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Influenza A virus (IAV) in swine is a major respiratory pathogen with global
significance. This study aimed to characterize the macroepidemiological
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patterns of IAV detection using reverse transcription real-time polymerase
chain reaction (RT-rtPCR) assays, including subtype identification, in samples
submitted between January 2004 and December 2024 to veterinary diagnostic
laboratories (VDLs) participating in the Swine Disease Reporting System
(SDRS). A secondary objective was establishing an IAV monitoring capability
to inform stakeholders of weekly changes in IAV detection patterns. Of
the 372,659 samples submitted, 31% tested positive for IAV RNA via RT-
rtPCR. The most frequent sample types were oral fluids (44.1%) and lung
tissue (38.7%). Submissions from the wean-to-market category had a higher
positivity rate (34.4%) than those from the adult/sow farm category (26.9%).
IAV detection followed a seasonal pattern, with peaks in spring and fall
and lower positivity rates in summer. Of the total of 118,490 samples
tested for IAV subtyping using RT-rtPCR, the most frequently detected
subtypes were H1N1 (33.1%), H3N2 (25.5%), H1N2 (24.3%), H3N1 (0.2%), mixed
subtypes (5.4%), and partial subtype detection (11.5%). Mixed IAV subtypes
were detected in individual samples—including lung tissue, nasal swabs, and
bronchoalveolar lavage—indicating co-infection with two or more IAV strains.
For IAV forecasting, a combined model using dynamic regression and a
neural network outperformed individual models in 2023, achieving the lowest
root mean square error (RMSE) and an improved overall skill score. This
study highlights the importance of using laboratory submission data for IAV
surveillance and macroepidemiological analysis. The findings provide valuable
insights into IAV dynamics and highlight the need for standardized monitoring
systems in VDLs to enhance understanding of IAV in swine populations across the
United States.
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1 Introduction

Influenza A virus (IAV) is classified within the
Orthomyxoviridae family, consisting of enveloped virions
with segmented, negative-sense ribonucleic acid (RNA) genomes
(1). IAV is a significant respiratory pathogen affecting animal
health worldwide, impacting various species, including swine and
poultry (2), and it has zoonotic potential (3). Human IAV strains
can be transmitted to swine and have significantly contributed
to the genetic diversity of IAV circulating in swine populations
globally—the most recent example being the reverse zoonoses
of the 2022–2023 human seasonal H3N2 virus to swine (4, 5).
These human seasonal influenza viruses influence the diversity
of IAV in swine, complicating control efforts and leading to
frequent incursions of human strains into swine populations (6).
For example, the 2009 H1N1 influenza pandemic resulted in
substantial economic losses for the US pork industry, estimated
at over $1 billion, and created public misperceptions about
pork safety (7). Recently, outbreaks of the highly pathogenic
avian influenza A (HPAI) H5N1 virus in dairy cattle and cats,
along with the detection of spillover events across a broad
host range, are concerning and suggest an increasing potential
for the virus to adapt to mammals, including livestock, pets,
and humans (8, 9). Moreover, a recent study showed that
pigs are susceptible to H5N1 infection and highlighted the
importance of biosecurity in swine herds to protect against this

virus incursion (10, 11). The first field case of H5N1 in swine
was recently detected on a multi-species backyard farm in the
United States (12).

Diverse IAV subtypes are classified by the hemagglutinin
(HA) and neuraminidase (NA) glycoproteins that protrude
from the surface of the viral envelope (13). The predominant
subtypes in swine populations arise from various combinations
of HA and NA, particularly H1 and H3, along with N1 and
N2 (e.g., H1N1, H1N2, and H3N2), exhibiting substantial
genetic diversity circulating globally (3, 13, 14). Although
these subtypes have been detected more frequently, isolated
occurrences of subtypes, such as H2N3 and H4N6, have
been reported in North American swine populations
(15, 16). These sporadic IAV subtype detections have
been limited to circulation among the pig populations
in which they were found and have not been observed
outside those isolated cases or become endemic (17). The
ongoing evolution of antigenic characteristics within IAV
subtypes poses a significant challenge to animal health,
with varying implications across different geographical
regions (18, 19).

Beyond genetic diversity, IAV infections in swine may occur
in combination with other pathogens, further complicating disease
management. Between 2010 and 2019, 12,547 confirmed cases of
IAV infection were reported to cause lesions in the respiratory
tissues of pigs (20). Among these, IAV was co-diagnosed with
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porcine reproductive and respiratory syndrome virus (PRRSV)
in 1,626 cases, representing 9.3% of all evaluated tissue samples.
Co-infections with bacterial pathogens included 331 cases (2.1%)
with Streptococcus suis, 322 (1.8%) with Pasteurella multocida, 256
(1.5%) with Glasserella parasuis, and 231 (1.3%) with Mycoplasma

hyopneumoniae (20).
The dynamics and diversity of IAV require ongoing

surveillance to enhance understanding and generate solutions for
its control. A notable example is the United States Department
of Agriculture (USDA) IAV Swine Surveillance program, which
provides valuable insights into IAV ecology with data that may help
identify influenza trends in swine. These data are made available to
producers, swine practitioners, and diagnosticians (21). Although
this program offers updates on national IAV swine surveillance, its
voluntary nature limits its representation of the entire domestic
swine population. Another monitoring tool is the ISU FLUture
platform, which offers multiple web-based tools for analyzing
IAV sequencing and case metadata from swine samples tested at
the Iowa State University Veterinary Diagnostic Laboratory (ISU
VDL) (22). FLUture helps further explore IAV clade trends and
includes additional tools, such as the HA sequence identity tool, to
determine the clade of a given sequence (22). However, this data
is limited to submissions to the ISU VDL, restricting the broader
understanding of macroepidemiological aspects of IAV activity in
the United States (US) swine population. In addition, these tools
primarily focus on retrospective analyses, and the lack of real-time
forecasting capabilities in current systems limits the ability to
predict and respond to deviations in IAV detection patterns,
ultimately hindering efforts to guide control strategies and inform
stakeholders proactively.

Testing using RT-rtPCR assays is widely employed by VDLs
for IAV RNA detection and IAV subtyping in swine samples.
RT-rtPCR diagnostic testing is one of the most commonly
used molecular methods for confirming influenza virus genetic
material detection (23) due to the fast and accurate method
for detecting viral RNA (24), and is an important component
of national surveillance programs, including the USDA IAV
swine surveillance program (21). Several sample types are
frequently tested for IAV, such as oral fluids, nasal swabs,
and lung tissues (25, 26). New antemortem and less invasive
sample types, including udder wipes and nasal wipes, are being
developed and assessed for their effectiveness in IAV testing
(27, 28) to improve detection capabilities. Additionally, recent
studies have shown that pooling strategies can effectively detect
IAV, with findings from research involving pooled udder wipes
and nasal swabs conducted for IAV surveillance purposes (29,
30). Data from samples submitted for testing at VDLs, along
with associated IAV testing results, provides an opportunity
to better inform stakeholders about IAV detection and activity
patterns. Although the US has a National Animal Health
Laboratory Network (NAHLN), information on megatrends
for IAV PCR-based detection from porcine samples tested
within this network of laboratories is currently unavailable in
the US.

An organized information hub, such as those available for
PRRSV, enteric coronavirus, and porcine circovirus 2 and 3
(31–33), would enable a better understanding of detection and

diversity for IAV, thus improving strategic surveillance and control
of IAV by providing information that can be further used to
assist veterinarians, pig producers, practitioners, and researchers
in the decision-making process. Consequently, this work aimed
to characterize the macroepidemiological aspects of IAV and
its subtypes detected by RT-rtPCR assays from porcine samples
over time and across age categories. A secondary aim was to
determine the seasonal patterns of IAV detection and establish
an IAV monitoring capability to inform stakeholders of weekly
changes in IAV detection patterns and any deviations from
expected levels.

2 Materials and methods

2.1 Data source

Data encompassing IAV RT-rtPCR and IAV RT-rtPCR
subtyping from samples tested between January 2004 and
December 2024 were sourced from six VDLs: the ISU VDL, the
University of Minnesota VDL (UMN VDL), Kansas State VDL (KS
VDL), South Dakota State University Animal Disease Research and
Diagnostic Laboratory (SDSU ADRDL), the Ohio Animal Disease
Diagnostic Laboratory (Ohio ADDL), and Purdue University
Animal Disease Diagnostic Laboratory (ADDL), hereafter referred
to as VDLs. Together, these participating laboratories account for
over 97% of all porcine cases tested in the NAHLN laboratory
network. Submission case metadata, including receipt date, site
state, test, and testing results, were retrieved following previously
established methodologies (31, 32). The receipt date was the
submission time recorded by each VDL, while the site state
refers to the geographic location based on the state information
included in the submission. Briefly, retrospective historical
data were retrieved from each VDL’s Laboratory Information
Management System (LIMS) and shared in a comma-separated
value (CSV) file format. In addition, prospective data were
made available to this project via CSV files retrieved through
application programming interface (API) calls for daily updates
or through messages sent to an HL7 database (https://vdl.
iastate.edu/sdrs/Search), managed by the Swine Disease Reporting
System (SDRS, https://www.fieldepi.org/SDRS). The shared data
did not include ant VDL client identification (e.g., producer and
veterinarian information).

2.2 Dataset organization

The dataset comprised several data variables such as the
date, geographic region (state), RT-rtPCR test results, age
category, and specimen type. Specimen information was
organized using SNOMED CT terminology (https://www.
snomed.org/value-of-snomedct). The Logical Observation
Identifiers Names and Codes (LOINC; https://search.loinc.org/
searchLOINC) serve as a universal coding system that standardizes
data related to laboratory test procedures and results, and it
was used for data collation. Submissions marked as research
testing on the VDL submission forms were excluded from this
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study to ensure the analysis focused on IAV detection under
field conditions.

Unlike RT-rtPCR testing for IAV detection, the data regarding
the detection of specific IAV RT-rtPCR subtypes, namely H1,
H3, N1, and N2, were collected and organized at the sample
level, utilizing the same set of variables with the addition of a
sample number identifier. The IAV subtypes, such as H1N1, H1N2,
H3N2, and H3N1, were identified within the datasets shared by
participant VDLs. Samples, where only hemagglutinin (e.g., H1,
H3, or H1H3) or only neuraminidase (e.g., N1, N2, or N1N2)
was detected, were labeled as “partial” detection. Conversely,
samples with complete subtype detection (hemagglutinin and
neuraminidase) along with one or more different hemagglutinin
or neuraminidase subtypes, such as H1H3N1, were labeled as
“mixed” detection.

To streamline the data organization process, data processing
and collation utilized a web-based application developed in C#
10 (34), supported by the.NET 6 web framework (35). The data
from each participant’s VDL IAV RT-rtPCR were organized at
the submission level and categorized according to the IAV RT-
rtPCR subtype sample, collating it into an inter-VDL standardized
format. Each VDL reported IAV sample testing results as positive,
suspect, inconclusive, or negative. A submission was considered
positive when at least one sample within it had a result reported
as positive. A submission was classified as suspect when a sample
was labeled as suspect, but no positive samples were present, even
though a suspect result was reported by the participant VDLs.
Moreover, an inconclusive result was recognized when there was
a report of an inconclusive test result without any positive or
suspect results in the submission. Submissions that reported test
results as neither positive, suspect, nor inconclusive were classified
as negative.

The retained variables were defined according to a previously
implemented methodology for PRRSV, enteric coronavirus, and
porcine circovirus under the SDRS project (31, 33, 36) and were
used as follows:

1. Age category: This variable was divided into two phases:
adult/sow farm and wean-to-market. Information for the age
category was generated using a combination of the provided
farm type and the ages of animals mentioned in the submission
forms. The adult/sow farm phase comprised samples identified
as collected from adults, boar studs, breeding herds, replacement
gilts, and suckling piglets. The wean-to-market phase aggregated
data included cases classified as nursery or grow-finish. Cases
with an unspecified age category, non-animal, or environmental
samples in the VDL submission forms were labeled as
“unknown.” To assess the difference in the proportion of
adult/sow farm and wean-to-finish phases, we conducted a
chi-squared test using R Studio (37). The significance level
was set at a P-value ≤ 0.05 to identify differences in
IAV positivity.

2. Season: This variable represented the seasons of the year and was
organized as follows: samples received in December, January,
and February were categorized asWinter;March, April, andMay
as Spring; June, July, and August as Summer; and September,
October, and November as Fall.

3. Specimen: This variable represents the sample fraction used for
testing the submitted sample type at the VDLs. Whenmore than
one sample type is submitted for testing and analyzed for IAV in
the same case, the specimen is labeled as “multiple” (e.g., when
oral fluids and nasal swabs are included in the same submission
case and tested for IAV).

4. When variable fields were not explicitly provided during the
submission process or captured in the LIMS system, they
were labeled as “Unknown.” Examples of variables where this
mapping occurred include site state, specimen, and age category
when information was unreported.

2.3 Data visualization

The collated VDL-anonymized aggregated data was stored
in the SDRS server database at the ISU College of Veterinary
Medicine. The data was permissioned and connected to a
commercially available data visualization tool, Microsoft Power BI
(Power Business Intelligence; Microsoft Corporation, Redmond,
WA), enabling the information to be displayed and visualized
in various settings with interactive charts and graphs. Power BI
has a built-in tool for creating web-embedded links that display
generated charts and graphs in online interactive dashboards with
predefined filters: result, site state of the specimen, specimen, age
category, year, and month.

2.4 Influenza A virus seasonality assessment

The seasonal pattern of IAV detection by RT-rtPCR was
statistically tested using the Average Seasonal Index (ASI), a widely
used measure in time series analysis that is particularly helpful
for examining irregular and long-period dynamic series. The
ASI measurement was adapted from an established methodology
(38) to identify the seasonal dynamics present in weekly IAV
detection. Its objective was to highlight seasonal patterns of IAV
and provide an average view of a time series’ behavior throughout
different periods of the year, allowing for the assessment of
IAV seasonality on a weekly basis. This study calculated ASI
by dividing each week by a 52 week moving average using the
forecast package (39). Subsequently, a moving average analysis
was performed over a 52-week period, a method for smoothing
time series and highlighting long-term patterns, using R Studio
software (37).

2.5 Influenza A virus RT-rtPCR detection
monitoring

The trends in IAV RNA detection were assessed using
historical data to predict and anticipate the proportion of positive
submissions over the next 52 weeks. This assessment aimed
to outline the bi-cyclic and complex pattern of IAV detection,
facilitating the identification of weeks with notable increases or
decreases in the detection rate.
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Initially, the IAV detection database results were organized
by weekly counts of positive submissions, negative submissions,
and total submissions tested. Then, the percentage of IAV-positive
submissions was calculated each week by dividing the number of
positive submissions tested for that week by the total number of
submissions for that week. A total of 260 weeks were used to train
and test the model, with the data divided into 80% for training. the
four previous years (208 observation weeks) and 20% for testing
and validation. A total of 208 observations from the four prior
years of data, consisting of 52 or 53 weeks each year, were used for
training, while 52.18 observations (weeks) were allocated for the
test data (40, 41).

Five distinct predictive models were employed to capture the
complex temporal dynamics of IAV detection, which exhibits
seasonality, to forecast the predicted weekly levels of IAV detection
for an upcoming year. The time series models included (1) a
Seasonal Autoregressive Integrated Moving Average (SARIMA)
(42), (2) a cyclic regression model (43), (3) a dynamic regression
model (44), (4) a neural network, a machine learning model
(45), and (5) the Prophet model, a Bayesian model (46). The
performance of each of these forecasting models was then analyzed
using the tsibble package (47) and fable package (48) in R Studio
software (37), using a formula for each model developed in a
previous methodology (49), which was briefly summarized.

Given the seasonal component of IAV in the swine population,
a Seasonal Autoregressive Integrated Moving Average (SARIMA)
was used to assess the non-seasonal part of the model (p, d, q)
and the seasonal part of the model (P, D, Q) (42). Considering the
IAV bi-cyclic pattern, a cyclic regression model was implemented
to fit linear models to time series data, incorporating trend, and
seasonality components. The TSLM approach was used to fit linear
models to the time series data, including trend, and seasonality
components. Fourier termswere employed to accommodate a long-
term dataset comprising weekly data (43). The dynamic regression
model forecasts time series data (50) using dynamic regression
while incorporating Fourier terms to predict weekly trends. The
Fourier terms (K = Ki, where i = 1 to 12) were used to capture
seasonal patterns over an extended period of weekly data, while
short-term time series dynamics were managed through ARIMA
error modeling. Thus, Fourier terms were tested from K = 1 to K
= 12 in the training data to determine the K with the lowest Akaike
Information Criterion (AIC) (44). A neural network model can be
applied to time series data by building a non-linear autoregressive
model and is often employed to estimate non-linear mapping due
to its potential for learning the underlying non-linear relationships
between future outcomes and individual forecasts (51). The fifth
model employed was the Prophet model, applicable to time series
data that exhibit seasonality and multiple seasons of historical
data (46). In addition, by default, in the fable package, order 10
was used for annual seasonality, and order 3 was used for weekly
seasonality (44).

The model fit evaluated the autocorrelation of residuals using
the Ljung-Box test in five distinct predictive models (52). This test
assessed the null hypothesis that the residuals were not significantly
correlated, and the null hypothesis was rejected if the p-value

<0.05, indicating significant autocorrelation (53). Additionally, a
logarithmic transformation was applied to the time series data to

address its non-stationarity by stabilizing the mean and variance,
which were observed to vary over time (54).

After conducting the forecasts, the performance of the models
was assessed using forecast accuracy measures, such as RMSE,
Mean Absolute Error (MAE), and Mean Absolute Percentage Error
(MAPE). These metrics were essential for evaluating forecasting
accuracy and providing insights into the models’ predictive
capabilities (55). RMSE andMAE, being scale-dependentmeasures,
are commonly used to assess forecast errors. Moreover, MAPE,
a percentage error metric, facilitates the comparison of forecast
performances across different datasets (39).

A combination approach was also used to enhance the
robustness of the forecasting process. Following the previously
described combination methodology (49), a combined model was
structured by selecting the two models that exhibited superior
performance after model fitting and forecasting. These were
characterized by lower RMSE, MAE, and MAPE on the testing
data. In the model selection process, smaller values indicate
better accuracy, and the optimal forecasting model was chosen
by comparing the outcomes of the analyses to identify the model
with the lowest RMSE, MAE, and MAPE (56). Finally, a skill score
evaluatesmodel performance by assessing forecast accuracy relative
to a benchmark, enabling comparisons across different methods
(57), and a higher skill score indicates better model performance
(57). The forecast combination reduces the risk of over-reliance
on any single model, thereby improving the overall reliability of
the forecast and preventing a single model from overfitting the
training data. Additionally, the data from the combined model was
visualized using the ggplot2 package in (58) R Studio to describe the
forecast in terms of weekly IAV percentual positive submissions.
Prospective IAV RT-rtPCR detection was compared with predicted
values to assess deviations from a 95% prediction interval of
the predicted baseline values and to monitor inconsistencies with
historically expected levels.

3 Results

The IAV datasets were collated from the six participant
VDLs and effectively structured, connected, and displayed in a
dashboard. In addition, the data was organized in an anonymized
format, and the generated dashboards for IAV RT-rtPCR detection
and Influenza A virus subtyping are openly available on the
SDRS project website https://www.fieldepi.org/SDRS, at the SDRS
Dashboard, under the PCR Dashboard for all analytes, selecting
IAV, and under the Influenza A virus subtyping dashboard,
selecting IAV subtyping.

3.1 IAV RT-rtPCR results

The number of IAV submissions increased from 5,622
cases in 2004 to 28,256 cases in 2024 (Figure 1), with the
average number of submissions per month increasing from 469
cases in 2004 to 2,355 cases in 2024. Of the 372,659 total
submissions tested, 31% of submissions (113,952) contained at
least one RT-rtPCR-positive sample for IAV RNA. The number
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FIGURE 1

Number of submissions by result and percentage of positive submissions from the total IAV submissions tested by RT-rtPCR from 2004 to 2024. Each
year is represented by the four seasons: 1, Winter; 2, Spring; 3, Summer; 4, Fall. The bars show the number of cases tested, with colors indicating test
results: dark gray for positive, light gray for negative, blue for suspect, and purple for inconclusive (x-axis). A black line represents the percentage of
positive cases on the secondary y-axis.

FIGURE 2

Average Seasonal Index for Influenza A virus from 2004 to 2024. The winter season is approximately represented by the bars between weeks 48 to 52
and 1 to 9, the spring season from weeks 10 to 22, the summer from 23 to 35, and the fall from 36 to 47.

of positive submissions increased over time, with the annual
average positivity rate rising from 19% (1,067 of 5,622) in 2004
to 29% (8,262 of 28,256) in 2024. The lowest positivity rate
was observed in the summer of 2004 at 13.61% (152 of 1,117),
while the highest was 39.73% (2,905 of 7,312) in the spring of
2021 (Figure 1).

The Average Seasonal Index was used to assess IAV seasonality
from 2004 to 2024 (Figure 2). Subsequently, a bi-seasonal pattern
of IAV detection emerged, showing increased detections during
spring (March–May) and fall (September–November) (Figure 2).

Out of a total of 372,659 cases received, seven specimens
represented 96.42% of the total: oral fluid 44.1% (164,510), lung
38.7% (144,061), nasal swab 6.2% (23,214), tissue homogenate

1.5% (5,548), oropharyngeal swab 1.4% (5,271), nasal wipe
0.34% (1,251), and udder wipe 0.32% (1,175) (Figure 3). In
addition, multiple specimens comprised 3.8% (14,278) of the
submissions. Furthermore, less common specimens, such as oral
and bronchoalveolar lavage and tracheal swabs, were classified as
“other” at 3.58% (13,351).

The proportion of samples submitted for testing using only oral
fluid to detect IAV increased from 0.9% (60 of 6,742) in 2009 to
60.2% (17,025 of 28,256) in 2024. After 2013, oral fluid became
the most frequently used specimen for IAV RT-rtPCR testing
(Figure 3). The proportion of nasal swabs fluctuated between 4%
and 6% from 2007 to 2024, with peaks observed in 2010 (9%) and
2013 (10%). A slight decline from 6% to 5% was observed between
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FIGURE 3

The proportion of specimens submitted for IAV RNA by RT-rtPCR from 2004 to 2024. Each year is illustrated by a bar. Di�erent colors indicate
di�erent specimens tested for IAV by RT-rtPCR and the labeled numbers of a given specimen within a year.

FIGURE 4

Number of lung samples (triangle red line) and oral fluid (circle yellow line) submissions tested for IAV by RT-rtPCR from 2009 to 2024. Each year is
represented by season: 1, Winter; 2, Spring; 3, Summer; 4, Fall.

2013 and 2017, followed by a more stable trend from 2017 to 2024
(Figure 3).

There was a decrease in the proportion of lung submissions
from 92% (9,158 of 9,967) in 2006 to 24% (6,748 of 28,256) in
2024 (Figure 3). Nevertheless, the number of lungs remained steady
from 2012 to 2024, averaging 7,240 cases per year over the last
13 years (Figure 4). A peak in lung submissions can consistently
be detected during the winter months (Figure 4). The number
of oral fluid submissions surpassed lung tissue submissions in
2013, suggesting increased surveillance over time within the swine

population. Additionally, the tissue-lung specimen submissions
showed consistent peaks in the fall season, from September
to November, indicating that this specimen better reflects fall
seasonality than other specimens (Figure 4).

Of the 372,659 submissions tested, the wean-to-market age
category accounted for 43% (159,200), while the adult/sow farm
represented 15% (54,118), and unknown age accounted for 43%
(159,310). Over time, the proportion of submissions in the wean-
to-market category has increased each year, rising from 39% (2,190
out of 5,622) in 2004 to 47% (13,240 out of 28,256) in 2024.
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FIGURE 5

Monthly IAV positivity by RT-rtPCR presented by age category: adult/sow farm (triangle blue line), wean-to-market (circle red line).

Similarly, adult/sow farm submissions have increased their share,
growing from 5% (339 out of 6,932) in 2004 to 21% (5,895 out of
28,256) in 2024. These changes suggest that while wean-to-market
submissions have consistently represented the largest reported age
category, adult/sow farm submissions have shown the highest
proportional increase over this period, according to the participant
VDLs database.

The increase in submissions across both age categories also
revealed notable differences in IAV detection patterns. Submissions
from wean-to-market samples displayed a higher positivity rate
(34.4%) than those from the adult/sow farm age category (26.9%),
showing a significant (P < 0.001) statistical difference at the
0.05 level. Additionally, a bi-seasonal trend in detection, based
on IAV peaks, typically occurred twice during the calendar year,
with most observations in the spring and fall (Figure 5). Between
September and October, the divergence in positivity rates for
wean-to-market and adult/sow farms reached its peak, with an
average difference of 12%, rising from 22% for sow farms to
34% for wean-to-market. Moreover, an earlier increase in IAV
detection was noted in samples collected from wean-to-market
approximately a month before the rise in detection in samples from
adult/sow farms.

3.2 IAV subtypes RT-rtPCR results

A total of 139,036 samples were tested for IAV subtypes, with
the number increasing over time from 749 samples in 2004 to 7,456
in 2023 and then 5,586 in 2024, indicating a decrease in samples
submitted. In 14.78% (20,546 of 139,036) of cases, no targeted IAV
HA or NA subtypes were detected by RT-rtPCR. From 2004 to
2024, 85.22% (118,490 of 139,036) of samples tested revealed at
least one IAV HA or NA-targeted subtype. The number of IAV
samples subtyped rose from 685 cases in 2004 to 5,033 in 2024, with
the average number of cases tested increasing from 57 per month
in 2004 to 419 per month in 2024 (Figure 6). The H1N1 subtype
was the most frequently detected, accounting for 33.13% (39,252 of
118,490), followed by H3N2 at 25.48% (30,186 of 118,490), H1N2

at 24.32% (28,822 of 118,490), and H3N1 at 0.2% (241 of 118,490).
Partial subtype detection occurred in 11.2% (13,601 of 118,490) of
the samples tested.

From 2004 to 2009, H1N1 was a frequently detected IAV
subtype, with an average detection rate of 47% during this
period. After 2009, H1N1 detection decreased, while H1N2 and
H3N2 became more prominent in recent years. The increase in
H1N2 and the consistent presence of mixed subtypes suggest
evolving influenza dynamics in swine populations. This dynamic of
detection was also reflected in specimens; however, in lung samples
(Figure 7A), the H1N1 subtype remained the most frequently
detected, with stable detection over time. H1N2 and H3N2 became
more frequently detected in the lungs in 2010 than in previous
years. Mixed subtypes had lower but relatively consistent detection
rates, while partial subtypes varied minimally from 2012 to 2017.

Mixed subtyping detection was observed in 5.4% (6,388 out
of 118,490) of the samples tested. These detections were most
common in oral fluid, accounting for 61.1% (3,906 of 6,388),
followed by lung samples at 25% (1,599 of 6,388). Other detection
sites included nasal swabs at 6% (378 of 6,388), bronchoalveolar
lavage at 0.8% (48 of 6,388), nasal wipes at 0.6% (38 of 6,388), udder
wipes at 0.5% (32 of 6,388), bronchial swabs at 0.4% (23 of 6,388),
and oropharyngeal swabs at 0.1% (9 of 6,388). Supplementary
specimens with fewer submissions, such as environmental samples
and tracheal swabs, were grouped as “other” at 5.6% (355 of
6,388). Notably, mixed subtype detections were found in 38.4%
(2,450 of 6,388) of individual sample types, including lung,
nasal swab, and bronchoalveolar lavage (Table 1). These results
underscore a notable prevalence of mixed subtype infections within
individual specimens, with combinations H1H3N1N2, H1H3N2,
and H1N1N2 being the most frequent across various sample types
(Table 1).

When excluding lung samples and retaining the remaining
specimens in the analysis (Figure 7B), a sharp increase in overall
IAV subtype detection was observed after 2010, likely drivenmainly
by increased oral fluid testing. There was a dynamic detection
scenario, with H1N1, H1N2, and H3N2 being interchangeably
detected over time. Mixed subtypes in non-lung tissues declined
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FIGURE 6

The proportion of IAV subtypes detected by RT-rtPCR from 2004 to 2024. H1N1 subtypes are denoted by blue; H1N2 subtypes are denoted by
yellow; H3N1 subtypes are denoted by black; H3N2 is denoted by red; mixed subtypes are denoted by gray; partial subtypes are denoted by purple.

FIGURE 7

IAV subtypes detected in lung specimens (A) and other sample types (B) by RT-rtPCR from 2004 to 2024 are represented as follows: H1N1 subtype
(blue squares), H1N2 subtype (yellow triangles), H3N1 subtype (dark red dashed lines), H3N2 subtype (red circles), mixed subtypes (gray dashed lines),
and partial subtypes (purple diamonds).

after 2012, and partial subtypes exhibited a marked rise from 2019
to 2021, suggesting an issue with the IAV RT-rtPCR subtype test
based on increasing genetic diversity and a subtyping PCR that no
longer detected all of the subtypes in circulation (Figure 7B).

3.3 IAV RT-PCR detection forecasting and
monitoring

Five models were fitted to forecast expected levels of IAV
detection by RT-rtPCR for 2024, using the previous 4 years (i.e.,

2020 to 2023) as a baseline, following an 80:20 split of training
data to testing data. After fitting the models, two models, SARIMA
and neural network models, showed no significant autocorrelation
(P-value ≥ 0.05) in their residuals, while the dynamic regression
model exhibited weak autocorrelation (see Table 2). The dynamic
regression model and neural network model, which had the lowest
RMSE among models without or with weak correlation, were
combined into a single model. For 2023, this combined model
demonstrated superior performance, achieving the lowest RMSE
and enhancing the overall skill score, where a higher skill score
indicates better model performance. For 2024, the combinedmodel
had an RMSE of 4.76 and a skill score of 0.18, reflecting improved
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TABLE 1 Proportion and number of mixed IAV subtypes detected in samples.

Mixed
subtypes

Percentage %, number of samples (n)

Oral fluids Lung
samples

Nasal
swab

Bronchoalveolar
lavage

Nasal
wipes

Udder
wipes

Bronchial
swab

Oropharyngeal
swab

H1H3N1 3.6 (139) 6.3 (100) 3.7 (14) 8.3 (4) – 3.1 (1) – 11.1 (1)

H1H3N2 22.5 (878) 24.6 (393) 29.1 (110) 27.1 (13) 68.4 (26) 15.6 (5) 39.1 (9) 44.4 (4)

H1N1N2 33.2 (1,295) 39.0 (623) 36.0 (136) 35.4 (17) 18.4 (7) 46.9 (15) 30.4 (7) 22.2 (2)

H3N1N2 2.5 (106) 1.6 (25) 2.9 (11) – 5.3 (2) 12.5 (4) 4.43 (1) 11.1 (1)

H1H3N1N2 38.1 (1,488) 28.6 (458) 28.3 (107) 29.2 (14) 7.9 (3) 21.9 (7) 26.1 (6) 11.1 (1)

Total 100 (3,906) 100 (1,599) 100 (378) 100 (48) 100 (38) 100 (32) 100 (23) 100 (9)

forecasting accuracy compared to the other models. However, the
higher skill score from the combined model did not signify better
performance than the individual models when forecasting for 2024,
suggesting that the individual models could also have been utilized
in 2024.

The generated combination model, which includes dynamic
regression and neural network models, provided the predicted
weekly IAV detection by RT-rtPCR values for 2024. The predicted
2024 weekly RT-rtPCR detection and its 95% prediction interval
closely aligned with the observed data, with most data points falling
within the 95% prediction interval (Figure 8A). For 2024, some
deviations above the 95% prediction interval were observed in the
wean-to-market category in week 12, with a 48% IAV positivity,
and in week 13, with a positivity increase of 50% (Figure 8B).
In 2023, occasional deviations above the 95% prediction interval
were observed in the wean-to-market category in week 4, with a
46% IAV positivity, and in week 25, when positivity increased to
53%. The average positivity for the wean-to-market category in
2023 was 36.2%. Additionally, there was an increase of 14% (from
39% to 54%) in the proportion of lung sample submissions from
week 3 to week 4 and an increase of 12% (from 32% to 44%)
from week 24 to week 25, indicating higher IAV detection and
more tissue diagnosis submissions, which potentially represented
more animals affected during these weeks. Furthermore, deviations
below the 95% prediction interval were observed, particularly in
the adult/sow farm category, with IAV positivity of 16.9% in week
16, 15.4% in week 27, and 11.6% and 10.6% in weeks 34 and
37, respectively. The average positivity for the adult/sow farm
category in 2023 was 23.9%, highlighting examples where the
model was less effective at capturing unexpected declines in positive
cases. Additionally, in 2022, there was an increase above the 95%
prediction interval that started in October, from week 41 to week
45, aligned with an increase in the detection of IAV from both the
adult/sow farm and the wean-to-market category.

A prediction analysis and model performance from 2018 to
2024 are presented in Table 3. Dynamic regression consistently
showed lower RMSE and MAPE values in 2018, 2019, 2021, 2022,
and 2024. However, in 2023, the Prophet model outperformed
the others with the lowest RMSE and MAPE, while in 2020, the
Cyclic Regression model achieved the best results for these metrics.
Notably, the assumptions were met for the dynamic regression,
neural network, and SARIMA models, except for SARIMA in 2019

and 2023. This indicates the changing complexity of forecasting
each year. Overall, only the dynamic regression and neural network
models did not consistently show autocorrelation of the residuals
from 2018 to 2023.

4 Discussion

This study described the macroepidemiological aspects of IAV
RNA detection through RT-rtPCR and its positivity distribution
by age category and specimen. It highlights the importance of
monitoring IAV using a standardized method to enable timely
surveillance in the field. The primary aim was to present significant
macroepidemiological aspects of IAV detection via RT-rtPCR,
utilizing data from six NAHLN-accredited VDLs in the US,
representing 344,301 submissions from 2004 to 2024. The IAV
submission test and testing results from the participating VDLs in
this project continue to be reported, and the findings are publicly
available on the project website (SDRS, https://fieldepi.org/sdrs/).
The secondary aim was to assess the presence of seasonality in the
data and implement a weekly IAVmonitoring system that analyzed
the SDRS historical database for IAV detection, forecasted the
expected results for the upcoming year, and provided predictions
for weekly expected IAV detection results for the following year.

The change in the proportion of specimens submitted for IAV
detection reflects evolving diagnostic preferences and potentially
improved field sampling methods (Figure 3). The increasing
proportion of oral fluid submissions—currently the predominant
specimen type—suggests a growing reliance on this less invasive
and more easily collected sample, which may enhance surveillance
efforts. A similar finding was observed in a previous study
(31), which reported increased use of oral fluids since 2011 for
PRRSV and enteric coronavirus testing, contributing to the rise in
submissions for herd monitoring purposes (32). Notably, after the
validation of oral fluid samples for PRRSV and PCV2 monitoring
and surveillance, the US swine industry increasingly adopted this
sample type (59). Additionally, oral fluid has been demonstrated as
a suitable sample for both PRRSV and IAV surveillance (60), and
its widespread adoption by swine veterinarians and producers is
largely attributed to its cost efficiency (61).

While lung tissue submissions have decreased proportionally
over time (Figure 3), their consistent annual use for IAV RT-rtPCR
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TABLE 2 Forecasting assessment: Ljung–Box test, RMSE, MAE, MAPE, and skill score.

Model Ljung–Box test
2023

Ljung–Box test
2024

RMSE MAE MAPE RMSE MAE MAPE Skill score

Stat P-value Stat P-value 2023 2024 2023 2024

Dynamic
regression

5.29 0.87 21.6 0.02 4.68 3.65 12.9 4.51 3.75 13.1 0.20 0.23

Cyclic 123 <0.0001 84.3 <0.0001 4.59 3.69 13.1 4.41 3.47 11.8 0.21 0.24

Neural network 3.7 0.96 11.8 0.28 4.58 3.6 13 5.33 4.58 16.1 0.23 0.08

Prophet 91.6 <0.0001 77.4 <0.0001 3.64 2.67 9.03 4.57 3.46 8.74 0.37 0.21

SARIMA 18.9 0.04 8.13 0.61 5.82 4.67 14.9 7.21 6.29 24.2 0.003 0.23

Combinationa – – – – 4.35 3.42 12.3 4.76 4.07 14.3 0.26 0.18

aCombination of the dynamic regression and neural network models.

FIGURE 8

IAV weekly percentage of positive data monitoring from 2023 to 2024 by RT-rtPCR using a combination model with dynamic regression and a neural
network model (A); IAV weekly percentage of positive by age category (B): adult/sow farm (black line) and wean-to-market (red line).

testing (Figure 4) indicates that lung samples remain a crucial
specimen type for specific clinical diagnostic purposes, as they have
long been the preferred sample for molecular testing via RT-rtPCR
assays (62). Lungs are typically submitted as reference samples from
pigs exhibiting clinical signs and are used to confirm IAV diagnosis
(63). In addition, individual pig samples, such as nasal swabs,
have historically served as the gold standard antemortem sample
for IAV diagnostics (27). However, individual animal sampling is
labor-intensive and incompatible with the demands of modern,
large-scale swine production systems (61). These samples limit
the selection of donor pigs and reduce the likelihood of virus
detection, as not all pigs may be at the same stage of infection. This

limitation can result in the overinterpretation of disease presence
if samples are not taken from acutely affected, representative
animals. In contrast, population-based samples (e.g., oral fluids)
allow sampling from multiple animals and simultaneously increase
the likelihood of capturing pigs at the peak of virus shedding and
improve detection sensitivity (63).

A bi-seasonal pattern of IAV detection in swine samples
(Figure 2), with increased detection in the spring and fall, reflects
a distinct seasonal trend compared to other swine pathogens.
For example, previous studies have reported a single peak for
PRRSV and enteric coronavirus, with the highest detection typically
occurring during the colder months of the year (32, 36). One study

Frontiers in Veterinary Science 11 frontiersin.org

https://doi.org/10.3389/fvets.2025.1572237
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Moraes et al. 10.3389/fvets.2025.1572237

T
A
B
L
E
3

F
o
re
c
a
st
in
g
m
o
d
e
l
p
e
rf
o
rm

a
n
c
e
a
ss
e
ss
m
e
n
t
fr
o
m

2
0
1
8
to

2
0
2
4
.

M
o
d
e
ls

2
0
1
8

2
0
1
9

2
0
2
0

2
0
2
1

2
0
2
2

2
0
2
3

2
0
2
4

R
M
SE

M
A
E

M
A
P
E

R
M
SE

M
A
E

M
A
P
E

R
M
SE

M
A
E

M
A
P
E

R
M
SE

M
A
E

M
A
P
E

R
M
SE

M
A
E

M
A
P
E

R
M
SE

M
A
E

M
A
P
E

R
M
SE

M
A
E

M
A
P
E

D
yn

am
ic

re
gr
es
si
on

3.
3

2.
5

7.
8

2.
8

2.
1

7.
1

4.
0

3.
0

8.
8

4.
4

3.
3

9.
8

4.
6

3.
8

12
.5

4.
7

3.
6

12
.9

4.
5

3.
7

13
.1

C
yc
lic

re
gr
es
si
on

3.
6

2.
8

8.
6

3.
6

2.
9

9.
8

3.
9

3.
0

9.
4

4.
6

3.
5

10
.2

4.
8

4.
0

13
.1

4.
6

3.
7

13
.1

4.
4

3.
4

11
.8

N
eu
ra
ln

et
w
or
k

3.
9

3.
3

10
.3

4.
2

3.
3

11
.5

4.
2

3.
2

9.
7

5.
1

3.
7

11
.0

6.
7

5.
5

18
.0

4.
6

3.
6

13
.0

5.
3

4.
6

16
.1

P
ro
ph

et
m
od

el
4.
8

3.
9

12
.3

3.
2

2.
6

8.
1

5.
1

3.
9

11
.2

7.
4

6.
2

20
.0

5.
1

3.
9

11
.8

3.
6

2.
6

9.
0

4.
6

3.
5

8.
7

SA
R
IM

A
5.
6

4.
2

12
.9

5.
5

4.
5

13
.5

4.
8

3.
6

10
.5

8.
8

7.
4

24
.0

7.
0

5.
3

16
.6

5.
8

4.
7

14
.9

7.
2

6.
3

24
.2

identified that the wean-to-market age group exhibited higher
positivity rates than the adult/sow farm category, particularly
during seasonal peaks, suggesting that this group may serve as
a reservoir or amplifier for PRRSV transmission (64). Similarly,
higher IAV detection rates were observed in the wean-to-market
group, indicating that this age category may also serve as a
significant reservoir for IAV during peak periods.Moreover, a study
identified an association between the season of weaning and the
timing of placement into wean-to-market sites where IAV and
PRRSV were detected, showing an increased length of the growing
period, potentially due to the negative impact of these viruses on
health and growth performance during the growing phase (65). The
observed differences in positivity rates between these age categories,
particularly during the fall, suggest that surveillance efforts may
benefit from being tailored to specific production phases in order
to more effectively anticipate and mitigate outbreaks.

An increase in IAV submissions over time has been significantly
influenced by the high number of oral fluid specimens (Figure 4),
particularly from 2010 onward. The number of samples classified
as unknown has decreased over the years, indicating improvements
in the data capture process conducted by VDLs. Oral fluid samples
were initially described for PRSSV detection in 2008 (66), began
testing for IAV in participant VDLs in 2009, and surpassed lung
samples in 2013. Oral fluids are effective for monitoring IAV
detection in the swine population, requiring fewer specimens
compared to individual samples (67), and are routinely used for
surveillance, thereby effectively monitoring subclinical cases and
enabling early detection (61). The oral fluid sample serves as a
powerful tool for monitoring and surveillance. Collecting oral fluid
samples geospatially distributed across six pens of 60 pigs each in a
1,200-finishing barn allows for the detection of specific pathogens
at a prevalence lower than 1% (68).

Swine influenza contributes to chronic respiratory disease
problems and the presentation of Porcine Respiratory Disease
Complex, a syndrome resulting from co-infection with two or
more respiratory pathogens such as PRRSV (69). Surprisingly, lung
specimens showed a recurring pattern of increased submissions
during the fall season over time (Figure 4). Furthermore, this
consistent rise may suggest elevated clinical respiratory cases linked
to pig mortality in the fall, thereby favoring the submission of lung
samples, which are postmortem specimens useful for diagnosing
clinical disease in conjunction with any present histopathological
lesions. Additionally, a study in Ontario indicated that the fall
months significantly impact the increasing number of weekly and
monthly diagnostic and positive submissions for IAV infections
within Ontario swine populations (70).

Submissions from the wean-to-market age category showed a
higher positivity rate (34%) compared to those from the adult/sow
farm category (26%). This higher rate in the wean-to-market phase
may be attributed to factors such as high pig density, larger herd
sizes, and the use of multiple sources in the nursery and grow-finish
operations (71). A previous study reported recurrent increases in
PRRSV detection in the wean-to-market group prior to increased
detection in the adult/sow category, with increased PRRSV activity
typically occurring in the second half of the year (36). Another
recent study highlighted pig density as a key factor for mapping
PRRSV risk in swine-dense areas of the USMidwest (72). Similarly,
data from the current study show an increase in IAV detection in
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wean-to-market samples approximately 1 month before a rise in
detection from breeding herd submissions (36).

In the context of the integrated and dynamic North American
swine industry, millions of pigs are transported across regions
within the US, potentially introducing and transmitting new
pathogens to swine populations (63). Understanding themovement
and spread of IAV across different geographical regions and
between countries is crucial (73). In addition, a study showed that
pigs were frequently transported to harvest facilities in vehicles
that had not yet been cleaned or disinfected between loads
and that transport vehicles were often shared by different pig
owners—conditions that facilitate the spread of disease across
large regions (74). Moreover, modern swine production systems
often require pigs to be transported over long distances between
multiple locations, each specialized in different growth stages. This
movement further increases the risk of further spreading IAV
among swine populations (73). This pattern of pig movements
within the US highlights the complexity of swine management and
represents a potential route for the long-distance spread of IAV
within the US (75).

These findings highlight the critical importance of reinforcing
farm-level biosecurity practices by producers and veterinarians
to reduce the spread of respiratory diseases such as IAV (64).
This dynamic scenario also underscores the need to improve
surveillance and monitoring systems to effectively manage and
mitigate IAV transmission.

The H1N1 subtype was the most frequently detected between
2010 and 2021 (Figure 6), followed by H1N2 and H3N2 as the
second and third most commonly detected subtypes, respectively.
Interestingly, partial detection of H1, H3, N1, and N2 subtypes
ranged from 18% to 20% between 2006 and 2010, with a notable
increase from 10% in 2011 to 21.0% in 2021 (Figure 6). These
variations in partial subtype detection may be impacted by the lack
of ability to determine the full virus subtype in some samples, the
presence of low viral loads below the detection threshold of the
assays (76), and the high reassortment rate and ongoing evolution
of IAV (77, 78).

In addition, the increase in oral fluid submissions (Figure 4)
may also have been an important factor contributing to these
partial detections, considering that IAV subtyping RT-rtPCR is
less sensitive when targeting the genetically variable HA and NA
genes compared to the screening RT-rtPCR assay, which targets
more conserved regions of the genome. The increase in partial
subtype detection may indicate a need to readjust and update
the primers and probes used for IAV subtyping by RT-rtPCR
to ensure the inclusion of contemporary virus strains that have
evolved since the PCR was developed. Monitoring circulating
IAV subtypes is both necessary and essential for epidemiological
surveillance, supporting veterinarians in establishing prevention
and treatment measures on affected farms, and guiding vaccine
development (79). Furthermore, mixed subtype detections in lung
samples indicate co-infection with multiple IAVs within individual
animals, suggesting the presence of multiple IAV subtypes in a
single lung sample, and highlighting the importance of addressing
IAV infections as a multi-strain dynamic.

Detection of mixed subtypes further highlights the complexity
of IAV epidemiology, as co-detections and potential viral

reassortments are becoming increasingly frequent (Figure 6). Thus,
several factors may contribute to the mixed detection of IAV
subtypes in swine by PCR, including true co-infection, primer
mismatches, and the co-circulation of different viral lineages
(80, 81). A recent study showed that not all samples with
a cycle threshold (Ct value) below 30 could be successfully
subtyped, a limitation potentially attributable to specimen quality
or the design of the primers used in the subtype multiplex RT-
rtPCR assay (30). In this study, 24.6% of mixed IAV subtype
detections were identified in lung samples, indicating that a
single pig can be simultaneously infected with two identified IAV
viruses—an occurrence less commonly expected in population-
based sample types.

The relatively frequent detection of H1N1, H1N2, and H3N2
subtypes in lung samples (Figure 7A) contrasts with the more
variable detection patterns in non-lung samples (Figure 7B), where
H3N2 has shown increased detection since 2020. The rise in mixed
and partial subtypes in non-lung samples post-2019 may be related
to the increased use of oral fluids, indicating co-detections from
sampling performed on a group of animals. Moreover, the number
of samples tested annually has increased, particularly after 2012,
suggesting enhanced surveillance efforts.

Combining multiple forecasts derived from various forecasting
methods is often more effective than relying on a single forecast, as
it incorporates multiple drivers of the data-generating process and
mitigates uncertainties associated with model form and parameter
specification (51). Moreover, integrating diverse forecastingmodels
enhances overall robustness (82). The combined forecasting
model, which incorporates dynamic regression and neural network
approaches, demonstrated superior performance in predicting
IAV positivity trends for 2023. The improvement in RMSE and
skill score indicates that combining different forecasting methods
can enhance the accuracy of IAV surveillance models, with
combination models achieving higher skill scores compared to
individual models when capturing seasonal patterns and deviations
for 2023. A deviation in week 25 of 2023 occurred during late
spring andmay relate to environmental factors such as temperature
shifts, manure pumping, poor air quality within barns, and co-
infections, prompting veterinarians to submit samples to diagnostic
laboratories for IAV detection (18). Additionally, there was a
12% increase in the proportion of lung submissions (from 32%
to 44%) from week 24 to week 25 of 2023, indicating increased
IAV detection and more tissue diagnosis submissions, potentially
representing a higher number of affected animals during these
weeks. Moreover, in 2022, there was an increase above the predicted
level in October for both the adult/sow farm category and wean-to-
market, suggesting IAV activity coinciding with seasonal changes
and manure pumping in many regions. Although not included in
the scope of this study, it is important to note that the presence
of other respiratory pathogens, such as PRRSV, Mycoplasma

hyopneumoniae, and Pasteurella species, can also influence the
severity of influenza cases in swine during this period, as PRRSV
and these endemic bacteria may also exhibit increased activity in
the fall.

This study has some limitations that need to be addressed.
First, this is aggregated data from submissions with multiple
purposes, including clinical samples and surveillance testing for
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IAV. Thus, because samples were submitted for various purposes,
inferences drawn from aggregated results about prevalence,
incidence, diagnostic sensitivity, and specificity cannot be made
with statistical confidence. The shared data do not provide site-
specific identification, resulting in an inability to track recurring
sampling or determine how long IAV has been detected at a
given site. Additionally, when using VDL data, it is essential to
recognize that the test results are based on samples submitted
specifically for diagnostic purposes and, therefore, do not represent
the IAV prevalence or incidence. IAV subtype data is based
on predefined sets of primers and probes, which may limit
broader conclusions regarding IAV genetic diversity that could be
captured by sequencing techniques like Sanger and next-generation
sequencing. Nevertheless, there may be subpopulations of pigs in
the US utilizing other VDLs for IAV testing that are not included in
this work, potentially creating regions or subpopulations in the US
that may be underrepresented in this study.

5 Conclusion

This study describes the macroepidemiological aspects of IAV
RNA detection and its distribution according to age category,
specimen, and seasonal detection trends from the six major VDLs
in the US participating in SDRS from 2004 to 2024. It also describes
the IAV subtype diversity over time, with frequent detections of
IAV mixed subtypes in lung tissues, suggesting co-infection of
individuals with multiple IAV subtypes. In addition, this study
highlights the importance of the wean-to-market age category for
IAV detection dynamics, with higher positivity rates compared
to the adult/sow farm category. Overall, oral fluid and nasal
swabs were the most frequent antemortem samples submitted for
diagnostics, while lung tissue was the predominant postmortem
sample, highlighting their importance in IAV detection and
surveillance. In summary, data from this study suggest that IAV
has a biseasonal pattern of detection from swine samples, and
subtyping detection dynamics are constantly occurring over time.
This study outlines the importance of monitoring the influenza
virus and its subtypes in a standardized way, thus enabling timely
surveillance and more effective decision-making based on the
macroepidemiological information provided by this project in
the US.
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