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Deoxynivalenol (DON) and Zearalenone (ZEN), common symbiotic mycotoxins 
found in mold-contaminated cereal feed, adversely affect broiler’ health. Glycyrrhiza 
uralensis has various pharmacological effects including antibacterial, antioxidant 
and immunomodulatory. This study aimed to investigate the effects of the long-
term intake of low doses of DON and ZEN on growth performance and intestinal 
health of broilers, as well as the potential protective effect of supplementary 
Glycyrrhiza uralensis extract (GUE) in an 84-day feeding experiment. A total 
of 315 one-day-old male Liangfeng broilers were randomly assigned to three 
treatments: basal diet (CON), MOL diet (where 5% of corn in the basal diet was 
replaced with an equal amount of naturally moldy corn) containing DON and 
ZEN at 1.25 and 1.29 mg/kg, and MGUE diet supplemented with 0.1% GUE in 
the MOL diet. The MOL diet reduced the body weight (BW) of broilers at 56 and 
84 day, body weight gain (BWG) and feed intake (FI) aged 1-56 and 1-84 days, 
and the feed conversion ratio (FCR) aged 1-84 days, as well as villus height (VH) 
and the villus/crypt (V/C) ratio, SOD and GSH-Px activities, and the expression 
of claudin-1, occludin and ZO-1, while increasing MDA level, the expression of 
TNF-α, IL-1β and IFN-γ in the jejunum of broilers. Additionally, MOL diet decreased 
the Firmicutes to Bacteroidetes (F/B) ratio and abundances of Lactobacillus (L.
gallinarum and L.crispatus), and B.vulgatus, while increasing Bacteroides (B.
fragilis and B.dore), Helicobacter (H.pullorum), and Escherichia (E.coli) in the 
ceca. In contrast, MGUE diet improved growth performance and returned it to a 
level comparable to that of the CON diet, increased VH and V/C ratio, SOD and 
GSH-Px activity, claudin-1, occludin and ZO-1 expression, while reducing MDA 
level, the expression of TNF-α, IL-1β and IFN-γ in the jejunum. Moreover, MGUE 
diet had a greater F/B ratio and abundance of Lactobacillus (L.gallinarum and 
L.crispatus) and B.vulgatus, while reducing Bacteroides (B.fragilis and B.dorei), 
Helicobacter (H.pullorum) and Escherichia (E.coli) in cecum. In conclusion, the 
long-term consumption of a low-dose DON-ZEN contaminated diet decreases 
growth performance and disrupts intestinal health and microbiota balance in 
broilers; however, dietary supplementation with GUE effectively mitigates the 
damage caused by DON-ZEN contamination.
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1 Introduction

Mycotoxins are prevalent in nature, and feed in various stages 
of production, including cultivation, transportation, processing 
and storage, can be contaminated by mycotoxins. Approximately 
25% of the world’s food crops are tainted with mycotoxins (1). The 
numerous types of low molecular weight mycotoxins, which are 
secondary metabolites produced by molds, are frequently present 
in feed ingredients, posing a threat to the health and production 
performance of farm animals (2), and the presence of mycotoxin 
residue in animal products was potentially hazardous to the health 
of humans (3). Mycotoxin contamination in poultry feed is a 
widespread issue. It is estimated that over 60% of feed ingredients 
worldwide contain detectable levels of mycotoxins, with 
Aflatoxins, Fumonisins, Deoxynivalenol (DON), and Zearalenone 
(ZEN) being the most common in maize-based poultry diets (4). 
A survey conducted in sub-Saharan Africa has identified multiple 
mycotoxin contaminations in poultry feeds, which have a 
detrimental impact on the health and productivity of the poultry 
industry, leading to significant economic losses (5). In developing 
countries, inadequate storage infrastructure and humid climates 
worsen mycotoxin contamination, resulting in annual economic 
losses of 1.5–3.0 billion US dollars in the poultry sector alone (6). 
DON and ZEN, the most common symbiotic mycotoxins (7), are 
recognized as the most widespread Fusarium contaminants in 
animal diets and feed ingredients (8). Both DON and ZEN can 
contaminate a majority of cereal crops during pre-harvest or post-
harvest conditions (3). Exposure to DON and ZEN resulted in 
liver dysfunction and hepatocyte apoptosis (9), stimulated the 
synthesis of pro-inflammatory cytokines, disrupted normal 
immune responses (10), and led to abnormal morphology along 
with decreased progesterone and estrogen levels in ovarian 
granulosa cells (11). The consumption of feed contaminated with 
DON caused cytotoxic effects on enterocytes, leading to injury of 
intestinal barrier function and an increase in the permeability of 
the intestinal wall in broiler chickens (12). The barrier dysfunction 
not only facilitated the translocation of systemic toxins but also 
triggered local and systemic inflammation in animals (13), 
exacerbating production losses (14). Exposure to ZEN affected the 
digestive system of animals, resulting in a disruption of epithelial 
cell integrity and function (15).

The methods for decontaminating mycotoxins in feed 
products are diverse, including a range of physical and chemical 
techniques, along with biodegradation and biosorption (16). 
Dietary supplementation of catalase alleviated DON-induced 
oxidative stress and intestinal damage in broilers (17). Silybum 
marianum seed, Thymus vulgaris, and Rosmarinus officinalis 
powder reduced the risks of aflatoxin B1 (AFB1) in young broiler 
chicks (18). Baicalin protected against ZEN-induced liver and 
kidney injury in chicks by reducing oxidative stress, and 
modulating the caspase signaling pathway (19). However, low 
doses of mycotoxins contamination are widespread. A survey 
report on mycotoxin contamination indicated that the detection 

rates of aflatoxin ZEN and DON exceeded 90% in compound feed 
and raw material samples from various provinces and regions of 
China during 2019 and 2020 (20). Furthermore, the duration of 
exposure to mycotoxins is an important variable that affects their 
toxic effects (21). The gut serves as the initial and most sensitive 
biological target during chronic low-dose exposure to DON and 
other type B Trichothecenes (22). Dysfunction of the intestinal 
barrier can challenge the immune system and disrupt the host-
microbial balance, initiating gastrointestinal and extra-intestinal 
disorders. Therefore, it is important to consider how to prevent 
potential harm to animal health, especially the intestinal barrier, 
from chronic exposure to low levels of mycotoxins.

Glycyrrhiza uralensis Fisch (licorice), a traditional medicinal and 
edible plant (23), has a long history of application in diets, beverages, 
and medicinal remedies (24). Glycyrrhiza uralensis extract (GUE) is 
derived from its dried stems and roots and contains a variety of 
bioactive compounds, including glycyrrhizin, glycyrrhizinic acid, 
glabridin, glabrene, and glabrol. Numerous studies have demonstrated 
that GUE possesses various pharmacological effects, such as antitumor 
(25), antibacterial (26), antioxidant (27) and immunomodulatory 
(25). Dietary supplementation of GUE upregulated the expression of 
tight junction protein occludin and Junctional Adhesion Molecule 2 
(JAM-2), positively affecting the maintenance of intestinal integrity in 
broilers (28) and pigs (29). GUE has potential beneficial effects on gut 
barrier function (30), and dietary supplementation with Glycyrrhiza 
uralensis polysaccharides increased the diversity and altered the 
composition of cecal microbiota in broilers (31). Our previous study 
also demonstrated that GUE had a significant positive effect on the 
growth performance and health of broilers (32). In the present study, 
we investigated the impact of a long-term diet incorporating naturally 
moldy corn with low doses of DON and ZEN on the growth 
performance and intestinal health of Liangfeng broilers (a medium-
growing broiler in China) and evaluated the potential protective effect 
of dietary supplementation with GUE against the damage caused by 
DON and ZEN. This study aims to provide a measure for preventing 
and mitigating the impact of dietary mycotoxin contamination on the 
growth and health of broiler chickens.

2 Materials and methods

The care and management of broilers and experimental 
procedures applied in this study were approved by the Institutional 
Animal Care and Use Committee of the Gansu Agricultural University 
(GsAu-Eth-AST-20210430).

GUE (purity>98%; glycyrrhizin≥10%; prepared from the root of 
Glycyrrhiza uralensis; Gansu YaLan Pharmaceutical Co., Ltd., China). 
The naturally moldy corn was supplied by farmers in Yuzhong County, 
Gansu, China. Before preparing the experimental diets, the mycotoxin 
content in the moldy corn was detected by Pony Testing International 
Group (Qingdao, China). The concentrations of DON, ZEN, and 
Fumonisin B (FB) were 25.70 ± 0.14, 25.50 ± 0.71, and 1.47 ± 0.01 mg/
kg, respectively.

https://doi.org/10.3389/fvets.2025.1570265
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Chen et al. 10.3389/fvets.2025.1570265

Frontiers in Veterinary Science 03 frontiersin.org

2.1 Experimental design and animal 
management

A total of 315 one-day-old healthy male Liangfeng broiler chickens 
(a medium-growing chicken) were randomly divided into three 
groups, with seven replicates per group and 15 broilers per replicate. 
The three dietary treatments were as follows: (1) basal diet (CON 
group), (2) the 5% corn in the basal diet was replaced by an equal 
amount of the moldy corn based on its DON and ZEN contents (33) 
(MOL group), (3) the MOL diet supplemented with 0.1% GUE (32, 
34) (MGUE group). The basal diet (Table 1) (32) was formulated 
according to “Feeding Standard of Chicken in China (NY/T 33-2004)” 
issued by the Ministry of Agricultural of People’s Republic of China. 
The contents of DON, ZEN, and FB in both the MOL and MGUE diet 
were 1.25, 1.29, and 0.07 mg/kg, respectively (maximum allowance in 
broiler diets is ≤3.0, 0.5, and 20 mg/kg, respectively; GB13078-
2017, China).

The experiment was performed in Gansu Agricultural 
Vocational Farm Co. in Gansu, China. The temperature regimen 
was 34°C from days 1 to 14 and then gradually decreased by 2°C 
weekly to a final temperature of 26°C. The humidity was kept 
between 40 and 60% throughout the entire experiment, and the 
lighting regime was 24 h for the first week, then reduced to 16 h 

until the end of the experiment. All broilers had ad libitum access 
to feed and water. The experiment lasted for 84 days. The broilers 
were vaccinated with Newcastle disease vaccine and the infectious 
bursal polyvalent vaccine on d 7 and 14 of the experiment, 
respectively.

2.2 Growth performance

The body weight (BW) of all broilers was measured after fasting 
for 12 h every 2 weeks, and the feed intake on a replicate basis was 
recorded daily. The BW gain (BWG), feed intake (FI) and feed 
conversion rate (FCR, feed/gain) were calculated. Mortality was 
recorded as it occurred.

2.3 Sample collection

On the last day of the starter stage (days 1 to 28), the grower stage 
(days 29 to 56), and the finisher stage (days 57 to 84), that was on day 
28, 56 and 84, two broilers were randomly selected from each replicate 
and were slaughtered by severing the jugular vein after a 12 h fasted 
feeding. The abdomen was disinfected with 75% ethanol, then 
immediately dissected. The entire intestine was carefully removed 
from the abdominal cavity, and the jejunum and cecum were separated 
with a sterile scalpel. Approximately 5 cm segments of jejunum from 
the posterior side of Meckel’s diverticulum were excised and divided 
into two parts after being rinsed with ice-cold phosphate-buffered 
saline (PBS; pH 7.4). One segment was immediately fixed in a 4% 
paraformaldehyde solution for paraffin sectioning, while the other was 
longitudinally cut, and the mucosa was gently scraped into an RNase-
free tube using a sterilized glass slide, then snap-frozen in liquid 
nitrogen and stored at −80°C for the determination of antioxidant 
indices and RNA extraction. The cecal contents were carefully 
collected, and immediately homogenized, transferred to cryogenic 
vials, snap-frozen in liquid nitrogen and stored at −80°C until they 
were processed for microbial DNA analysis.

2.4 Intestinal antioxidant analysis

The enzyme activities of superoxide dismutase (SOD; Detection 
limit = 0.5 U/g) and glutathione peroxidase (GSH-Px; Detection 
limit = 0.2 nmol/min/g), and the malondialdehyde (MDA; Detection 
limit = 0.1 nmol/g) content in the jejunum mucosa were measured by 
a colorimetric method using kits according to the manufacturer’s 
protocol (Cell Biolabs Inc., San Diego, CA, United States).

2.5 Histopathological analysis

Jejunum segments fixed in paraformaldehyde for 24 h were 
dehydrated in ethyl alcohol for 24 h, cleared with xylene, and 
embedded in paraffin. The paraffin blocks were sectioned into 5-μm-
thick tissue slices and stained with hematoxylin–eosin (H&E). The 
histological changes were examined using a light microscope (Leica, 
Germany), and ImageJ analysis software (National Institutes of Health, 
DC, United States) was employed to measure the villi height and crypt 

TABLE 1 Composition and nutrient levels of basal diets (air-dry basis).

Items Starter 1 to 
28 days of age

Grower-finisher 
29 to 84 days of 

age

Ingredient (%)

Corn 55.00 57.48

Soybean oil 2.90 4.20

Soybean meal 29.00 24.00

Cottonseed meal 1.50 1.70

Rapeseed meal 2.18 2.80

Corn gluten meal 6.90 6.60

CaHPO4 1.80 2.50

NaCl 0.30 0.30

L-Lys HCL 0.15 0.11

DL-Met 0.00 0.08

Cys 0.07 0.03

Premixa 0.20 0.20

Total 100.00 100.00

Nutrient levelsb

ME/(MJ/kg) 12.01 12.36

CP (%) 21.15 19.31

Ca (%) 0.85 0.91

TP (%) 0.60 0.62

Lys (%) 1.15 1.00

Met (%) 0.70 0.40

aProvides per kg of diet: Fe 80 mg; Cu 8 mg; Mn 80 mg; Zn 60 mg; I 0.35 mg; Se 0.15 mg; VA 
8000 IU; VD3 1,000 IU; VE 20 IU; VK3 0.5 mg; VB1 2.0 mg; VB2 8.00 mg; VB6 3.50 mg; VB12 
0.01 mg; Niacin 35.00 mg, D-pantothenate 10.00 mg; Folic acid 0.55 mg; Biotin 0.18 mg.
bNutrient levels were all measured values.
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depth. Subsequently, the ratio of villus height to crypt depth (VH/CD) 
was calculated.

2.6 Real-time PCR analysis

Total RNA was extracted using RNAiso Plus (TaKaRa CAS. No. 
9190). RNA integrity and purity were assessed using a NanoDrop One 
spectrophotometer. cDNA was synthesized with a PrimeScript TMRT 
Master Mix (TaKaRa Biotechnology, Dalian, China). Amplification 
was carried out in a total volume of 10 μL containing 5 μL of SYBR 
Green PCR Master Mix (SparkJade, Shandong, China), 1 μL of cDNA, 
0.4 μL of each forward and reverse primer, and 3.2 μL RNase Free 
ddH2O. qRT-PCR was performed on a LineGene9660 real-time PCR 
system (BIOER, Hangzhou, China) with the following reaction 
condition: 95°C for 30 s, followed by 40 cycles of 95°C for 5 s, 60°C 
for 30 s, and 72°C for 30 s. The elative mRNA expression of target 
genes was calculated using 2−ΔΔCt method and β-actin as an internal 
control. The information of primers used in this study was listed in 
Table 2.

2.7 16S rDNA sequencing of cecal 
microbiota

The total microbial DNA of cecal content samples were 
extracted with the TGuide S96 kit (DP812; TIANGEN BIOTECH 
CO., LTD.) according to manufacturer’s instructions. The purity 
and quality of DNA were evaluated by the agarose gel 
electrophoresis. The V1–V9 region of the bacterial 16S rRNA 
gene  was amplified using the forward primer 27 F 
(5’-AGRGTTTGATYNTGGCTCAG-3′) and the reverse primer 
1,492 R (5’-TASGGHTACCTTGTTASGACTT-3′). Subsequently, 
the SMRTbell libraries were constructed by SMRTbell Express 
Template Prep Kit 2.0 (Pacific Biosciences, CA, United States), and 
sequenced on the PacBio Sequel II platform (Beijing Biomarker 
Technologies Co., Ltd., Beijing, China). The raw sequencing reads 
were processed to obtain Circular Consensus Sequencing (CCS) 
sequence using the SMRT Link software v8.0. The CCS sequence 
was divided into each sample according to sample barcodes, and 
chimera sequences were removed to obtain the clean reads using 
the UCHIME algorithm v8.1. Operational taxonomic units (OTUs) 
were clustered at a 97% similarity threshold using USEARCH 
v10.0. The SILVA database was used to taxonomically annotate 
OTUs with a confidence threshold of 70%.

The alpha diversity indices, Shannon and ACE, were calculated 
and presented for each treatment to illustrate the richness and 
uniformity of microbial communities using QIIME2 software. Beta 
diversity was assessed using Partial Least Squares Discriminant 
Analysis (PLS-DA) and Principal Coordinate Analysis (PCoA) 
based on the weighted-Unifrac distance matrix with QIIME 
software, which was employed to demonstrate the degree of 
similarity of microbial communities among groups. Analysis of 
Variance was used to examine differences in the relative abundance 
of microbial communities at different taxonomic levels (phylum, 
genus and species). Furthermore, Linear Discriminant Analysis 
(LDA) combined with effect size measurements (LEfSe) was 
performed to identify statistically significant biomarkers among 
groups with a score greater than 4. All analyses were performed 
using BMKCloud1.

2.8 Statistical analysis

All analyses were performed using SPSS statistical software 26.0 
(IBM Corp., Armonk, NY, United States). A one-way ANOVA test was 
used for multiple comparisons, followed by Dunnett’s post-hoc test to 
assess statistical significance between groups. The results were 
represented by mean ± Standard Error of Means (SEM). Differences 
were considered statistically significant at p < 0.05. Histograms were 
plotted using GraphPad Prism 8.0 software (GraphPad Inc., San 
Diego, CA, United States).

3 Results

3.1 Growth performance

There was no significant difference (p < 0.05) in the mortality of 
broilers in any phase among groups (data not shown). Initial body 
weight (BW) of broilers among the groups exhibited no significant 
difference (p > 0.05, Table 3). However, the BW of broilers at 28 days 
of age and BWG aged 1–28 days significantly increased (p < 0.05) in 
MGUE group compared to the CON group and MOL group, while 
having no significant difference (p > 0.05) in the FI and F/G among 
groups. Compared to the CON group and MGUE group, the MOL 

1 www.biocloud.net

TABLE 2 Primers for RT-qPCR analysis.

Gene Accession number Forward primers (5′-3′) Reverse primers (5′-3′)

Occludin XM_025144247.2 ACGGCAGCACCTACCTCAA GGGCGAAGAAGCAGATGAG

ZO-1 XM_040706827.2 CTTCAGGTGTTTCTCTTCCTCCTC CTGTGGTTTCATGGCTGGATC

Claudin-1 NM_001013611.2 CATACTCCTGGGTCTGGTTGGT GACAGCCATCCGCATCTTCT

TNF-α NM_204267.2 GAGCGTTGACTTGGCTGTC AAGCAACAACCAGCTATGCAC

IL-1β NM_204524.2 ACTGGGCATCAAGGGCTA GGTAGAAGATGAAGCGGGTC

INF-γ NM_205149.2 AGCTGACGGTGGACCTATTATT GGCTTTGCGCTGGATTC

Actin NM_205518.2 TCCACCGCAAATGCTTCTAA TCCACCGCAAATGCTTCTAA
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group exhibited a significant decrease in BW of broilers at 56 and 
86 days of age, as well as in BWG and FI aged 1–56 and 1–84 days, 
along with a significant increase in FCR (F/G) aged 1–84 days. 
Additionally, there was no difference in these parameters between the 
CON group and MGUE group.

3.2 Intestinal morphology

As illustrated in Figure  1, the jejunum was well-formed, 
displaying a clear arrangement of villi and regular crypts in broilers 
from the CON group. In contrast, broken villi, swollen tips, and 
shed epithelial cells were noted in the jejunum of broilers at 28, 56, 
and 84 days of age in the MOL group. When fed a diet supplemented 
with GUE, the jejunum of broilers at 28 days of age showed reduced 
detachment of the epithelial cells, along with normal villi and 
abundant lymphocytes in the lamina propria at 56 and 
84 days of age.

The morphology in the jejunum of broiler chickens was shown 
in Table 4. In comparison to the CON group, both the villus height 
and the ratio of villus height to crypt depth (V/C) significantly 
decreased (p < 0.05) in the MOL group. Compared to the MOL 
group, the MGUE group exhibited an increased villus height and V/C 
ratio at all ages (p < 0.05). Additionally, the villus height at 56 and 
84 days of age, as well as V/C ratio at 84 days of age, significantly 
increased (p < 0.05) in the MGUE group compared to the 
CON group.

3.3 Intestinal antioxidant parameters

The antioxidant indices in jejunum mucosa of broiler chickens 
were presented in Table 5. Compared to the CON group, the MOL 

group exhibited significantly decreased activities of SOD and GSH-Px 
and a significantly increased content of MDA (p < 0.05) in the jejunal 
mucosa of broilers at 28, 56 and 84 days of age. In the MGUE group, 
compared to the MOL group, SOD activity significantly increased 
(p < 0.05) at 28 and 56 days of age, and GSH-Px activity significantly 
increased (p < 0.05) at 56 and 84 days of age, while MDA content 
decreased (p < 0.05) at 28, 56, and 84 days of age. However, the MGUE 
group showed significantly lower GSH-Px activity at 28 days of age 
and SOD activity at 84 days of age, along with a higher MDA content 
at 56 and 84 days of age compared to the CON group (p < 0.05). These 
results indicated that the MOL diet impaired the antioxidant function 
in the jejunal mucosa of broilers, and the addition of GUE could 
mitigate this negative impact.

3.4 Gut barrier-related genes and 
pro-inflammatory gene expression

The mRNA expression of the gut barrier-related genes and 
pro-inflammatory genes in the jejunal mucosa of broilers were shown 
in Figure 2. Compared to the CON group, the MOL group exhibited 
a significantly reduced expression of Occludin and Claudin-1 in the 
jejunal mucosa of broiler at 28 days of age, as well as a decreased 
(p < 0.05) expression of Claudin-1 and ZO-1 in broiler at 56 days of 
age, while there was no difference (p > 0.05) in the expression of these 
genes in broilers at 84 days of age. The expression levels of Occludin, 
ZO-1, and Claudin-1 in broilers at 28 and 84 days of age, as well as 
ZO-1 and Claudin-1 in broilers at 56 days of age, were significantly 
elevated (p < 0.05) in the MGUE group compared to the MOL group. 
Additionally, broilers in the MGUE group exhibited increased 
(p < 0.05) expression levels of Occludin, ZO-1, and Claudin-1 at 
84 days of age, as well as ZO-1 at 28 days and Claudin-1 at 56 days 
compared to the CON group.

TABLE 3 Effect of DON and ZEN contamination and GUE on the growth performance of broilers.

Items CON MOL MGUE SEM p-value

Initial BW, kg 0.040 0.041 0.040 0.001 0.858

d 1–28

BW (28 d), kg 0.547b 0.540b 0.564a 0.011 0.047

BWG, kg 0.503b 0.501b 0.521a 0.009 0.048

FI, kg 1.342 1.282 1.344 0.053 0.056

F/G 2.647 2.555 2.565 0.118 0.962

d 1–56

BW (56 d), kg 1.678a 1.515b 1.703a 0.025 0.001

BWG, kg 1.637a 1.474b 1.663a 0.025 0.001

FI, kg 5.085a 4.875b 5.157a 0.076 0.044

F/G 3.104 3.317 3.105 0.074 0.095

d 1–84

BW (84 d), kg 3.442a 3.046b 3.500a 0.041 0.001

BWG, kg 3.402a 3.006b 3.460a 0.039 0.001

FI, kg 10.970b 10.615b 11.040a 0.184 0.034

F/G 3.225b 3.531a 3.192b 0.050 0.001

BW, body weight; BWG, BW gain; FI, feed intake; FCR (F/G), feed/gain; SEM, standard error of means. Values with the same or no letter superscripts in the same row mean no significant 
difference (p > 0.05), while with different letter superscripts mean significant difference (p < 0.05).
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Compared to the CON group, the expression of IL-1β, TNF-α, and 
INF-γ significantly increased (p < 0.05) in the jejunal mucosa of 
broilers in the MOL group at 28, 56, and 84 days of age. The expression 
of TNF-α and IL-1β in broilers at 56 days of age, and IL-1β, TNF-α, 
and INF-γ in broilers at 84 days, were significantly lower (p < 0.05) in 
the MGUE group compared to the MOL group. Additionally, the 
expression of IL-1β, TNF-α, and INF-γ in broilers at 28 and 56 days of 
age was significantly higher (p < 0.05), while no significant differences 
(p > 0.05) were observed in broilers at 84 days of age in the MGUE 
group compared to the CON group.

3.5 Cecal microbiota

The Alpha diversity of the cecal microbiota was assessed using the 
ACE and Shannon indices. Results indicated that there were no 
significant differences (p > 0.05) in the ACE and Shannon indices in 
broilers at 28 and 84 days of age among the groups (Figure 3).

Beta diversity was visually analyzed by plotting the distances 
between samples using Partial Least Squares Discriminant Analysis 
(PLS-DA) and Principal Coordinates Analysis (PCoA). The PLS-DA 
and PCoA analyses demonstrated that at 28 days of age, there was a 

significant separation in the cecal microbial community between the 
MOL and CON groups; however, no complete separation was noted 
between the MOL and MGUE groups (Figures 4A,C). At 84 days of 
age, a distinct separation among the three groups was observed, with 
samples clustering within each group (Figures 4B,D).

Ten bacterial phyla were identified in cecum microbiota of broiler 
chickens from three groups (Figure 5). At 28 days of age, the most 
predominant bacterial phyla included Firmicutes, Bacteroidetes, 
Epsilonbacteraeota and Tenericutes across all three groups (Figure 5A). 
Compared to the CON group, the relative abundance of 
Epsilonbacteraeota and Tenericutes significantly increased, while that 
of Firmicutes decreased in the MOL group, resulting in a decreased 
Firmicutes / Bacteroidetes (F/B) ratio (p < 0.05); the relative abundance 
of Bacteroidetes decreased (p < 0.05), with no significant difference in 
Firmicutes and Epsilonbacteraeota (p > 0.05) in the MGUE group. 
Additionally, the relative abundance of Firmicutes was significantly 
higher, whereas that of Bacteroidetes and Tenericutes was significantly 
lower (p < 0.05), resulting in an increased F/B ratio in the MGUE 
group compared to the MOL group (Figures 5C,E).

At 84 days of age, Bacteroidetes was the most predominant 
phylum, followed by Firmicutes, Proteobacteria, and Tenericutes 
(Figure 5B). Compared to the CON group, the relative abundance of 

FIGURE 1

The histomorphology of the H&E stained jejunum in broilers. (A–C) CON group; (D–F) MOL group; (H–J) MGUE group. Black arrow: the shed 
epithelial cells of villi. Blue arrow: the Lamina propria edema of villi. Scale bar represents 200 μm.
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Tenericutes significantly increased, and that of Firmicutes and the F/B 
ratio significantly decreased (p < 0.05) in the MOL group; the relative 
abundance of Proteobacteria significantly decreased (p < 0.05), while 
no significant difference (p > 0.05) was observed in the abundance of 
Firmicutes, Bacteroidetes and Tenericutes in the MGUE group. 
However, the relative abundance of Proteobacteria and Tenericutes 
significantly decreased, while that of Firmicutes and the F/B ratio 
significantly increased (p < 0.05) in the MGUE group compared to the 
MOL group (Figures 5D,E).

The top ten genera by relative abundance in the cecal microbiota 
were presented in Figure  6. At 28 days of age, Lactobacillus, 
Bacteroides, Helicobacter, Alistipes, and Barnesiella were the 
predominant genera in the cecal microbiota of chickens (Figure 6A). 
The relative abundance of Lactobacillus and Barnesiella significantly 
decreased, while that of Bacteroides and Helicobacter significantly 
increased (p  < 0.05) in the cecal microbiota in the MOL group 

compared to the CON group. The relative abundance of Alistipes, 
Bacteroides and Helicobacter significantly decreased (p < 0.05), while 
that of Lactobacillus significantly increased (p < 0.05) in the MGUE 
group compared to the MOL group. Additionally, the relative 
abundance of Lactobacillus significantly increased, while that of 
Alistipes and Barnesiella significantly decreased (p  < 0.05) in the 
MGUE group compared to the CON group (Figure 6C).

At 84 days of age, Bacteroides, Barnesiella, Escherichia, Alitipes, 
and Ruminococcaceae_torques_group were the predominate genera 
(Figure 6B). The relative abundance of Barnesiella, Bacteroides and 
Escherichia significantly increased (p < 0.05), while that of 
Ruminococcaceae_torques_group significantly decreased (p < 0.05) in 
the MOL group. The relative abundance of Escherichia and Bacteroides 
significantly decreased (p < 0.05), and that of Alistipes significantly 
increased (p < 0.05) in the MGUE group compared to the MOL group. 
Additionally, the relative abundance of Barnesiella and Alitipes was 

TABLE 4 Effect of DON and ZEN contamination and GUE on jejunum morphology in broilers.

Items CON MOL MGUE SEM p-value

28d

Villus height/μm 794.54a 753.14b 786.52a 23.17 0.039

Crypt depth/μm 165.66 171.93 159.53 11.26 0.092

Villus height /crypt depth 4.80a 4.38b 4.93a 0.27 0.025

56d

Villus height/μm 925.20b 895.50c 958.41a 7.33 0.027

Crypt depth/μm 188.37 193.4 189.50 1.94 0.453

Villus height /crypt depth 4.91a 4.63b 5.05a 0.48 0.029

84d

Villus height/μm 1109.75b 1059.23c 1253.28a 28.75 0.019

Crypt depth/μm 208.57 209.46 213.52 10.67 0.069

Villus height /crypt depth 5.32b 5.06c 5.87a 0.51 0.023

SEM, standard error of means; Values with the same or no letter superscripts in the same row mean no significant difference (p > 0.05), while with different letter superscripts mean significant 
difference (p < 0.05).

TABLE 5 Effect of DON and ZEN contamination and GUE on antioxidant indices in broilers.

Items CON MOL MGUE SEM p-value

28d

MDA, nmol/g 13.13b 15.12a 12.15b 1.50 0.029

GSH-Px, nmol/min/g 157.19a 130.02b 137.94b 11.80 0.035

SOD, U/g 147.61a 120.29b 150.32a 10.26 0.031

56d

MDA, nmol/g 14.40c 16.93a 15.18b 1.06 0.025

GSH-Px, nmol/min/g 298.59a 245.97b 292.91a 15.91 0.013

SOD, U/g 231.50b 226.82c 245.51a 10.48 0.045

84d

MDA, nmol/g 15.74c 20.27a 17.82b 0.84 0.032

GSH-Px, nmol/min/g 334.04a 292.50b 342.00a 12.52 0.014

SOD, U/g 237.62a 206.41b 208.39b 12.88 0.001

SOD, superoxide dismutase; GSH-Px, glutathione peroxidase enzyme; MDA, malondialdehyde; SEM, standard error of means. Values with the same or no letter superscripts in the same row 
mean no significant difference (p > 0.05), while with different letter superscripts mean significant difference (p < 0.05).
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significantly higher, while that of Bacteroides, Escherichia and 
Ruminococcaceae_torques_group was lower (p < 0.05) in the MGUE 
group compared to the CON group (Figure 6D).

The top ten species by relative abundance in the cecal 
microbiota were presented in Figure 7. At 28 days of age, the most 
abundant taxa in three groups were Alistipes_sp., Bacteroides_
fragilis, Helicobacter_pullorum, Lactobacillus_crispatus and 
Lactobacillus_gallinarum (Figure  7A). Compared to the CON 
group, the relative abundance of Helicobacter_pullorum and 
Bacteroides_fragilis significantly increased (p < 0.05), while that of 
Lactobacillus_gallinarum and Lactobacillus_crispatus significantly 
decreased in the MOL group. Additionally, the MGUE group 
showed a significant decrease (p < 0.05) in the relative abundance 
of Alistipes_sp., Helicobacter_pullorum and Bacteroides_fragilis, 
and an increase in Lactobacillus_gallinarum and Lactobacillus_
crispatus compared to the MOL group (Figure 7C). Compared to 
the CON group, the relative abundance of Alistipes_sp significantly 
decreased, and that of Lactobacillus_gallinarum increased 

(p < 0.05), while there was no significant difference (p > 0.05) in 
that of the other three species in the MGUE group.

At 84 days of age, Bacteroides_vulgatus, Bacteroides_dorei, 
Escherichia_coli, uncultured_bacterium_g_Barnesiella, and 
uncultured_bacterium_g_[Ruminococcus]_torques_group were the 
dominant species in all groups (Figure 7B). The relative abundance of 
Bacteroides_dorei and Escherichia_coli significantly increased 
(p  < 0.05), while that of Bacteroides_vulgatus and uncultured_
bacterium_g_[Ruminococcus]_torques_group significantly decreased 
(p < 0.05) in the MOL group compared to the CON group (p < 0.05). 
In the MGUE group, the relative abundance of Bacteroides_dorei and 
Escherichia_coli significantly decreased compared to both the CON 
and MOL groups, while that of Bacteroides_vulgatus and uncultured_
bacterium_g_Barnesiella significantly increased (p < 0.05) compared 
to both the MOL group. Additionally, the abundance of uncultured_
bacterium_g_[Ruminococcus]_torques_group and Bacteroides_vulgatus 
was significantly lower (p < 0.05) in the MGUE group compared to 
the CON group (Figure 7D).

FIGURE 2

The expression of the gut barrier-related genes and pro-inflammatory genes in the jejunal mucosa of broilers. Values with the same or no letter 
superscripts mean no significant difference (p > 0.05), while with different letter superscripts mean significant difference (p < 0.05).
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The Linear Discriminant Analysis (LDA) combined with LDA 
Effect Size (LEfSe) analysis was employed to further examine the 
changes in the cecum microbiota at both the genus and species levels 
in broilers (LDA scores >4). At 28 days of age, f_Barnesiellaceae, g_
Barnesiella, s_Barnesiella_visceriricola and s_Barnesiella_
intestinihominis were significantly enriched in the CON group 
(Figures 8A,B); however, no biomarkers were significantly enriched in 
the MOL and MGUE groups. At 84 days of age, s_Bacteroides_dorei 
and s_Bacteroides_fragilis were more abundant in the MOL group, 
whereas the s_Bacteroides_coprophilus, g_uncultured_bacterium_f_
Barnesiellaceae and s_uncultured_bacterium_f_Barnesiellaceae was 
overrepresented in the MGUE group (Figures 8C,D).

4 Discussion

4.1 Growth performance

Many studies have demonstrated that mycotoxin contamination 
reduced the nutritional value of feedstuff and the growth performance 
of animals, and caused health problems such as inflammation and 
reduced antioxidant capacity (35). A low-level exposure to mycotoxins 

resulted in various metabolic disturbances, leading to decreased 
productivity in animals (36). Poultry exhibited a comparatively higher 
tolerance to ZEN, and a diet containing 2.0 mg ZEN/kg had no impact 
on broilers aged 1 to 21 days, but reduced weight gain and feed 
conversion efficiency in broilers throughout the entire experimental 
period aged 1 to 42 days (37). Diet contaminated with 1 or 5 mg 
DON/kg feed did not affect performance or the absolute and relative 
organ weights, but significantly altered the intestinal morphology with 
a shorter villi and a reduced villus surface area in broilers (38). 
Exposure to 20, 5, and 0.5 mg/kg of FB, DON, and ZEN, respectively, 
did not impact the performance, biochemistry, or histopathology in 
ducks, but ducks exposed to the combination of these mycotoxins 
exhibited reduced body weight gain and feed conversion ratio, as well 
as an increased liver sphingosine to sphingosine-1-phosphate ratio, 
during a 12-day study (39). The research by Tardieu et  al. (40) 
indicated that although previous studies found no toxicity of ZEN and 
FB1 in the livers of turkeys and chickens, exposure to 7.5 and 0.6 mg/
kg of FB and ZEN led to α-zearalanol and β-zearalenol persisting in 
the livers of turkeys at low concentrations for a long time, but not in 
chickens. GUE, which contains a variety of bioactive components, 
enhanced the development performance by promoting antioxidant 
and anti-inflammatory responses, and improving intestinal health in 

FIGURE 3

Diversity indices of the cecal microbiota of broilers. (A) ACE index of cecum of 28-day-old broilers. (B) ACE index of the cecum of 84-day-old broilers. 
(C) Shannon index of the cecum of 28-day-old broilers. (D) Shannon index of cecum of 84-day-old broilers.
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poultry when utilized as feed additives (32, 41). Numerous researchers 
have concluded that licorice powder or GUE supplementation 
significantly improved FCR, BW and cumulative BWG in broilers (42, 
43). In this study, the diet containing a low dose of DON and ZEN 
reduced BW of broilers at 56 and 84 days of age, BWG and FI aged 
1–56 and 1–84 days, and increased F/G aged 1–84 days, while there 
was no impact on broilers aged 1 to 28 days. Additionally, the 
supplementary GUE in the MOL diet significantly improved these 
decreased parameters caused by DON and ZEN contamination, and 
returned to a normal level as same as the CON group. This finding 
indicated that long-term intake of low-dose DON and ZEN reduced 
the growth performance and feed conversion rate in broilers, with this 
adverse effect being cumulative. However, GUE as feed additives could 
effectively mitigate the damage to the growth performance of broilers 
caused by low-dose DON and ZEN contamination.

It should be noted that after chronic feeding broilers with low-dose 
DON and ZEN for 84 days, we did not detect the presence of DON 
and ZEN in the liver and breast muscle, which aligns with previous 
studies on DON (38). Riahi et al. (44) analyzed the concentrations of 
DON in broilers fed DON at 5 or 15 mg/kg for 42 days and found that 
DON was below the limit of quantification (5 ng/mL) in plasma and 
liver but was detected in excreta. This result was controlled by gut and 
liver enzymes, which facilitate the oxidation, reduction, hydrolysis, 
and/or conjugation of toxins (45). The detection of DON in excreta 
may be attributed to the rapid clearance of this toxin into excreta (44).

4.2 Intestinal morphology and antioxidant

The duodenum and proximal jejunum were primarily sites for 
nutrient digestion and absorption in poultry (46). The intestinal 
morphology is closely associated with the absorption of nutrients and 
growth performance in animals. The VH, CD, and V/C ratio 
profoundly affect nutrient absorption, and are frequently used as 
indicators for assessing the physiological function and injury degree 
of intestinal tissue (47, 48). The height of villus indicated absorption 
surface, whereas the V/C ratio reflected intestinal functions (49). 
Longer villi and elevated V/C ratios provide a greater surface area for 
nutrient absorption, promoting a healthy intestinal tract (50). Wageha 
et  al. (38) found that both 1 and 5 mg/kg of DON in the diet 
significantly altered small intestinal morphology, with the VH being 
notably shorter in the jejunum of broiler chickens. The intestinal villi 
were swollen, ulcerated, and fractured when broilers were fed 
DON-contaminated feed (51). Similarly, we  observed a marked 
decrease in VH and V/C ratio, with visible villi that were broken, 
swollen tips, and shed epithelial cells in the jejunum of broilers fed a 
diet contaminated with DON and ZEN. However, after the MOL diet 
was supplemented with GUE, the VH and V/C ratio significantly 
increased and returned to normal levels in the jejunum of broilers, 
along with a normal morphology of the jejunum. The effect of GUE 
and its bioactive components on intestinal morphology has been 
validated by several studies (52, 53). Dietary GUE increased intestinal 

FIGURE 4

The Beta diversity of the cecal microbiota of broilers. (A) PLS-DA of the cecum of 28-day-old broilers. (B) PLS-DA of the cecum of 84-day-old broilers. 
(C) PCoA of the cecum of 28-day-old broilers. (D) PCoA of the cecum of 84-day-old broilers.
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villus length and V/C ratio of broilers (41). These results indicated that 
the low-dose ZEN and DON impaired intestinal health and nutrient 
absorption; however, GUE could protect against the damage caused 
by DON and ZEN.

Antioxidant system plays an important role in the health and 
growth of animals. The SOD and GSH-Px are vital components of 
the antioxidant enzyme system, effectively scavenging free radicals 
and preserving the intracellular redox balance. MDA, the end 
product of lipid peroxidation, indicates the degree of oxidative 
damage within the body. Several studies have shown that broilers 
exposed to DON exhibited a decrease in jejunal CAT and GSH-Px 
activities, resulting in oxidative stress and an imbalance of redox 
status (17). ZEN reduced SOD and GSH-Px activities while 
increasing MDA content, leading to oxidative stress in broilers (54). 
In this study, the diet contaminated with DON and ZEN significantly 
decreased the activities of SOD and GSH-Px in the jejunum mucosa 
of broilers, while increasing the content of MDA. This demonstrated 
that prolonged intake of low doses of DON and ZEN impaired the 
antioxidant function of broilers. Moreover, the additional GUE in 
the MOL diet significantly increased the activities of SOD and 
GSH-Px while reducing MDA content in the jejunum mucosa of 
broilers. However, the GSH-Px activity at 28 days of age and the 
SOD activity at 84 days of age were significantly lower, while the 
MDA level was higher at 56 and 84 days of age compared to the 
normal levels observed in the control broilers. Dietary 
supplementation with GUE has been shown to eliminate reactive 

oxygen species (ROS) and improve overall and intestinal health in 
animals (55, 56). The supplementary GUE increased the activity of 
SOD and GSH-Px, and reduced MDA content in the jejunum 
mucosa of broilers (32). These results suggested that GUE could 
mitigate the damage caused by the long-term intake of low-dose 
DON and ZEN on the antioxidant function of the gut in broilers.

4.3 Intestinal barrier and inflammation

The integrity of the intestinal epithelium acts as a physical barrier 
against enteric pathogen invasion and ensures optimal nutrient 
absorption (57). Epithelial cells are connected by tight junction (TJ) 
complexes consisting of TJ proteins to maintain the integrity of the 
intestinal epithelial barrier (58). Tight junctions are crucial structures 
in epithelial and endothelial cells that help regulate the permeability 
of the paracellular pathway (the space between adjacent cells) and 
maintain cell polarity. The claudins, occludin and zonula occludens 
(ZO) are the main TJ proteins, with Claudins serving as crucial 
determinants of the permeability of the space between two adjacent 
cells (59). Claudin-1, a key constituent of the TJ complex, maintains 
the integrity of the paracellular barrier and regulates water 
homeostasis. The presence of ZO-1 and occludin alone in the tight 
junctions was not sufficient to achieve a paracellular seal in intestinal 
epithelial cells when claudin was specifically removed from 
intercellular junctional complexes (60). The intestinal epithelium was 

FIGURE 5

Relative abundance of cecal microbiota in broiler chickens at the phylum level. (A,B) Relative abundance taxa at 28 and 84 d of age. (C,D) Relative 
abundance difference analysis of cecal bacterial species at the phylum level at 28 and 84 d of age, respectively. (E) Firmicutes/Bacteroidetes (F/B) ratio 
at 28 and 84 d of age. Values with the same letter superscripts mean no significant difference (p > 0.05), while with different letter superscripts mean 
significant difference (p < 0.05).
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also the first barrier against food contaminants and was highly 
sensitive to Fusarium toxins, including DON and ZEN (15). AFB1-
contaminated diet significantly decreased the expression of claudin-1 
and occludin in jejunum of broiler chickens (61). Mycotoxins could 
specifically target claudin and directly increased intestinal barrier 
permeability, resulting in increased bacterial translocation (62).

Inflammatory cytokines are signaling molecules released by various 
cells, playing key roles in the regulation of immune responses and 
inflammation. Tumor necrosis factor-α (TNF-α) is known to induce 
apoptosis and inflammatory responses in intestinal epithelial cells (63). 
Cytokine INF-γ promoted the maturation of cytotoxic T lymphocytes, B 
cell proliferation, and antibody production (64), and induced endocytosis 
of tight junction proteins (65). IL-1β promoted inflammation by 
stimulating the production of other cytokines, recruiting additional 
immune cells, and enhancing the expression of adhesion molecules on 
endothelial cells (66). Feeding a diet containing 1007.5 μg/kg DON and 
265.4 μg/kg ZEN for 3 weeks led to a significant increase in the 
expression of TNF-α, IL-1β, IFN-γ, and IL-6 in the jejunum of piglets 
(67). The addition of 5 mg/kg DON (44) or both 1.5 mg DON/kg and 

20 mg FB/kg (68) to the diet increased the expression of proinflammatory 
cytokines in in the jejunum of broilers, such as IL-6, IFN-γ, and IL-1β, 
suggesting that DON at these levels was immunostimulatory and 
proinflammatory. In this study, we observed that the inclusion of DON 
and ZEN in the diet decreased the expression of claudin-1, occludin and 
ZO-1, while increasing the expression levels of pro-inflammatory 
cytokines TNF-α, IL-1β and IFN-γ in the jejunum of broilers. These 
results suggested that long-term intake of low dose DON and ZEN could 
impair intestinal barrier function and stimulate inflammatory responses, 
leading to damage in the intestinal health of broilers.

Previous studies have shown that GUE preserves intestinal integrity 
and mitigates the damage caused by challenges with Campylobacter 
jejuni by upregulating the expression of occludin and JAM, while 
downregulating inflammatory markers IL-1β and Toll-like receptors 
(TLR-4) in the jejunum of broilers (28). It has been well reviewed that 
GUE inhibits oxidative stress, enhances anti-inflammatory and 
antioxidant responses, and aids in the elimination of mycotoxins from 
the body (69). Murugan et al. (70) found that adding a flavonoid-rich 
extract of Glycyrrhiza glabra into the diet increased the expression of 

FIGURE 6

Relative abundance of cecal microbiota in broiler chickens at the genus level. (A,B) Relative abundance taxa at 28 and 84 d of age. (C,D) Relative 
abundance difference analysis of cecal bacterial species at the genus level at 28 and 84 d of age, respectively. Values with the same letter superscripts 
mean no significant difference (p > 0.05), while with different letter superscripts mean significant difference (p < 0.05).
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occludin and ZO-1 proteins in the colon of rats. Dietary supplementation 
of GUE improved growth performance and preserved intestinal integrity 
by upregulating the expression of occludin and JAM, while 
downregulating inflammatory markers IL-1β and Toll-like receptors 
(TLR-4) in the jejunum of broilers challenged with C. jejuni. In this study, 
the supplementary GUE in the contaminated diet increased the 
expression of claudin-1, occludin, and ZO-1, while decreasing the 
expression of TNF-α, IFN-γ, and IL-1β in the jejunum, although the 
expression of IL-1β did not return to a level comparable to that of the 
control group. These results suggested that GUE could mitigate the 
intestinal barrier dysfunction and inflammatory response induced by 
DON and ZEN contamination.

4.4 Variation in cecal microbiota diversity

Accumulating evidence demonstrates that the intestinal 
microbiota plays a key role in maintaining intestinal barrier integrity, 

energy metabolism, and immunity (71–73). There is a close interaction 
between gut microbiota and the mycotoxins ingested by animals. 
Although previous studies showed that DON intake decreased the 
richness and evenness of cecal microbiota (74), our study found that 
dietary contamination with a low dose of DON and ZEN had no 
significant effect on Alpha diversity of cecal microbiota based on the 
OTU level in 28- and 84-day-old broilers.

Beta diversity analysis primarily describes variations in 
composition among microbiota. In this study, both PLS-DA and 
PCoA analysis were employed to elucidate the discrepancy in cecal 
microbiota diversity. We  observed that dietary DON and ZEN 
contamination significantly affected the structure of the cecal 
microbiota in broilers at 28 and 84 d of age. However, there was a 
distinct separation only in broilers at 84 d of age between the MOL 
and MGUE groups. Wu et  al. (75) found that incorporating 
compound Glycyrrhiza polysaccharide into the diet influenced the 
structure of the cecal microbiota in broilers at 15 days of age. These 
results indicated that dietary DON and ZEN contamination 

FIGURE 7

Relative abundance of gut bacterial composition at the species level. (A,B) Relative abundance taxa at 28 and 84 d of age. (C,D) Relative abundance 
difference analysis of cecal microbiota at the species level at 28 and 84 d of age, respectively.
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significantly affected the composition of cecal microbiota in 
broilers, and it might take longer for GUE to restore the effect 
caused by the mycotoxins.

4.5 Variation in cecal microbiota 
composition

The species annotation results were analyzed to comprehend 
the mechanisms by which dietary DON and ZEN contamination 
and GUE supplementation, influenced growth and intestinal health 
through intestinal microbiota. In this study, Firmicutes and 
Bacteroidetes were the most predominant phyla, followed by 
Tenericutes, Epslionbacteraeota, or Proteobacteria in the cecum of 
broilers. Firmicutes and Bacteroidetes collectively influenced the 
host’s energy absorption and maintained intestinal health (76), and 
the Firmicutes to Bacteroidetes (F/B) ratio in the intestine influenced 
the host’s capacity to obtain energy from feed (77). A higher F/B 
ratio was frequently associated with improved growth performance 
(78). Our study found that the contamination of DON and ZEN led 
to a reduction in the relative abundance of Firmicutes and an 
increase in that of Bacteroidetes, resulting in a decreased F/B ratio 
in the cecum of broilers at 28 and 84 days of age. Consistent with 
this, Chang et al. (79) reported that ZEN contamination reduced 
weight gain by decreasing the intestinal F/B ratio in broilers. 
Additionally, the contamination of DON and ZEN increased the 

relative abundance of Epsilonbacteraeota. Research on 
Epsilonbacteraeota primarily focuses on its pathogenic members, 
which affect digestive health and various metabolic processes. 
Notable genera within this phylum included Campylobacter and 
Helicobacter, both of which were linked to gastrointestinal disease 
in humans and animals (75). These results indicated that the diet 
contaminated with a low-dose DON and ZEN could reduce the 
growth performance and impair intestinal health by influencing 
cecal microbiota composition in broilers.

It has been reported that dietary GUE exhibited antibacterial 
effects against Pseudomonas aeruginosa, Shigella flexneri, Escherichia 
coli, Staphylococcus epidermidis, and S. aureus (80). Glycyrrhiza 
polysaccharides significantly increased the F/B ratio in the cecum of 
broilers, which promoted microbial metabolic efficiency and 
subsequently improved host nutrient acquisition (81). In this study, 
we  found that GUE significantly increased the abundance of 
Firmicutes and decreased that of Bacteroidetes, resulting in a greater 
F/B ratio in the cecum of broilers. Additionally, GUE supplementation 
decreased the relative abundance of Epsilonbacteraeota in the cecum 
of broilers at 28 d of age, and that of Proteobacteria at 84 d of age. 
Proteobacteria included opportunistic pathogens like E. coli, Shigella, 
Salmonella, and Klebsiella (82), which were associated with 
inflammatory responses and intestinal infectious diseases (83). These 
results suggested that GUE could reduce the negative impact of long-
term intake of low-dose DON and ZEN on growth performance by 
improving the cecal microbiota composition in broilers.

FIGURE 8

LEfSe taxonomic cladogram and LDA score of cecal microbiota. (A,B) LEfSe taxonomic cladogram and LDA score at 28 days of age. (C,D) LEfSe 
taxonomic cladogram and LDA score at 84 days of age. The circles radiating from the center to the outer edges of the evolutionary branch map 
represent classification levels from phylum to species, with the circle’s diameter proportional to the taxon’s abundance. The yellow nodes represent 
taxonomic units that exhibit no significant differences between groups. The LDA histograms display the LDA scores, and the difference is significant 
when LDA >4. f, family; g, genus; s, species.
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Based on the analysis of cecal microbial composition, we found 
that dietary DON and ZEN contamination significantly affected the 
composition of cecal microbiota at the genus and species levels in 
broilers. Dietary DON and ZEN increased the relative abundance of 
Bacteroides (Bacteroides fragilis), Helicobacter (Helicobacter pullorum) 
at 28 days of age, and that of Barnesiella, Bacteroides (Bacteroides 
dorei) and Escherichia (Escherichia coli) at 84 days of age. Helicobacter 
and Escherichia easily colonized the intestines of humans and animals, 
causing various diseases by modulating the production of 
inflammatory factors and disrupting intestinal mucosal permeability, 
damaging the intestinal barrier (84–86). Helicobacter_pullorum (87) 
and Escherichia_coli (88) were common pathogenic bacteria found in 
the intestine, impacting nutrient absorption, immunity, and the self-
repair functions of infected chickens. Chronic intake of low doses of 
DON and/or ZEN in naturally moldy diets impaired intestinal 
functions, leading to inflammation and disrupting the epithelial 
barrier by promoting E. coli proliferation in the intestines of piglets 
(67). Helicobacter_pullorum has been linked to gastrointestinal 
diseases in poultry, interacting with the host’s immune system and 
potentially triggering immune responses that affected gut health and 
disease susceptibility. The presence of H. pullorum in the intestines of 
poultry negatively impacted overall health, growth, and feed efficiency, 
all of which are crucial for the poultry industry (85).

Bacteroides are generally considered “friendly” commensals 
residing in the gut, involved in various metabolic activities of 
animals and maintaining intestinal homeostasis (89, 90). However, the 
composition of Bacteroides is diverse and complex, playing a crucial 
role in various metabolic activities in animals (90). While some 
members of Bacteroides are part of the normal GIT microbiota, they 
may cause opportunistic infections if the integrity of intestinal mucosal 
barrier is disrupted, causing diarrhea by producing enterotoxins on the 
surfaces of intestinal epithelial cells (91, 92). Bacteroides was positively 
correlated with serum inflammatory cytokines TNF-a, IL-1β, and IL-6 
(31). Bacteroides fragilisis and Bacteroides dorei are acknowledged as 
opportunistic pathogen within the Bacteroides genus. Bacteroides fragilis 
adhered to the surfaces of intestinal epithelial cells and caused intestinal 
inflammatory response (93). DON and ZEN contamination increased 
the relative abundance of Bacteroides, including Bacteroides_fragilis and 
Bacteroides_dorei. LEfSe analysis also showed that both 
Bacteroides_fragilis and Bacteroides_dorei were biomarkers for the MOL 
group. These results suggested that the damage caused by dietary DON 
and ZEN to intestinal barrier function could increase the accumulation 
of Bacteroides and lead to a heightened risk of opportunistic infections.

In this study, we also observed that dietary DON and ZEN reduced 
the abundance of the genus Lactobacillus including Lactobacillus_
gallinarum and Lactobacillus_crispatus, and Barnesiella in the cecum of 
broilers at 28 d of age, and that of Bacteroides_vulgatus and 
Ruminococcaceae_torques_group at 84 d of age. The abundance of 
Barnesiella was associated with short-chain fatty acids (SCFAs) 
production and the anti-inflammatory capability of broilers (94). Both 
Bacteroides_vulgatus and Ruminococcaceae_torques_group degrades 
carbohydrates to produce SCFAs and plays a role in the overall 
maintenance of gut health and the balance of microbial communities. 
The increased abundance of Ruminococcaceae_torques_group was 
associated with enhancing anti-inflammatory effects and bile acid 
metabolism, leading to an improvement in canine inflammatory bowel 
disease (IBD) (95). Ruminococcaceae_torques_group was positively 
correlated with the T helper (Th) 1/Th2 ratio and modulated gut 
immune responses in patients with type 2 diabetes (96). B. vulgatus 

ameliorated intestinal inflammation and relieved depressive symptoms 
through the gut–brain axis (97). Lactobacillus is a group of commensal 
bacteria known to modulate the immune function of the intestine and 
promote the health of the host. Lactobacillus quickly colonized the GIT 
of broilers after hatching, and their metabolic activity reduced the pH of 
the chyme, which helps prevent the growth of harmful intestinal bacteria 
(98). L. gallinarum is beneficial to intestinal health, modulating intestinal 
microbial composition, secreting protective metabolites (99), improving 
the intestinal absorption (100), and inhibiting the colonization of 
Salmonella in GIT (101). Thus, the diet containing DON and ZEN could 
inhibit the proliferation and colonization of beneficial microbiota in the 
intestines of broiler chickens, particularly during the early stages of 
growth. These results suggested that dietary DON and ZEN could 
disrupt the balance of gut microbiota by promoting the growth of 
harmful bacteria while inhibiting the proliferation of beneficial bacteria, 
ultimately leading to damage in intestinal health and growth performance.

In this study, supplementing GUE in the diet contaminated with 
DON and ZEN significantly decreased the relative abundance of harmful 
bacterial genera (species) in cecum of broilers, including Bacteroides 
(Bacteroides_fragilis and Bacteroides_dorei), Helicobacter (Helicobacter_
pullorum) and Escherichia (Escherichia_coli). Moreover, we found that 
GUE significantly increased the abundance of the genus Lactobacillus 
including Lactobacillus_gallinarum and Lactobacillus_crispatus in the 
cecum of broilers at 28 d of age, and Alistipes and Bacteroides_vulgatus 
at 84 d of age. Consistent with this, Li et al. (32) showed that dietary GUE 
decreased the abundance of Bacteroides (B. fragilis and B. dore), 
Helicobacter (Helicobacter_pullorum), and Escherichia (Escherichia_coli), 
while increasing that of Lactobacillus and Lactobacillus gallinarum in the 
cecum of broilers. Dietary supplementation with Glycyrrhiza 
polysaccharides suppressed the proliferation of Bacteroides (31). Lin and 
Lee (102) reported that Lactobacillus facilitated the development of an 
optimized microbiome by increasing the richness and quantity of 
lactobacilli and other native probiotic bacteria. Lactobacillus generates 
several proteolytic enzymes that detoxify mycotoxins, helping to alleviate 
cecal microbiota dysbiosis in broiler chickens (103). Lactobacillus_
crispatus (104) and Lactobacillus_gallinarum (99) stimulated the growth 
of butyrate-producing microbiota and restored the balance of gut 
microbiota. Total flavonoids from Glycyrrhiza uralensis alleviated 
irinotecan-induced colitis and gut microbiota dysbiosis by enhancing 
populations of Lactobacillus and butyrate-producing Roseburia in mice 
(105). Therefore, it is reasonable to assume that GUE could regulate the 
balance of intestinal microecology, and effectively mitigate the damage 
caused by DON and ZEN to the broilers. However, the host and 
symbiotic gut microbiota are closely connected and interact with each 
other. Our experimental evidence was insufficient to clarify how GUE 
and the mycotoxins impacted broiler health through host-
microbiota interactions.

5 Conclusion

In summary, the long-term consumption of low doses of DON 
and ZEN from naturally moldy corn reduced growth performance in 
broilers, particularly during the growing-finishing period, and 
compromised intestinal health by damaging intestinal morphology, 
barrier, and antioxidant functions, and inducing an inflammatory 
response in the jejunum. Furthermore, this chronic exposure to the 
mycotoxins disrupted the balance of intestinal microecology by 
increasing harmful microbiota, and decreasing beneficial microbiota 
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in the cecum. The supplementation with GUE mitigated the negative 
effects of prolonged low-dose exposure to DON and ZEN on growth 
performance and intestinal health by improving the morphology, tight 
junction, antioxidant function, and inflammation in the jejunum, as 
well as the cecal microbiota balance in broilers.
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