage (Figure 1). Blood samples were collected 
from the pRBC units at 1, 7, 14, 21, 28, 35, and 42 days post-
separation. The pRBC aliquot was collected sterilely, with half used 
for RBC lysates (by mixing with ice-cold deionized water) and the 
other half for hematological analysis, erythrocytic mean osmotic 
fragility (MOF) tests, and intraerythrocytic ROS measurement. RBC 
lysates were centrifuged and stored at −80°C for subsequent 
antioxidant analysis.

2.2 Analysis of storage lesions in LR– and 
nLR–pRBCs

To comprehensively evaluate storage lesions, we  established 
evaluation parameters according to the following three analytical 
targets: Metabolic/biochemical changes: pH, potassium concentration, 
lactate concentration; Morphological changes: mean osmotic fragility 
(MOF), hemolysis (%); Oxidative injury parameters: ROS, superoxide 

FIGURE 1

Blood separation and leukoreduction process of whole blood samples (n = 11). 11 whole blood samples were centrifuged and separated into pRBC and 
plasma. Half of the pRBCs were filtered with an in-line leukoreduction to obtain LR–pRBC units, while the other half remained unfiltered as nLR–pRBC 
units. All blood units were stored at 2–6°C for 6 weeks.
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Dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and 
total antioxidant capacity (TAC).

Hematologic analysis included RBC count, hematocrit (Hct), total 
hemoglobin (Hb) concentration, and white blood cell (WBC) count, 
performed using a bench-top laboratory analyzer (ProCyte Dx 
hematology analyzer, IDEXX Laboratories, USA). The hemolysis 
percentage was calculated using the formula:

	 ( ) ( ) ( )Hemolysis% 100–Hct supernatant Hb g / dL / total Hb g / dL= ×   

To evaluate deformability, RBC sphericity, and resistance to 
hemolysis, the erythrocyte MOF test was conducted as per previous 
studies (13, 19). The blood samples were incubated for 30 min in 
isotonic-to-hypotonic sodium chloride solutions (0.85, 0.80, 0.75, 
0.70, 0.65, 0.60, 0.55, 0.50, 0.45, 0.40, 0.35, 0.30, 0.20, and 0.10% NaCl) 
in room temperature. After centrifuge at 1,500 rpm for 5 min, the 
separated supernatant was dispensed into a 96-well microplate 
(Stripwell Microplate, Corning Inc., USA), and optical densities (ODs) 
were measured at 540 nm using a spectrophotometer (Spectra Max 
M2, Molecular Devices, USA) and analytic software (SoftMax Pro, 
Molecular Devices, USA). MOF values correspond to the diluted 
solution concentration at which 50% hemolysis occurs, determined 
from the lysis curve. The percentage of hemolysis for each sample was 
calculated using the following formula:

	
( )exp 0.1%Hemolysis % OD OD 100= − ×

The ODexp refers to the optical density of the test sample at a given 
NaCl concentration, while OD0.1% represents the optical density 
measured in the completely hemolyzed sample (0.1% NaCl). To 
evaluate metabolic changes, Supernatant pH, lactate, and potassium 
concentrations were measured using a commercial laboratory analyzer 

(Nova pHOX Ultra analyzer, Nova Biomedical, USA), with detection 
limits of 6.5 for pH and 20.0 mmol/L for lactate concentration.

2.3 The intraerythrocytic ROS and 
antioxidants analysis

Carboxy–H2DCFDA (Invitrogen, Waltham, MA, USA) was 
utilized to detect intraerythrocytic ROS. pRBCs in 1% PBSA were 
incubated with 40 μM carboxy–H2DCFDA at 37°C for 20 min and 
analyzed immediately by flow cytometry (FACS–Calibur, Becton–
Dickinson, USA). A total of 50,000 events were collected at a flow rate 
of 1,000 per second using CellQuest Pro software (Becton–Dickinson, 
Franklin Lakes, NJ, USA). The RBC population’s location was 
confirmed with reference to previous studies (17, 18) (Figure 2). ROS 
reactivity was represented by histograms and the mean fluorescence 
intensity (MFI) of FL-1 fluorescence using commercial software 
(FlowJo Software, Becton–Dickinson, Franklin Lakes, NJ, USA).

To evaluate antioxidative capacity, SOD, CAT, GPx, and TAC were 
measured from stored RBC lysate samples using commercial 
colorimetric activity kits (SOD and CAT Colorimetric Activity Kits 
from Invitrogen, USA; GPx Assay Kit from Cayman Chemical, USA; 
Total Antioxidant Assay Kit from Sigma-Aldrich, USA). All 
procedures were conducted according to the manufacturer’s 
instructions. Microplate absorbance was measured using a 
spectrophotometer (Spectra Max M2, Molecular Devices, USA) and 
analyzed with software (SoftMax Pro, Molecular Devices, USA).

2.4 Statistical analysis

Statistical analysis was conducted using commercial software 
(IBM SPSS, version 25, Chicago, IL, USA). Analytic data were tested 
for normality using the Shapiro–Wilk test. Except for RBC parameter 
(which were not included in the present analysis), all variables failed 

FIGURE 2

Flow cytometric analysis of pRBC treated with carboxy–H2DCFDA. (A) Two-parameter dot plot analyzing the log scale of forward scatter (FSC) and side 
scatter (SSC), with the R1 gate indicating the location of the red blood cell (RBC) population (B) Histogram plot of the FL–1 laser for the R1 gate, where 
the red plot corresponds to the blood sample treated with 40 μM of carboxy–H2DCFDA and the sky-blue plot represents the blood sample treated 
with DMSO as a negative control. The mean fluorescence intensity (MFI) of the FL–1 laser reflects the levels of intraerythrocytic reactive oxygen species 
(ROS).
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to meet the assumption of normality and analyzed using 
non-parametric statistical methods. The Wilcoxon signed-rank test 
was employed to compare the LR and nLR groups at each storage time 
point. To evaluate temporal changes within each group across the 
storage period, the Friedman test was utilized. The paired t-test 
(parametric) or Mann–Whitney U test (non-parametric), along with 
two-way repeated measures ANOVA or Kruskal–Wallis 
non-parametric test, were employed to assess hematological 
differences between LR and non-LR groups and storage duration 
effects. Post hoc analysis utilized a Tukey test (parametric) or 
Bonferroni correction and Mann–Whitney U non-parametric test. 
The Kruskal–Wallis and Mann–Whitney U tests compared MOF test 
results, intraerythrocytic ROS MFI, and antioxidant concentrations 
between LR and non-LR groups, as well as storage period effects. 
Spearman’s rank correlation analysis was performed to analyze 
correlations between variables. Data are presented as mean ± standard 
deviation (SD). If results were below or exceeded detection limits, they 
were represented as the limit value. The significance level for statistical 
tests was set at p < 0.05.

3 Results

3.1 Storage lesions of LR-pRBC and 
nLR-pRBC units

The hemolysis percentage increased from day 1 to 42  in both 
groups, with a significant rise from day 21 to day 42 in the nLR-pRBC 

group (p < 0.01; Figure 3A). Although the hemolysis percentage also 
increased in the LR-pRBC group, it remained below 1%, which is the 
US FDA threshold for humans (20). Notably, the hemolysis percentage 
on day 21 significantly correlated with the WBC count on the first day 
of storage (p < 0.05) (Table 1).

The MOF values in the LR-pRBC group did not change 
significantly over the storage period (p = 0.44), whereas the nLR-pRBC 
group showed a significant increase during storage (p < 0.01). Notably, 
a significant difference between the two groups was first observed on 
day 7 of storage (p < 0.05), and this difference became more 
pronounced with prolonged storage (Figure 3B).

Significant differences in pH and lactate levels were observed 
between storage periods in both groups (p < 0.01), with more 
pronounced changes in the nLR-pRBC group (Figures  3C,D). 
Lactate concentration remained unchanged in both groups from day 
21 to 42 due to the upper detection limit (20 mmol/L). The 
potassium concentration significantly increased with storage 
duration in both groups (p < 0.01; Figure 3E), with nLR-pRBC units 
showing significantly higher potassium levels on days 1 (p < 0.05), 
21, 28, 35, and 42 (p < 0.01).

3.2 Intraerythrocytic ROS and antioxidant 
levels over the storage period

Significant differences in intraerythrocytic ROS levels were 
observed across different storage durations in both groups 
(Figure 4A). The MFI gradually increased until day 28 and then 

FIGURE 3

Storage lesions of the LR– and nLR–pRBC units (n = 11) during the storage period. The horizontal axis indicates the number of days of storage, while 
the vertical axis indicates the outcomes of hematological and biochemical analyses. The analytic results for the LR– and nLR–pRBC units are illustrated 
using a solid line and black-filled triangles and a dotted line and open squares, respectively. The results are presented as median and interquartile range 
(IQR). The p-value at the end of the graph represents statistical significance over the storage period. (A) Percentage of hemolysis; (B) mean osmotic 
fragility results; (C) pH level; (D) lactate concentration; and (E) potassium concentration. *p < 0.05 LR–pRBC vs. nLR–pRBC at each time point. 
**p < 0.01 LR–pRBC vs. nLR–pRBC at each time point.
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decreased for both groups. Notably, the MFI of ROS in the LR-pRBC 
group was significantly higher than that in the nLR-pRBC group on 
day 28 (p < 0.05). Conversely, GPx activity decreased until day 21 
and then increased until the end of the study, with significantly 
higher GPx activity in the LR-pRBC group than in the nLR-pRBC 
group on day 42 (p < 0.05; Figure 4B). The TAC concentration in the 
nLR-pRBC group significantly decreased over the storage period 
(p < 0.01; Figure  4C), whereas the TAC concentration was 
significantly higher in the LR-pRBC group on days 14 (p < 0.01), 28 
(p < 0.05), and 42 (p < 0.01). Changes in SOD and CAT levels did not 

significantly differ between groups over the storage period (data 
not shown).

4 Discussion

The purpose of the present study was to evaluate hematological/
biochemical storage lesions, the intraerythrocytic ROS using 
fluorochrome, and antioxidants concentration during blood storage 
periods, and confirm the correlation with leukoreduction. 
Throughout the storage periods, hemolysis, lactic acidosis, and 
potassium efflux increased in both groups, with these variations being 
more pronounced in the nLR–pRBC group, likely due to the presence 
of leukocytes. The intraerythrocytic ROS levels gradually increased 
in both groups until day 28, but no significant differences were 
observed between groups. GPx activity decreased steadily in both 
groups until day 21, while total antioxidant capacity (TAC) 
concentration declined only in the nLR–pRBC group. A significant 
correlation was found between the white blood cell (WBC) count on 
the first day and the hemolysis percentage on day 21 in the nLR–
pRBC group. Additionally, the mean osmotic fragility (MOF) value 
was significantly higher after day 7 in the nLR–pRBC group compared 
to the LR–pRBC group, which is consistent with previous studies that 
found MOF to be  higher in the nLR-pRBC group than in the 
LR-pRBC group on day 7 (13).

FIGURE 4

Intraerythrocytic ROS results (A) and antioxidant analysis of GPx (B) and TAC (C) during the storage period of LR– and nLR–pRBC units. The 
intraerythrocytic ROS and antioxidants (TAC and GPx) was measured in the LR–pRBCs (solid line, black–filled triangles) and nLR–pRBCs (dotted line, 
blank squares) groups. Sample size of ROS and TAC is 11, and that of GPx is 10. *p < 0.05 LR–pRBC vs. nLR–pRBC at each time point. **p < 0.01 LR–
pRBC vs. nLR–pRBC at each time point.

TABLE 1  WBC count of LR– and nLR–pRBCs (n = 11) during storage 
periods.

Day(s) Mean WBC count 103/μL (SD)

LR nLR

D1 0.003 (0.005) 22.948 (5.419)

D7 0.003 (0.006) 23.313 (6.888)

D14 0.005 (0.005) 20.414 (5.488)

D21 0.005 (0.007) 19.005 (4.190)

D28 0.004 (0.005) 16.143 (5.048)

D35 0.003 (0.005) 11.764 (7.164)

D42 0.006 (0.005) 8.995 (6.203)

https://doi.org/10.3389/fvets.2025.1563532
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Shin et al.� 10.3389/fvets.2025.1563532

Frontiers in Veterinary Science 06 frontiersin.org

In the present study, the supernatant pH declined significantly in 
both pRBC groups over the storage period and was markedly lower in 
the nLR-pRBC group compared to the LR-pRBC group. In contrast, 
supernatant lactate concentrations increased significantly during storage 
in both groups and were consistently higher in the nLR-pRBC group 
than in the LR-pRBC group. The decrease in pH in stored blood units 
is attributable to the accumulation of lactate, a metabolic byproduct of 
the glycolytic pathway (3, 21). Because mature mammalian erythrocytes 
lack mitochondria, ATP generation required for maintaining cellular 
functionality and membrane integrity relies exclusively on anaerobic 
glycolysis (2, 3, 21). During storage, elevated lactate concentrations 
inhibit the glycolytic pathway through negative feedback mechanisms 
and lactic acidosis (3, 21), consequently reducing intracellular ATP 
levels. In a cold environment compared to room temperature, the 
glycolysis process and ATP synthesis in RBCs can be inhibited, and the 
lactaic acids produced by glycolysis and the resulting acidic environment 
can be alleviated (22). Since the cellular functions of RBCs that require 
ATP are also reduced in a cold environment, it is thought that cold 
storage may actually be beneficial for ATP synthesis in RBCs in the long 
term (21). Although ATP concentration was not assessed in the current 
study, a progressive decline is expected to occur throughout the storage 
period, likely contributing to the deterioration of RBC structural and 
functional properties, as shown in the previous study (13). 
Leukoreduction attenuated the degree of acidosis and hyperlactatemia 
both in the current investigation and in prior reports (13), potentially 
due to decreased glucose consumption by residual leukocytes (10, 23). 
Since the upper limit of the lactate measuring equipment used in this 
experiment is 20 mmol/L, it is believed that the lactate concentration in 
the nLR group is actually significantly higher than that in the LR group 
even after the 14th day. The reduction in the difference between groups 
is presumed to be a result of the decreased glucose consumption by 
residual leukocytes, as mentioned earlier. It is thought that leukocytes 
also decrease in number over the storage period because the synthesis 
of ATP decreases as glucose is consumed within the stored blood, 
leading to apoptosis.

Moreover, the supernatant potassium concentration increased 
significantly throughout the storage duration in both experimental 
groups. Notably, potassium levels were significantly higher in the 
nLR-pRBC group than the LR-pRBC group from the initial day of 
storage and persisted through the later stages. This trend is consistent 
with previous canine studies (13, 23, 24). However, no significant 
differences were observed between leukoreduced and non-leukoreduced 
units in one report (24). Under physiological conditions, RBC 
membranes exhibit limited permeability to monovalent cations, a 
balance maintained by membrane-bound Na+/K+-ATPase activity. 
However, during hypothermic storage, diminished ATP availability 
compromises Na+/K+-ATPase function, resulting in elevated 
extracellular potassium and increased intracellular sodium 
concentrations (21, 25). Typically, canine erythrocytes exhibit low 
intracellular potassium levels due to minimal Na+/K+-ATPase activity 
(3). Additionally, the composition of additive solutions influences 
potassium efflux, with CPDA-1 producing lower supernatant potassium 
levels compared to Adsol and Nutricel solutions due to their differing 
ionic constituents (23). Oxidative stress has been shown to reduce the 
activity of membrane-associated enzymes, including Na+/K+-ATPase, 
suggesting that intraerythrocytic reactive oxygen species (ROS) may 
further facilitate potassium leakage into the storage medium (26). The 

presence of leukocytes in the blood bag promotes glucose consumption, 
thereby impairing ATP synthesis in RBCs and compromising Na+/K+-
ATPase activity. In addition, ROS and cytokines released by leukocytes 
may increase erythrocyte membrane permeability. For these reasons, 
supernatant potassium levels were significantly higher in the nLR-pRBC 
groups than in the LR-pRBC in this study. The rate of potassium 
accumulation appeared less pronounced in the later stages of storage, 
potentially due to a reduced transmembrane cation gradient (25).

Despite the absence of leukocytes, storage lesions, including 
increased hemolysis percentage, were observed in the LR–pRBC group. 
While the influence of unfiltered interleukins and ATP degradation 
cannot be dismissed, it seems that oxidative damage to intracellular 
proteins and lipids caused by intraerythrocytic ROS, which was resulting 
from hemoglobin autoxidation during storage, may induce these lesions. 
The increased intraerythrocytic ROS levels and the corresponding 
decrease in GPx activity reflect oxidative injury to RBCs during the 
storage period, a finding corroborated by previous studies (10, 27, 28). 
No significant differences in ROS levels were noted between the two 
groups. Although the exact mechanisms remain unclear, it is plausible 
that unfiltered interleukins in blood bags may affect ROS production in 
the LR–pRBC group even after leukoreduction (11, 12, 14).

The trend of ROS-dependent fluorescence intensity in RBCs was 
similar to the results of two human studies (10, 27), where fluorescence 
intensities generally decreased during the latter part of storage. This 
decline in fluorescence was associated with the leakage of fluorochrome 
from RBCs due to hemolysis, micro-vesiculation, or reduced esterase 
activity during storage (6, 7, 10). Conventionally, H2DCFDA can 
penetrate the lipophilic cellular membrane and localize in the cell’s 
aqueous compartment (29, 30). However, a recent study suggested that 
H2DCFDA, H2DCF, and DCF may also reside within a liposomal 
bilayer of the cell membrane (31). It is believed that during hemolysis 
or micro-vesiculation, oxidized hemoglobin and ROS—products of 
hemoglobin autoxidation—leak out of the cells, leading to decreased 
detectable fluorescence intensity in later storage periods. In this study, 
the timing of the decrease in MFI coincided with increases in hemolysis 
percentage and MOF results. Notably, the significantly higher ROS 
levels observed on day 28 in the LR–pRBC group compared to the 
nLR–pRBC group were associated with the relatively earlier decrease 
in intraerythrocytic ROS in the nLR–pRBC group (Table 1).

Previous studies have shown that TAC can serve as an antioxidant 
indicator in canine blood (32–34). In this study, the TAC concentration 
decreased only in the nLR–pRBC group, with some time points 
showing much higher levels in the LR–pRBC group. Although further 
research is needed regarding the changes in the concentration of TAC, 
it is determined that the overall oxidative damage of RBC was more 
severe in the nLR-RBC group. Possible causes may include the residual 
leukocytes promoting the generation of ROS and the degradation of 
antioxidants present in the blood (such as glutathione and vitamin C) 
over time, which may have accelerated oxidative damage.

When applying the US FDA criteria (20), on the last day of storage 
(day 42), every unit of LR–pRBC met the hemolysis criteria, while 
only one unit in the nLR–pRBC group fulfilled the criterion, with all 
others failing to meet the requirement. Additionally, other storage 
lesions were observed to be much more severe in the nLR–pRBC 
group. Based on these study results, it is suggested that leukoreduction 
is recommended to enhance blood storage stability and preemptively 
remove leukocyte-derived pathogens.
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This study had several limitations. First, other factors might have 
influenced oxidative damage and storage lesions, such as leukocyte-
derived ROS, interleukins, and ATP concentrations during pRBC 
storage. A recent study shows that during storage, ATP and antioxidants 
were de-creased with elevating free short and medium-chain fatty acids 
and leukoreduction alleviated these storage lesions (35). Second, the 
small sample size may introduce statistical bias or variability. Therefore, 
further studies are needed to control for leukocyte effects on storage 
lesions, intraerythrocytic ROS, and antioxidants. Recent clinical study 
results have been reported, indicating that there is no correlation 
between leukoreduction and the occurrence of transfusion reactions in 
dogs who have actually received transfusions (36–38). However, 
through this experiment, it was confirmed that various storage lesions 
occur when leukoreduction is not performed. While this may have little 
relation to transfusion reactions that directly worsen the dog’s condition, 
it is believed to potentially hinder the effectiveness of transfusions, 
which are an important therapeutic method in veterinary medicine.

In conclusion, storage lesions such as hemolysis, lactic acidosis, 
and potassium efflux occur during blood storage. It has been 
confirmed that leukocytes in nLR–pRBC cause more severe storage 
lesions compared to LR–pRBC. Regardless of leukocyte presence, 
intraerythrocytic ROS levels increase during blood storage due to 
hemoglobin autoxidation. Elevated ROS appears to induce storage 
lesions, which include decreased antioxidants, hemolysis, osmotic 
fragility, and cation leakage in LR–pRBC. The ROS levels decline in 
the later stages of storage as a result of hemolysis, membrane 
vesiculation, and reduced esterase activity. To meet the criteria for 
pRBC storage and mitigate storage lesions, pre-storage leukoreduction 
is recommended. Further studies are necessary to explore the effects 
of antioxidant systems on intraerythrocytic ROS and storage lesions.
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