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Bluetongue virus (BTV) and epizootic hemorrhagic disease virus (EHDV) are two

viruses belonging to the genusOrbivirus that are transmitted via insect vector, the

Culicoides biting midge, causing disease in domestic and wild ruminants. These

infections can lead to significant morbidity, mortality, and production losses in

livestock, with economic consequences for cattle and sheep industries. Despite

their growing impact due to environmental and anthropogenic changes, little

is known of the prevalence of these viruses in North American bison (Bison

bison). We present the first cross-sectional survey of BTV and EHDV in North

American bison, with samples collected from 287 animals across 9 herds in

7 U.S. states from September to November 2023. Using competitive enzyme-

linked immunosorbent assays (cELISA), we detected seroprevalence rates of

56.5% for BTV and 57.5% for EHDV. We found higher seroprevalence in North

American bison compared to reports in European bison populations, suggesting

that bison could potentially serve as incidental hosts of orbiviruses during key

transmission periods; however, their role in virus transmission remains uncertain

and warrants further investigation, particularly regarding the duration of viremia,

potential amplification capacity, and year-to-year variability in PCR positivity.

Logistic regression analysis revealed age as a significant predictor for both

BTV (OR: 1.15, CI: 1.05–1.26, p: 0.006) and EHDV (OR: 1.16, CI: 1.06–1.28, p:

0.0014) seropositivity. PCR amplification identified circulating BTV serotypes 6,

11, 13, 17. Additionally, age was negatively associated with PCR positivity for

both BTV (OR: 0.70, CI: 0.53–0.93, p: 0.014) and EHDV (OR: 0.56, CI: 0.33–

0.93, p: 0.024), suggesting a decline in detectable viremia with increasing age.

Although complex environmental and epidemiological factors likely play a role,

this trend may be due to older animals having experienced more vector seasons,

thereby increasing their cumulative exposure and subsequent immunity to these

viruses over time. The significant age-associated dynamics reveal the importance

of considering life stage in disease surveillance and management. Our study

also highlights the importance of integrating bison into future vector-borne

disease research and control strategies to mitigate risks to livestock, wildlife, and

ecosystem health.
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Introduction

Shaped by climate change, globalization, and anthropogenic

activities such as farming, land-use modifications, and trade,

vector-borne viruses of ruminants (often referred to as arboviruses

despite the term having no taxonomic significance) have

undergone significant shifts in their epidemiology over the past

several decades (1–3) These shifts have contributed to the re-

emergence and geographic spread of many arboviruses, including

the economically significant bluetongue (BT) and epizootic

hemorrhagic disease (EHD).

Bluetongue Virus (BTV) and Epizootic Hemorrhagic Disease

Virus (EHDV) are classified in the genus Orbivirus and are

transmitted by various species of Culicoides midges (4, 5). In

the genus Culicodies, females require a blood meal for ovarian

maturation and egg production (6). When a Culicodiesmidge feeds

on an Orbivirus-infected host, the virus undergoes an extrinsic

incubation period of 7 to 14 days, depending on environmental

factors like temperature (5). During this time, the virus must

overcome physiological barriers in themidgut before disseminating

to the salivary glands, where it replicates unchecked and becomes

transmissible to a new host during subsequent blood meals (5, 7).

Historically, these viruses were confined to tropical and subtropical

regions of Africa, but have since expanded into more temperate

zones, including Europe, the Americas, and Asia, with projections

indicating continued geographic expansion (8–11).

Bluetongue Virus consists of 29 described serotypes, 27–29

of which are putative and capable of segment reassortment (12–

15). This contributes to its genetic diversity and complicates

vaccine development (16). The clinical manifestations of BTV

and EHDV infections vary depending on the host species and

virus serotype but can include fever, hemorrhage, abortion, oral

ulceration, and edema, with outcomes ranging from subclinical to

severe (17–20). These diseases impose significant economic costs

through decreased productivity, direct veterinary expenses, and the

implementation of control measures (21–23).

While extensive research on BT and EHD has focused

on domestic livestock, the epidemiology of these diseases in

bison remain poorly understood, with only a handful of studies

specifically exploring these diseases in North American or

European bison (18, 24–27). As an iconic species of ecological,

economic, and cultural importance, bison are uniquely positioned

at the interface between domestic livestock and wildlife, with

many states listing them under dual classifications, highlighting the

critical importance of their health status in understanding disease

dynamics (28–31).

This gap is particularly concerning given the unknown

potential for bison to facilitate the maintenance and vector-

mediated transmission of these viruses to co-grazing domestic

livestock and other wildlife. To address this, our study investigated

the seroprevalence of BTV and EHDV antibodies in range-

limited, minimally managed (handled yearly or biennially)

North American bison, identified circulating BTV serotypes

via RT-qPCR; and examined age-associated dynamics in

correlation to current and past exposure. These findings

offer valuable insight into the epidemiology of BTV and

EHDV in bison and emphasize the importance of integrated

surveillance and control measures to mitigate the broader

impact of vector-borne diseases on diverse ruminant populations

and ecosystems.

Materials and methods

Sample collection

Samples from a total of 287 North American bison (285

serum, 216 whole blood, with 214 paired) were collected from

nine herds in seven states (Table 1, Figure 1). The states included

in this study (CO, IA, KS, MT, NE, OK, SD) encompass regions

within the historical range of North American plains bison and

include areas where significant bison populations persist today.

While comprehensive data on private bison herds remain limited,

these states are home to several Department of the Interior (DOI)

conservation herds that serve as an essential resource for bison

conservation and management, along with a few conservation

herds managed similarly by other agencies and organizations

(32). Sampling was conducted opportunistically during routine

management-assoicated capture and handling events scheduled

between August 31st and November 13th, 2023, with individuals

sampled based on accessibility and availability. All sampling

procedures were performed in coordination with herd managers,

veterinary personnel, and wildlife biologists to minimize stress

and ensure activities met currently accepted professional standards

of animal welfare as identified by each agency or managing

organization. Serum samples were extracted through centrifugation

in the field prior to storage alongside K3EDTA preserved whole

blood samples in coolers with ice packs during transport to the

Colorado State University Veterinary Diagnostic Laboratory for

further diagnostic processing.

ELISA testing for BTV and EHDV antibodies

Competitive enzyme-linked immunosorbent assays (cELISAs)

were conducted to detect antibodies against Bluetongue Virus

and Epizootic Hemorrhagic Disease Virus using the Bluetongue

Virus Antibody Test Kit (VMRD, Washington, US) and EHD

Virus Antibody Test Kit (ID Screen, France) respectively. Plates

with antigen-coated wells were incubated with serum samples

and controls that were supplied by the kit, washed, and

sequentially treated with substrate and stop solutions following the

manufacturers’ protocols. Optical densities were read on a plate

reader (BioTek Instruments Inc., Vermont, US) at 630 nm for BTV

and 450 nm for EHDV. Final classifications were based on kit

validation criteria provided by the manufacturer.

For BTV, samples with a mean percent inhibition (%I) ≥60%

were classified as positive. For EHDV, samples with a percent

sample-to-negative (%S/N) ratio ≤30% were classified as positive,

while values of 30%<%S/N< 40%were retested to confirm results.

RNA extraction

RNA Extraction RNA was extracted from whole blood samples

using the MagMAXTM Pathogen RNA/DNA Kit (ThermoFisher,
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TABLE 1 Geographic distribution, seroprevalence, PCR-positivity, and serotype identification of orbiviruses in a 2023 cross-sectional survey of North

American bison herds.

State Serum∗ Whole
blood∗

Total
animals
sampled

BTV ELISA
+ (%)

EHDV
ELISA +

(%)

EHDV
PCR + (n)

BTV PCR
+ (n)

BTV
serotypes∗∗

CO 10 10 10 70.0 70.0 0 3 N/A

IA 5 5 5 0.0 20.0 1 1 N/A

KS 30 29 30 83.3 86.7 2 5 6,13

MT 31 31 31 0.0 3.2 0 0 -

NE 30 30 30 0.0 6.7 1 0 -

OK 30 30 30 60.0 53.3 2 7 11,13,13,13

SD 30 31 32 80.0 76.7 0 0 -

SD 101 50 101 82.2 80.2 4 5 6,11,17,17

SD 18 0 18 22.2 33.3 - - -

∗Total serum and whole blood samples collected per herd.
∗∗BTV serotypes identified using PCR serotyping. Some positive samples could not be successfully serotyped.

N/A was placed in locations where serotypes could not be identified via RT-qPCR.

FIGURE 1

Geographic distribution and herd size of North American bison with associated BTV seroprevalence in a 2023 cross-sectional study on Bluetongue

Virus and Epizootic Hemorrhagic Disease.

Massachusetts, USA) on a KingFisher 96 automated system

according to the manufacturer’s protocol. Extracted RNA was

stored at−80◦C until analysis.

Duplex RT-qPCR

Bluetongue Virus and Epizootic Hemorrhagic Disease Virus

RNA were simultaneously detected using the SuperScriptTM III

PlatinumTM One-Step qRT-PCR kit on an Applied BiosystemsTM

7500 Real-Time PCR System (ThermoFisher, Massachusetts, USA).

Reactions were conducted in a single tube with 25 µL reaction

volumes containing primers and probes targeting conserved

regions of BTV and EHDV genomes (33–35). 5 uL of extracted

nucleic acids were first denatured at 95◦C for 5 mins prior to the

addition of the reaction master mix. Thermal cycling conditions

then included a reverse transcription step (48◦C for 30min), initial

denaturation (95◦C for 2min), and 40 amplification cycles (95◦C

for 15 s, 56◦C for 30 s, 72◦C for 30 s). Negative and positive controls
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were included in each run to validate results. Cycle thresholds (Ct)

were determined at 10% of the amplification plateau of the positive

amplification control (PAC).

RT-qPCR BTV serotyping

Samples previously confirmed positive for BTV via RT-qPCR

were tested for specific serotypes using RT-qPCR with serotype-

specific primers for BTV-2w, BTV-3, BTV-6, BTV-10, BTV-

11, BTV-13, and BTV-17 (36). Reactions were performed using

the SuperScriptTM III PlatinumTM One-Step qRT-PCR System,

as described above. Thermal cycling conditions then included a

reverse transcription step (48◦C for 30min), initial denaturation

(95◦C for 2min), and 40 amplification cycles (95◦C for 15 s,

56◦C for 30 s, 72◦C for 30 s). Positive and negative controls were

included for quality assurance. Amplification was performed using

the Applied Biosystems 7500 Real-Time PCR System. Ct thresholds

were determined at 10% of the amplification plateau of the positive

amplification control (PAC).

Data analysis

Data analysis was conducted in R (v4.3.0) using the tidyverse

package for data preprocessing and visualization. We obtained

weather data from Open-Meteo, which provides meteorological

data through numerical weather prediction models. Logistic

regression models were used to evaluate associations between

demographics and meteorological data (e.g., age, sex, herd

demographics, land area, and weather conditions) and outcomes

(EHDV/BTV serostatus and RT-qPCR status). Predictors were

selected based on biological relevance and exploratory analysis.

Models were optimized using the Akaike Information Criterion

(AIC) to balance fit and complexity. To assess multicollinearity

among predictor variables, Variance Inflation Factors (VIFs) were

calculated using the car package in R. Odds ratios (OR) with 95%

confidence intervals (CI) were calculated to assess the strength

of associations. Visualizations, including probability curves with

confidence intervals, were generated using ggplot2. Effect sizes for

significant predictors were highlighted to enhance interpretability.

Results

Antibodies against BTV were detected in 56.5% (161/285) of

bison sera using cELISA, with EHDV seroprevalence at 57.5%

(164/285), and 45.3% (129/285) testing positive for antibodies to

both viruses. Among the 9 tested herds, BTV seroprevalence ranged

from 0% (MT and NE herds) to 83.3% (KS herd), while EHDV

seroprevalence ranged from 3.2% (MT herd) to 86.7% (KS herd)

(Table 1).

RT-qPCR-based serotyping revealed the presence of multiple

circulating BTV serotypes, including BTV-6, BTV-11, BTV-13,

and BTV-17. These serotypes were detected in herds from South

Dakota, Kansas, and Oklahoma (Table 1). BTV and EHDV RT-

qPCR positivity were lower than antibody detection, with BTV

RT-qPCR positivity ranging from 0% to 7% and EHDV RT-qPCR

positivity between 0% and 20%.

Variation in seroprevalence and RT-qPCR positivity among

herds highlighted potential influences of herd size, geography, and

local environmental factors. However, broader herd-level logistic

regression models incorporating factors such as herd composition,

land area, and climatic variables (temperature, precipitation,

windspeed) did not identify statistically significant predictors of

seropositivity or RT-qPCR positivity.

Variables with high multicollinearity (VIF > 10) were

excluded from the final analysis to improve model stability and

interpretation. Logistic regression analysis identified significant

relationships between age and seropositivity for both viruses

(Figure 2). For BTV, each additional year of age increased the

odds of seropositivity by 15% (OR: 1.15, CI: 1.05–1.26, p: 0.006).

Similarly, for EHDV, each additional year of age was associated with

a 16% increase in the odds of seropositivity (OR: 1.16, CI: 1.06–1.28,

p: 0.0014). Age was also significantly negatively associated with RT-

qPCR positivity for both viruses. For BTV, animals were less likely

to be RT-qPCR positive (OR: 0.70, CI: 0.53–0.93, p: 0.014) as they

aged, and the same pattern was observed for EHDV (OR: 0.56,

CI: 0.33–0.93, p: 0.024). No significant associations with sex were

observed for either seropositivity or RT-qPCR positivity (Table 2).

No significance was associated with daily precipitation or 5-day

average temperature and RT-qPCR positivity (Table 3).

Discussion

This study identified notably higher seroprevalence rates

for BTV and EHDV in North American bison compared to

previously reported values of 12.83% and 22.1% for BTV in

European bison (Bison bonasus) populations (24, 25). While

comparisons with European bison seroprevalence are valuable,

it is crucial to recognize fundamental differences in BTV and

EHDV transmission dynamics between North America and

Europe, including differences in habitat and climate. In the

United States, these viruses persist in endemic cycles, sustained

by continuous vector activity in some geographic regions,

whereas in Europe, outbreaks tend to be sporadic and are more

tightly controlled through mitigation efforts (37–39). Additionally,

European bison and North American bison are distinct species

with potentially differing susceptibilities, immune responses, and

ecological interactions with vectors. While EHD outbreaks in

North America are commonly associated with high mortality in

white-tailed deer, bison are generally considered incidental hosts

and often remain asymptomatic, as noted during a natural outbreak

in a captive facility (40). However, the 2012 EHDV epidemic in the

United States revealed that morbidity in bison could reach as high

as 7%, highlighting the potential risk to this species under certain

conditions (20). Combined with the observed high seroprevalence

in the present study, these findings suggest that bison could

potentially contribute toOrbivirus transmission as incidental hosts,

particularly during the first 2 years of life when they are more

likely to be infective. As with European red deer, which do not

appear to maintain BTV in France, it remains uncertain whether

bison can sustain transmission cycles of if they are spillover hosts

(41). Bison’s role in transmission ecology is likely limited compared
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FIGURE 2

Predicted probability of positivity (ELISA and PCR) for Bluetongue Virus and Epizootic Hemorrhagic Disease Virus by age in bison from a 2023

cross-sectional study, including 95% confidence intervals.

TABLE 2 Logistic regression analysis of sex as a function of BTV and EHDV test results from a BTV/EHDV cross-sectional survey in bison.

Dependent variable Independent variable Estimate (β) Std. error p-value

BTV PCR Sex 0.8245 0.4825 0.08747

EHDV PCR Sex 0.9327 0.6814 0.171021

BTV ELISA Sex 0.1089 0.4082 0.789565

EHDV ELISA Sex −0.3441 0.4075 0.398326

No significance was noted.

TABLE 3 Weather variables and BTV/EHDV PCR results from logistic regression modeling for a BTV/EHDV cross-sectional survey in bison.

EHDV PCR (β) EHDV 95% CI BTV PCR (β) BTV 95% CI

Daily precipitation 0.090 −0.361, 0.541 0.105 −0.230, 0.439

5-day avg temp. −0.228 −1.286, 0.830 −0.060 −0.697, 0.576

No significance was noted.

to species with prolonged periods of viremia, such as noted with

EHDV in white-tailed deer (42). Further research into their role

in Orbivirus ecology and implications for disease transmission

dynamics is warranted.

There are many aspects that further complicate disease

dynamics in bison, including BTV/EHDV serotype co-circulation

and reassortment. Immunity to one serotype does not often

provide effective protection against another (43–45). Additionally,

BTV and EHDV exhibit strain-dependent variations in virulence,

with different strains of the same serotype causing varying

levels of clinical disease (46, 47). The detection of multiple

BTV serotypes in the present study highlights the complexities

associated with serotype-specific immunity and the potential for

novel serotype introductions to precipitate outbreaks. During the

BTV-8 novel outbreak in Europe (2006–2008), BTV-8 caused the

deaths of 10 of 33 bison in a German breeding center along

with up to a 40% morbidity and 20% mortality in European

zoos (19, 25). Reported clinical signs included lethargy, fever,

mouth ulcers, drooling, difficulty eating, conjunctivitis, corneal

edema, respiratory difficulty, lameness, inflammation of the
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coronary band, and sudden death (19). Notably, North American

bison experimentally infected with BTV-11 developed detectable

antibodies without exhibiting clinical signs (18). This finding

highlights the ability of bison to mount an immune response to a

specific serotype, potentially reducing clinical disease severity in

subsequent exposures to the same serotype. The age-dependent

dynamics observed in the current study may also reflect the

accumulation of partial immunity in older animals due to

prior exposures, which could mitigate the impact of subsequent

infections. However, the introduction of a new serotype, to which

the population has no prior exposure, can still result in high

morbidity and mortality, as evidenced by the recent European

outbreaks (39, 48). These events emphasize how exposure to novel

serotypes can lead to significant disease outbreaks, particularly in

populations lacking prior immunity.

Geographic variability also plays a critical role in Orbivirus

transmission (42, 49). The wide range of seroprevalence observed

between sites in the current study highlights the role of localized

environmental factors and vector habitats in shaping Orbivirus

transmission dynamics. Bison wallows, for example, serve as

temporary breeding sites for Culicoides spp., with species like

Culicoides sonorensis favoring active wallows enriched by bison

activity (27). These findings suggest that landscape features and

host behaviors can create focal points for vector-host interactions,

influencing disease transmission at a local level. Additionally,

the 2012 EHD outbreak in the U.S. demonstrated geographic

clustering, with most cases in cattle and bison occurring in

Nebraska, South Dakota, and Iowa (20). Similarly, cattle studies

have reported region-specific seroprevalence rates, emphasizing the

impact of geographic and ecological factors on disease exposure

risk (22).

In a broader context, climate change is expected to further

influence the distribution and epidemiology of orbiviruses. Rising

temperatures and altered precipitation patterns are predicted to

expand the geographic range of Culicoides vectors, extend their

active seasons, and increase the availability of suitable breeding

habitats (3, 8). For example, higher mean annual temperatures

and age were correlated with increased BTV seroprevalence in

water buffalo and cattle in southern Italy (50). These environmental

shifts may promote viral transmission dynamics, particularly in

landscapes with high host densities and modified habitats like

wastewater lagoons and fragmented agricultural areas (1).

Although logistic regression modeling in the present study did

not find significant associations in weather or herd demographics

and BTV/EHDV status, the small sample size likely limited the

power of the analyses. Additionally, the cross-sectional design

of the study provides a snapshot of vector-host interactions but

does not allow us to determine causality. Future research should

include longitudinal studies to track seroconversion and PCR

positivity over time, coupled with ecological assessments of vector

populations and habitats. Collaborations between wildlife and

livestock health sectors are essential for integrating surveillance

within a One Health framework.

Overall, our findings reveal significant age-associated dynamics

in the epidemiology of BTV and EHDV in North American

bison, with older animals showing higher seroprevalence but

reduced PCR positivity. This suggests that immunity to orbiviruses

accumulates over time due to repeated exposures, while risk

of detectable viremia declines with age. Long term persistence

of antibodies to both BTV and EHDV serotypes have been

noted, supporting the concept that immunity following infection

is generally long lasting for that specific serotype (51, 52).

Additionally, the timing of sampling within the vector season may

influence observed seroprevalence and viremia rates, as animals

sampled at the end of the season may have had more opportunities

for exposure and antibody development, while those sampled

earlier may be more likely to exhibit active infection. Nonetheless,

these dynamics highlight the importance of considering life stage

in disease surveillance and management strategies. Younger bison,

which weremore likely to exhibit active infections in our study,may

contribute disproportionately to virus transmission during peak

vector activity, while older individuals may serve as immunological

sentinels, reflecting historical exposure to these viruses. To better

understand these patterns, longitudinal sampling across multiple

seasons to capture variations in exposure, immune response, and

viremia over time is advised.

Understanding these age-related patterns is critical for

designing targeted surveillance programs and control measures.

Future research should explore how these dynamics interact

with environmental and vector-related factors to influence

disease transmission at the wildlife-livestock interface. Enhanced

surveillance efforts that incorporate bison as a model for

understanding Orbivirus ecology can provide valuable insights into

mitigating risks to livestock, wildlife, and ecosystem health. These

results contribute to the growing body of evidence supporting the

importance of wildlife in Orbivirus dynamics, particularly under

the influence of climate change.
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