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Introduction: The aim of this study was to determine patterns of physical 
activity in pet dogs using real-world data at a population scale aided by the use 
of accelerometers and electronic health records (EHRs).

Methods: A directed acyclic graph (DAG) was created to capture background 
knowledge and causal assumptions related to dog activity, and this was used to 
identify relevant data sources, which included activity data from commercially 
available accelerometers, and health and patient metadata from the EHRs. Linear 
mixed models (LMM) were fitted to the number of active minutes following log-
transformation with the fixed effects tested based on the variables of interest 
and the adjustment sets indicated by the DAG.

Results: Activity was recorded on 8,726,606 days for 28,562 dogs with 136,876 
associated EHRs, with the median number of activity records per dog being 
162 [interquartile range (IQR) 60–390]. The average recorded activity per day of 
51 min was much lower than previous estimates of physical activity, and there 
was wide variation in activity levels from less than 10 to over 600 min per day. 
Physical activity decreased with age, an effect that was dependent on breed size, 
whereby there was a greater decline in activity for age as breed size increased. 
Activity increased with breed size and owner age independently. Activity also 
varied independently with sex, location, climate, season and day of the week: 
males were more active than females, and dogs were more active in rural areas, 
in hot dry or marine climates, in spring, and on weekends.

Conclusion: Accelerometer-derived activity data gathered from pet dogs 
living in North America was used to determine associations with both dog and 
environmental characteristics. Knowledge of these associations could be used 
to inform daily exercise and caloric requirements for dogs, and how they should 
be adapted according to individual circumstances.
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1 Introduction

Both duration and intensity of physical activity affect energy expenditure, and the impact 
of different activities in dogs has been extensively reviewed (1). However, relatively little is 
known about physical activity level of pet dogs. Current evidence suggests that many dogs 
living in single-pet households have relatively sedentary lives (2–4), with a meta-analysis of 
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studies from the USA and Australia indicating a median weekly 
activity of 4 walks and 160 min (5). However, these data are largely 
based on owner-reported estimates of physical activity, which are 
somewhat subjective, open to bias and do not take account of the 
intensity of activity (6).

Previous studies have found that physical activity in dogs 
decreases with age (7–10) and potential associations with sex, breed, 
body mass, neuter status and body condition score are reported (7, 
8, 10–12). Environmental factors may also influence physical 
activity: for example, human routines vary between weekdays and 
weekends which may impact the activity of companion dogs (13–
16). Dogs living in rural environments are reported to be  more 
active, and older owners have been observed to have more active 
dogs (9).

Objective methods for measuring physical activity, such as heart 
rate monitoring or accelerometery, have been recommended for 
studies in humans (17), and have potential application for 
companion animal research. Previous studies have assessed the 
validity and reliability of accelerometers for the measurement of 
physical activity in dogs (18–26). Accelerometers have also been 
used to assess the effect of clinical treatments (chemotherapy, 
non-steroidal anti-inflammatory drugs and weight loss) on physical 
activity in dogs (27–32), to determine correlates of physical activity 
in common breeds of dog (7, 10, 33, 34), to compare activity 
patterns in shelters and domestic settings (35, 36), and to evaluate 
differences in activity between healthy and osteoarthritic dogs 
(37–40).

Many different activity monitors are now available for dogs, for 
example those made by Whistle (Mars Petcare, McLean, VA) (41), 
which provide owners with information in a mobile application 
regarding the daily activity levels of their dog. The availability and 
widespread use of such accelerometer technology provides the 
opportunity to study physical activity in large numbers of dogs kept 
in a domestic setting.

Studies based on real-world observational data are often limited 
to identification of associations between variables of interest and the 
outcome, such that causation cannot be assumed unless a prospective 
study, such a randomized control trial (RCT), is undertaken. However, 
both the theory and toolset for making causal inferences from real-
world observational data are well-established (42–44), enabling 
potential biases and confounding, which would be addressed through 
design and randomization in an RCT. A directed acyclic graph (DAG) 
is a graphical tool that enables identification of key concepts and 
assumptions, such as causal pathways and confounders (45, 46), as 
well as the appropriate adjustment sets for estimating causal effects 
(47). This approach has been used across many areas of science, 
including applied healthcare research (48).

The aim of the current study was to examine physical activity 
patterns in pet dogs, using population-scale data from Whistle 
accelerometers and electronic health records (EHR), as well as 
determining causal factors of physical activity in dogs.

2 Materials and methods

2.1 Data

A variety of factors may influence the physical activity levels of a 
dog including both pet and environmental attributes. Therefore, a 

DAG was constructed to capture background knowledge and causal 
assumptions related to dog activity (Figure  1). One of the study 
authors (AO) constructed the DAG, with input from veterinary 
experts (AJG), experts in animal nutrition (RFB) and data scientists 
(COF, RH), further informed by a review of scientific literature. The 
DAG was created in an iterative process of mapping and integration 
to identify relevant variables and their putative causal relationships. 
Relevant data sources were identified based on the DAG: pet and 
activity data from the Pet Insight Project (49) (a large pet health study 
that distributed 100,000 activity monitors to clients of Banfield Pet 
Hospitals to combine activity data from accelerometer devices with 
EHRs), owner data, and environmental data. Additional details on the 
hypotheses illustrated in the DAG can be  founded in 
Supplementary Table 1. The timeframe for data inclusion coincided 
with the timing acquisition of activity records, with the earliest and 
latest activity records timestamped November 2013 and October 2023.

All internal data (Whistle records, Banfield EHRs and owner data) 
are anonymized and encrypted with stringent security processes in 
place, including algorithmic removal of all personally identifiable 
information. The authors were required to obtain approval from 
internal data governing bodies to access the anonymized data. 
Participants of the Pet Insights Project consented to have their pet data 
utilized for research purposes and were able to opt out at request.

2.1.1 Activity data
Retrospective activity data were extracted by one study author 

(AO) from an anonymized database of records collected by 
commercially available accelerometers (Whistle 3, Whistle 4, Whistle 
FIT, Whistle GO, Whistle Health, Whistle GPS; Mars Petcare) that 
acquired 3 Hz 3-axis accelerometery data for at least several seconds 
whenever sufficient movement was detected. The raw data from the 
accelerometer were converted into the number of minutes per day 
spent in medium-to-high intensity activity (10, 19). These activity 
measurements have been validated in laboratory conditions and 
assessed to be independent of the size of the dog (10). The algorithm 
also excludes activities from the calculation that do not expend 
sufficient energy, such as riding in a car, shaking or scratching. All 
devices measured and processed activity equivalently. Activity records 
from days where either <10 or >600 active minutes had been recorded 
were removed (21% of records) because these were likely to 
be inaccurate measurements, potentially as a result of partial activity 
monitor use during the day, user error (e.g., an owner leaving a device 
in their pocket for a prolonged period) or anomalous behavior (e.g., 
resting after injury or illness).

2.1.2 Electronic health records
Retrospective health data and metadata from canine inpatient 

visits were extracted by one study author (AO) from the EHR database 
of Banfield Pet Hospitals (Petware©), a network of over 1,000 primary 
care veterinary hospitals located primarily in the USA. At the time of 
registering their pet at the hospital, owners gave consent for retention 
of anonymised EHR data and its use in clinical studies. Since this 
study was a secondary analysis of these data, no additional informed 
consent was requested from the owner. Data were collected between 
November 2012 and October 2023. The patient information extracted 
from the EHR database included: breed, date of birth, sex, neuter 
status, and date of neutering (if available); information extracted for 
each visit included: body weight (in kg), body condition score (BCS: 
“1 - very thin,” “2 - thin,” “3 - ideal weight,” “4 - overweight,” and 
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“5 - markedly obese”), diagnoses (e.g., “healthy pet,” “dental calculus,” 
“dermatitis”) and visit reason (e.g., “comprehensive exam,” 
“consultation,” “dental cleaning,” “vaccination”). Further details about 
this EHR database have been described (50).

Patient information is obtained when registering a dog (e.g., date 
of birth, breed and sex). Birth date might be inaccurately recorded, for 
example, if the owner does not know the exact date or if it is incorrectly 
entered into the record. Given that the age (in years) at visit was 
derived from the date of birth and visit dates, it might also 
be inaccurate. Neuter status at visit was derived using the neuter status 
and information about the date of neutering, which is either recorded 
at registration or when the procedure is undertaken at a Banfield Pet 
Hospital. If neutering was undertaken elsewhere, the information 
might not be recorded, or the exact date might not be available. If no 
date of neutering was available, all visits were considered to have the 
neuter status given in the patient information. Body weight is routinely 
recorded at visits using electronic scales, whilst body condition is 
assessed by a veterinarian either using the 5-point BCS scale 
(described above) or a 9-point scale which is then translated within 
the database to the 5-point scale. For the latter, each unit on the 
5-point BCS scale corresponded to two points on the 9-point scale 
(e.g., ideal weight BCS 3/5 vs. 4–5/9; overweight BCS 4/5 vs. 6–7/9; 
obese 5/5 vs. 8–9/9).

Breed size category was assigned for each dog using previously 
published thresholds (50); in this respect, adult dogs weighing 
≤6.5 kg, 6.5–9.0 kg, 9–15 kg, 15–30 kg, 30–40 kg and >40 kg were 
assigned to the toy, small, medium-small, medium-large, large and 
giant category, respectively. To assign a dog to a particular category, 
the average of all its adult body weight measurements within its EHRs 
was used, corrected where necessary using BCS; here, the adult 

weights of dogs recorded as 4/5 and 5/5 were multiplied by 0.8 and 
0.6 respectively, to take account of the fact that each unit on the 
5-point BCS (or two units on the 9-point BCS) correspond to 
approximately 20% additional weight (51–54). Following this, a 
binary “weight status” variable was created comprising dogs recorded 
as underweight or ideal weight (BCS 1–3/5) or overweight condition 
(BCS 4–5/5).

The EHRs were classified as healthy or unhealthy based on the 
reason for the visit and diagnoses recorded at the visit. Injury or 
ill health is recorded in each EHR until the issue is resolved, not 
just at the first instance of diagnosis. An EHR was classified as 
unhealthy if there was a diagnosis (including historic diagnosis) of 
a chronic illness such as organ failure, any cardiovascular, 
musculoskeletal, metabolic or endocrine system disorder. A range 
of different etiologies, including neoplasia, were included within 
this classification and, when present, the EHR was flagged as 
“unhealthy visit.” An indicator of potential injury was also added 
to the EHRs, based on records of ailments or procedures that could 
affect mobility, such as fractures, road traffic accident, surgery or 
anesthesia. An EHR was classified as healthy if it was not classed 
as unhealthy as above, and it was a general preventive care visit, 
for example, for vaccination, anthelmintic prescription 
or grooming.

2.1.3 Environmental and owner data
Additional data on location and owner age group were extracted 

from the Banfield EHRs and validated by using data provided by 
Epsilon (55) as a secondary source. Location data were summarized 
into three variables: climate zone, latitude and location type. For the 
climate zone variable, dogs were assigned to one of 4 categories (cold, 

FIGURE 1

Hypothesized data generating process for activity of an individual dog in a day, displayed in a directed acyclic graph (DAG), created in the web-based 
application DAGitty (66). Blue circles represent observed variables, grey circles represent unobserved variables, and arrows indicate direction of 
hypothesized causality. In order to have a causal effect, a causal variables must precede the effect variables in time. For example, “active minutes” is 
considered at a timepoint subsequent to recording of “unhealthy diagnosis.”
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hot-humid, hot-dry and marine), which were simplified categories 
based on the zones used in climate-specific guidance from the 
Building America project (56); the location type variable was classified 
as urban or rural, based estimates of population density by census 
tract: locations were assigned to tracts, counties and states using data 
from the US Census Bureau via the open data FTP (57). Population 
density and rurality group data were retrieved from the US 
Department of Agriculture (58).

Linking activity and EHR data (see below) enabled variables 
to be created for season (spring, summer, autumn, winter) and day 
type (weekday, weekend). The season variable was based on 
northern hemisphere dates for meteorological seasons (59) 
assigned using the calendar day on which the activity was 
recorded, whilst the day type variable was based on the day of the 
week that the activity occurred (weekday: Monday to Friday; 
weekend: Saturday and Sunday).

2.2 Joining dog, owner, household, and 
activity data

Full details of how data derived from the activity monitors and 
EHRs were linked are shown in Figure  2. Briefly, data from each 
source were matched within household, by species, sex, name and date 
of birth (month and year). Matching the data between the two sources 
in this way enhances reliability; for example, finding that the same 
date of birth is recorded in both the activity and EHR databases, 
increases confidence that the data are reliable. The matching was 
performed algorithmically, via a graph network on anonymized data, 
and a linking identifier was provided to researchers to enable the 
datasets to be joined. Data on owner city, county and state were used 
to match the location and climate zone data. To join dog data, such as 
health and weight status to activity, each daily activity record for each 
dog was linked to the closest veterinary visit in the EHR, provided that 
the visit occurred before the activity record and within one calendar 
year. This results in a one-to-many relationship for visits to activity 
records, in that the dog data from a visit record may be joined to 
multiple activity records following it. Activity records that were not 
within 1 year of a veterinary visit were excluded from analysis. The 
activity records were linked to visit records regardless of whether they 
were classified as healthy, such that filtering could be performed later 
to remove activity records nearby visits categorized as unhealthy. The 
ratio of activity records to visit records was inspected to identify 
extreme outliers. A threshold of 5:1 was determined based on visual 
inspection; dogs with fewer than five activity records per visit were 
excluded. These were often dogs with high visit frequencies and low 
numbers of activity records.

The final inclusion criteria were determined by a combination of 
opinion from veterinary experts (AJG) and data scientists (AO, COF, 
RH), the quantity and quality of data and the relevance of the data 
to the aims of the study. For inclusion in the final datasets, dogs had 
to have more than seven activity records available, to avoid sparsity 
in the data at a dog level. Further, they had to be >1.5 years but 
<12 years of age at both the time of activity record and linked visit 
record, to ensure that they were adult at the time the data were 
recorded. The “all visits dataset” comprised data from EHRs 
regardless of classification (healthy vs. unhealthy). However, to 

examine associations between dog variables studied and activity of 
dogs without any illness or injury, a “healthy visits dataset” was also 
created (Supplementary Table  2), by removing activity records 
linked to EHRs with a record of either an injury or 
unhealthy diagnosis.

2.3 Statistical analysis of active minutes

Statistical analysis was performed using an online open-access 
statistical language and environment (R version 4.2.3) (60), with 
several additional packages: dotwhisker v0.7.4 (61), ggeffects v1.3.0 
(62), ggplot2 v3.4.3 (63), lmerTest v3.1–3 (64), dbarts v0.9–23 (65). The 
DAG was tested for consistency with the data by checking the 
suggested conditional independences (see Supplementary material for 
more details). The candidate independent variables were checked for 
multicollinearity using Pearson’s correlation coefficient for continuous 
variables and Cramer’s V for categorical variables, where values above 
0.5 would be  require further consideration. Linear mixed models 
(LMM) were fitted to the number of active minutes following 
log-transformation using the lmer function (lmerTest) (64) whereby 
30 activity records per dog were selected at random and used in the 
analysis. Fixed effects were identified based on the variables of interest 
and the adjustment sets indicated by the DAG using the DAGitty 
software v3.1 (66). The random effect was specified as an intercept per 
dog to account for repeated measures within the data. Interactions 
were considered if they were hypothetically plausible and were 
assessed by comparing the Akaike information criteria (AIC) (67) of 
models with and without the interaction terms, determined by the 
anova function. To balance complexity against performance, 
interactions were only included if they resulted in a statistically-
significant (p < 0.05) reduction in AIC.

To validate the models, the dataset being analyzed was subdivided 
into five samples, with records grouped by dog ensuring that all 
records for an individual dog were placed into the same sample. A 
LMM as described above was fitted to each data subset and the 
coefficients and performance across the remaining four subsets were 
compared for consistency. The final results for the LMM were 
generated using a permutation testing strategy, whereby the process 
of random data sampling of 50 activity records per dog and model 
fitting was repeated 1,000 times. The coefficient estimates and 
confidence intervals were determined as the mean of the 1,000 
individual models. The p-values for the coefficient estimates were 
calculated as the fraction of time the confidence interval included 
zero. This approach produces coefficient estimates and p-values less 
susceptible to noise in the data sample.

Further model validation, including verification of the 
adjustment set indicated by the DAG, was conducted by training 
a non-parametric Bayesian additive regression trees (BART) 
model (68). The BART model should be  insensitive to 
confounders, meaning that it is not necessary to identify the 
correct adjustment set. The model was fitted to the log-transformed 
number of active minutes, with all predictors present in the DAG 
and dog ID as the grouping factor, using the rbart_vi function 
(dbarts) (65). The correlation of predictions and partial 
dependence plots from the LMM and BART models were 
compared for consistency.
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3 Results

3.1 Study population

The all-visits dataset comprised activity recorded 8,726,606 days 
for 28,562 dogs with 136,876 associated EHRs, and the healthy visits 

dataset contained 6,799,652 days of activity records for 25,720 dogs 
with 103,325 EHRs. The mean number of activity records per dog was 
305.5 [standard deviation (SD) 372.20, median 162, interquartile 
range (IQR) 60–390] in the all-visits dataset, and 322.3 (SD 383.2, 
median 174, IQR 65–419) in the healthy-visits dataset. Figure 3A 
illustrates the association between the number of activity records 

FIGURE 2

Flow diagram illustrating the steps used in data cleaning and generation of the final study data. Yellow boxes depict the datasets used, grey boxes 
depict the actions undertaken, blue boxes depict the data available at each stage, whilst the green boxes show the final “all-visits” and “healthy-visits” 
datasets. “Whistle” refers to the data from the accelerometer, including dog demographic data and daily activity records. “Banfield” refers to the 
electronic health record data, including dog and anonymized owner demographic data, and visit data.
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included and number of active minutes per record for the all-visits 
dataset. The mean number of active minutes per dog was 50.8 (SD 
36.05) minutes per day in the all-visits dataset and 52.3 (SD 36.95) in 
the healthy-visits dataset. The distribution of active minutes recorded 
over the data collection period was stable, as shown in Figure 3B for 
the all-visits dataset.

A summary of dog, activity and visit data stratified by breed size 
for the study population (all-visits) compared with that of the Banfield 
population is shown in Table 1. There were 15,016 (52.6%) male and 
13,546 (47.4%) female dogs, with the mean age at time of recording 
activity being 6.1 (SD 2.74) years. Of the 136,876 visits, 131,140 
(95.9%) and 46,820 (34.2%) involved dogs reported to be neutered or 
in overweight condition, respectively. Dogs of 225 different breeds 
were represented (Supplementary Table  2 presents the 30 most 
common breeds), with dogs of the Labrador Retriever breed (purebred 
or mix) being most common (3,295 dogs; 11.5% of all dogs and 
activity records). For comparison, 441,812 (9.0%) and 10,424 (5.8%) 
Labrador retrievers (purebred or mix) visited Banfield Veterinary 
Hospitals or were registered with Whistle within the same timeframe, 
respectively. Dogs labeled as “Mixed Breed” were next most common 
(2,312 dogs, 8.1% of all dogs and records), which was similar to the 

proportion of “Mixed Breed” dogs in the Banfield (386,081 dogs, 7.9%; 
2nd most common) and Whistle (3,311 dogs, 1.9%) populations. 
Conversely, Chihuahua (purebred or mixed) was the third most 
prevalent named breed in the Banfield population (8.1%, 394,416 
dogs) but represented only 5.1% (1,460 dogs) in the study dataset and 
2.0% (3,512 dogs) in the Whistle population.

3.2 Associations between dog attributes 
and physical activity in dogs

Based on the DAG (Figure 1), adjustments for possible effects of 
location and owner age would be necessary to examine associations 
between activity and dog variables (age, breed, size, weight status, sex 
and neuter status). Further, it was not necessary to include either the 
unhealthy diagnosis or injury variables, because the DAG indicated 
that these were modifiers of other effects (e.g., age, breed size, BCS 
and neuter status). A linear-mixed effects model was created to 
determine associations between log-transformed active minutes and 
dog age, breed size, weight status, sex, neuter status, owner age and 
location. In initial models, the following plausible interactions were 

FIGURE 3

Summarization of active minutes within the all-visits dataset. (A) Distribution of active minutes recorded per activity record in the study population, 
with number of records on a log scale. The bin width is 10 min, the solid vertical line shows the mean value, and the dashed vertical lines show one 
standard deviation from the mean. (B) Active minutes recorded over the data collection period for the study. The upper and lower limits of the boxes 
show 25th and 75th percentiles, whilst bold horizontal line within each box show the 50th percentile. Given that minimum and maximum values were 
outside the thresholds set during the selection process, the whiskers show the 10th and 90th percentiles.
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TABLE 1 Summary of the datasets used in the study stratified by breed size and compared with the Banfield population to evaluate potential selection bias.

Variable and dataset Breed size

All dogs Toy1 Small1 Medium-small1 Medium-large1 Large1 Giant1

Dogs1

  All-visits population 28,562 5,095 (17.8%) 3,305 (11.6%) 3,760 (13.2%) 10,631 (37.2%) 4,612 (16.2%) 1,159 (4.1%)

  Healthy-visits population 25,720 4,191 (16.3%) 2,915 (11.3%) 3,441 (13.3%) 9,115 (38.5%) 4,232 (16.5%) 1,056 (4.1%)

  Banfield population2 4,901,786 1,401,458 (28.6%) 625,138 (12.8%) 578,338 (11.8%) 1,503,240 (30.7%) 636,219 (13.0%) 156,393 (3.2%)

Activity records1

  All-visits population 8,726,606 1,466,824 (16.8%) 1,077,408 (12.4%) 1,246,939 (14.3%) 3,254,134 (37.3%) 1,383,940 (15.9%) 297,361 (3.4%)

  Healthy-visits population 6,799,652 945,986 (13.9%) 775,495 (11.4%) 990,760 (14.6%) 2,738,039 (40.3%) 1,113,763 (16.4%) 235,609 (3.5%)

Activity records per dog

  All-visits population 305.5 (372.20) 287.9 (362.01) 326.0 (392.2) 331.6 (393.79) 306.10 (373.74) 300.1 (356.24) 256.6 (321.35)

  Healthy-visits population 322.3 (383.20) 316.4 (389.75) 347.4 (406.10) 348.7 (404.67) 317.9 (381.65) 313.9 (365.29) 267.5 (328.14)

Active minutes per day

  All-visits population 50.8 (36.05) 61.8 (44.20) 62.7 (45.18) 67.9 (48.24) 71.5 (53.56) 71.5 (52.09) 65.5 (48.15)

  Healthy visits population2 52.3 (36.95) 61.1 (43.01) 62.6 (44.92) 68.3 (48.05) 71.6 (53.43) 72.0 (52.11) 66.1 (48.50)

Visits1

  All-visits population 136,876 23,379 (17.1%) 17,157 (12.5%) 19,676 (14.4%) 50,053 (36.6%) 21,767 (15.9%) 4,844 (3.5%)

  Healthy-visits population 103,325 14,683 (14.2%) 11,986 (11.6%) 15,056 (14.6%) 40,975 (39.6%) 16,894 (16.4%) 3,731 (3.6%)

  Banfield population2 60,105,063 17,595,443 (29.3%) 8,367,457 (13.9%) 7,603,311 (12.7%) 17,163,959 (28.6%) 7,621,122 (12.7%) 1,753,760 (2.9%)

Visits per year

  All-visits population 3.1 (1.85) 3.0 (1.69) 3.3 (1.89) 3.4 (2.20) 3.1 (1.82) 3.1 (1.72) 2.9 (1.50)

  Healthy-visits population 3.0 (1.74) 2.9 (1.60) 3.1 (1.72) 3.2 (2.01) 3.0 (1.73) 3.0 (1.65) 2.8 (1.50)

  Banfield population2 3.4 (1.68) 3.3 (1.65) 3.5 (1.75) 3.6 (1.85) 3.3 (1.59) 3.4 (1.65) 3.5 (1.68)

Age at activity record (years)

  All-visits population 6.1 (2.75) 6.7 (2.79) 6.7 (2.77) 6.2 (2.82) 5.7 (2.66) 5.8 (2.66) 5.4 (2.50)

  Healthy-visits population 5.6 (2.59) 6.2 (2.71) 6.3 (2.69) 5.8 (2.69) 5.4 (2.48) 5.4 (2.46) 5.0 (2.34)

Age at visit record (years)

  All-visits population 6.1 (2.83) 6.7 (2.85) 6.8 (2.82) 6.3 (2.89) 5.7 (2.75) 5.8 (2.75) 5.3 (2.55)

  Healthy-visits population 5.7 (2.67) 6.3 (2.8) 6.3 (2.73) 5.9 (2.79) 5.4 (2.57) 5.3 (2.54) 4.9 (2.36)

  Banfield population2 5.6 (3.88) 6.3 (4.01) 6.4 (4.02) 5.9 (3.98) 5.0 (3.64) 4.9 (3.53) 4.3 (3.21)

(Continued)
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TABLE 1 (Continued)

Variable and dataset Breed size

All dogs Toy1 Small1 Medium-small1 Medium-large1 Large1 Giant1

Body weight at visit (kg)

  All-visits population 20.9 (13.30) 5.2 (1.44) 8.4 (1.41) 12.8 (2.68) 25.5 (5.62) 37.4 (5.29) 51.8 (9.64)

  Healthy-visits population 21.6 (13.02) 5.3 (1.41) 8.3 (1.41) 12.8 (2.72) 25.4 (5.56) 37.2 (5.32) 51.6 (9.64)

  Banfield population2 16.5 (12.96) 4.6 (1.74) 7.9 (1.92) 11.9 (3.30) 23.9 (7.13) 32.9 (9.08) 43.9 (14.34)

Male sex 3

  All-visits population 15,016 (52.6%) 2,540 (49.9%) 1,945 (58.9%) 2,089 (55.6%) 4,561 (42.9%) 3,052 (66.2%) 829 (71.5%)

  Healthy-visits population 13,533 (52.6%) 2,087 (49.8%) 1,715 (58.8%) 1,886 (55.3%) 4,268 (43.1%) 2,817 (66.6%) 760 (72.0%)

  Banfield population2 2,66,635 (52.6%) 609,676 (46.8%) 361,769 (58.8%) 344,741 (58.1%) 597,716 (43.5%) 446,820 (66.2%) 164,665 (75.4%)

Visits recording neutered status3,4

  All-visits population 131,140 (95.9%) 21,730 (93.0%) 16,518 (96.4%) 19,074 (97.0%) 48,722 (97.4%) 20,662 (95.0%) 3,495 (91.6%)

  Healthy-visits population 99,029 (95.9%) 13,643 (93.0%) 11,544 (96.4%) 14,597 (97.0%) 39,843 (97.3%) 15,981 (94.7%) 3,421 (91.7%)

  Banfield population2 53,748,471 (89.4%) 15,148,341 (86.1%) 7,661,236 (91.6%) 7,009,379 (92.2%) 15,726,785 (91.6%) 3,287,840 (88.7%) 1,444,566 (82.4%)

Visits recording overweight condition3,4

  All-visits population 46,820 (34.2%) 6,057 (25.9%) 6,382 (37.2%) 7,691 (39.1%) 16,369 (32.7%) 8,558 (39.4%) 4,613 (36.4%)

  Healthy-visits population 33,504 (32.5%) 3,345 (22.8%) 4,133 (34.5%) 5,632 (37.4%) 12,776 (31.2%) 6,303 (37.3%) 1,315 (35.3%)

  Banfield population2 17,767,362 (29.6%) 4,083,723 (23.2%) 2,799,537 (33.5%) 2,727,957 (35.9%) 5,166,712 (30.1%) 2,494,825 (32.7%) 494,608 (28.2%)

Results of continuous datasets are reported as mean (standard deviation), whilst counts and categorical data are reported as number (%). 1For dogs, activity records and visits, the percentages shown for breed groups represent the percentage of that breed group within 
the all-dog population. 2The Banfield population is defined as dogs visiting Banfield Pet Hospitals between in the years 2013 to 2023, to align with the data collection period for the study. 3For sex, neuter status and overweight condition, percentages represent percentage 
of male dogs, neutered dogs and overweight dogs, respectively, within the all-dog population or respective breed group. 4Given that both neuter status and overweight status may change over the data collection period, these numbers are reported relative to visits rather 
than individual dogs.
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also assessed: age and breed size, weight status, neuter status, owner 
age; size and weight status; breed size and owner age; weight status 
and neuter status; neuter status and sex. However, the only significant 
interaction identified, and therefore, included in the final model, was 
the interaction between breed size and age (Table 2). This model had 
an R2 of 0.515 and a root square mean deviation (RMSE) of 0.462, 
whilst the random effect (pet ID) accounted for 0.221 of the variance 
in the data. Model coefficients and performance were consistent 
across each of five data subsets (SD for R2 0.0108; SD for RMSE 
0.0154). The trends observed in the final model were consistent with 
those observed in the non-parametric BART model for each 

attribute. Additional model performance metrics are reported in 
Table 2.

Physical activity decreased with age, an effect that was dependent on 
breed size, with a greater decline in activity for age observed as breed size 
increased (Figure  4). For a medium-large dog (reference size), the 
predicted marginal mean activity for a 1.5-year-old dog was 68.6 active 
minutes [95% confidence interval (95%-CI) 67.4, 69.9], decreasing to 
39.5 active minutes (39.0, 40.1) and 35.4 active minutes (34.8, 35.9) for a 
5- and 10-year-old dog, respectively. Activity also varied independently 
with breed size (p < 0.001): for a 6-year-old dog (population mean), the 
predicted marginal mean activity was 37.0 min (36.6, 37.9) for toy 

TABLE 2 Linear mixed-effects model of log-transformed activity as a function of dog-related variables, whilst controlling for owner age and location 
(urban or rural), using the final dataset.

Variables Estimate Error 2.5% 
CL

97.5% 
CL

p-
value

Marginal 
mean
(LM)

2.5% 
CL

97.5% 
CL

Marginal 
mean 

(BART)

2.5% 
CL

97.5% 
CL

Intercept 34.866 0.017 33.689 36.083 < 0.001 – – – – – –

Dog age−2 2.432 0.020 2.303 2.565 < 0.001 – – – – – –

Owner age 0.033 0.002 0.028 0.037 < 0.001 – – – – – –

Breed size

  Toy −0.242 0.014 −0.263 −0.221 < 0.001 37.0 36.4 37.6 39.4 38.2 40.3

  Small −0.202 0.016 −0.227 −0.176 < 0.001 37.7 37.0 38.5 41.9 40.6 43.2

  Medium-

small

−0.051 0.015 −0.077 −0.023 0.001 40.4 39.6 41.2 42.6 41.4 43.7

  Medium-

large
Reference category 40.3 39.7 40.9 41.7 41.0 42.5

  Large 0.054 0.014 0.026 0.083 < 0.001 41.2 40.4 41.9 43.6 42.5 44.8

  Giant −0.031 0.024 −0.076 0.015 0.872 35.5 34.4 36.6 38.0 36.4 39.7

Weight status

  Ideal weight Reference category 38.7 38.1 39.2 42.0 41.6 42.5

  Overweight −0.002 0.002 −0.005 0.002 0.896 38.6 38.1 39.1 40.7 40.1 41.3

Neuter status

  Intact Reference category 39.0 38.0 39.9 42.6 40.4 44.4

  Neutered −0.017 0.013 −0.042 0.008 1.000 38.3 38.0 38.6 41.6 41.1 42.0

Sex

  Male Reference category 39.5 39.0 40.1 42.5 41.9 43.2

  Female −0.045 0.006 −0.056 −0.034 < 0.001 37.8 37.2 38.3 40.6 39.9 41.1

Location

  Rural Reference category – – – – – –

  Urban −0.004 0.006 −0.015 0.008 1.000 – – – – – –

Breed size-age interaction

  Toy 0.010 0.002 0.007 0.014 < 0.001 – – – – – –

  Small 0.005 0.002 0.001 0.008 0.241 – – – – – –

  Medium-

small

−0.013 0.002 −0.017 −0.010 < 0.001 – – – – – –

  Medium-

large

−0.023 0.001 −0.025 −0.020 < 0.001 – – – – – –

  Large −0.028 0.002 −0.031 −0.025 < 0.001 – – – – – –

 Giant −0.039 0.002 −0.046 −0.032 < 0.001 – – – – – –

The details include intercept, fixed effects coefficients and their 2.5 and 97.5% confidence limit (CL) and p-values. Estimated marginal mean activity is displayed for values of categorical 
variables for the linear model (LM) and the BART model, where all other variables are adjusted for mean values (dog age of 6.0 years and owner age of 41.7 years). The model had an R2 of 
0.515 (SD 0.0108) and a RMSE of 0.462 (SD 0.0154) on log-transformed active minutes, whilst pet ID as a random effect accounted for 0.221 of the variance in the data.
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breeds, 37.7 (37.0, 38.5) for small breeds, 40.4 (39.6, 41.2) for medium-
small breeds, 40.3 (39.7, 40.9) for medium-large breeds and 41.2 (40.4, 
41.9) for large breeds. The predicted marginal mean activity was 35.5 
(34.4, 36.6) for giant breeds with a p-value of 0.872. Male dogs [39.5 
active minutes (39.0, 40.1)] were estimated to be slightly more active 
(p < 0.001) than female dogs [37.8 active minutes (37.2, 38.3)]; however, 
there was no effect of either weight or neuter status on activity.

Given uncertainties about possible effects of illness and injury on 
physical activity, associations between physical activity and dog 
attributes were also estimated using the healthy-visits dataset. For this, 
a linear-mixed effects model was trained as described for the all-visits 
dataset, again using log-transformed active minutes as the outcome 
variable and the same predictor variables (and interactions). The final 
model had an R2 of 0.519 and a root square mean deviation (RMSE) 
of 0.461, whilst the random effect (pet ID) accounted for 0.214 of the 
variance in the data (Table 3). Model coefficients and performance 
were consistent across each of five subsamples of the data (SD for R2 
0.0112; SD for RMSE 0.0037). The trends observed in the final model 
were consistent with those observed in the non-parametric BART 
model for each attribute. The results of the final model were also 
consistent with those of the model from the all-visits dataset (Table 3).

3.3 Association of environmental variables 
with physical activity in dogs

Possible associations between activity and season, climate, 
latitude, location type (urban or rural), day type (weekday or weekend) 
and owner age were examined by the DAG, with no additional 

confounders indicated (Figure 1). The absence of confounding from 
dog attributes meant that it was only necessary to perform the analyses 
on the all-visits dataset. Therefore, a linear-mixed effects model was 
trained on log-transformed active minutes as a function of season, 
climate, latitude, location type, day type and owner age, with pet ID as 
a random effect to account for repeated measures. All plausible 
interactions were assessed: climate and season; day and season, 
location, owner age. Significant interactions were identified between 
climate and season, and between owner age and day. The final model 
had an R2 of 0.533 and a RMSE of 0.447 on log-transformed active 
minutes, with the random effect (pet ID) accounting for 0.246 of 
variance in the data. Model coefficients and performance were again 
consistent across each of five subsamples of the data (SD for R2 0.0105; 
SD for RMSE 0.0023). Once again, the trends observed in the final 
model were consistent with those observed in the non-parametric 
BART model for each attribute.

Estimated marginal means for each environmental attribute are 
displayed in Table  4. Physical activity was estimated to vary with 
climate (p < 0.001); compared with cold climate as the reference 
category [41.8 active minutes (41.2, 42.4)], activity levels were greater 
in dogs living in hot dry [44.2 active minutes (43.4, 45.0)] or marine 
[44.6 active minutes (43.5, 45.7)] climates, but not in those living in 
hot humid [41.6 active minutes (41.2, 42.0)] climates. Regarding 
season, compared with spring as the reference category spring [44.1 
active minutes (43.7, 44.5)], dogs were less active in winter [41.6 active 
minutes (41.2, 42.0)]. Differences between reference and autumn or 
summer were less significant. Figure 5 shows the predicted activity 
varying by climate and season, for both the LM and BART predictions, 
where seasonal trends appear to vary by climate.

FIGURE 4

Relationship between active minutes as a function of age for dogs of each breed size group, whilst holding all other relevant variables (body condition 
score, neuter status, sex, location and owner age) constant, estimated using a linear mixed-effects (LM; blue) and Bayesian additive regression trees 
(BART; red) models. The ribbons show either the 95% confidence intervals or 95% credible intervals for of those predictions (LM and BART, 
respectively).
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Dogs were more active on weekend days [44.7 active minutes (44.3, 
45.1)] than on weekdays [41.3 active minutes (41.0, 41.7); p < 0.001], 
whilst those living in rural locations [43.6 active minutes (43.1, 44.1)] 
were slightly more active than those in urban areas [42.4 active minutes 
(42.0, 42.8); p < 0.001]. Finally, compared with the 18–30 years reference 
[44.6 active minutes (44.1, 45.1)], dogs whose owners were 30–45y [42.8 
active minutes (42.4, 43.2)], 45–60y [42.7 active minutes (42.3, 43.2)] or 
≥60y [41.9 active minutes (41.3, 42.5)] were less active (p < 0.001). 
Figure 6 shows the predicted activity varying with both owner age and 
day type, where dogs of owners <60y were more active on weekends than 

weekdays, whilst activity was similar whatever the day type in dogs whose 
owners were ≥60y.

4 Discussion

The aim of this study was to examine associations between 
physical activity and both dog and environmental characteristics, 
using data from a large population of domestic dogs living in the USA 
utilizing a large and novel dataset of accelerometer data and EHRs. 

TABLE 3 Linear mixed-effects model of log-transformed activity as a function of dog-related variables, whilst controlling for owner age and location 
(urban or rural), using the healthy visit dataset.

Variables Estimate Error 2.5% 
CL

97.5% 
CL

p-
value

Marginal 
mean 
(LM)

2.5% 
CL

97.5% 
CL

Marginal 
mean 

(BART)

2.5% 
CL

97.5% 
CL

Intercept 35.622 0.018 34.338 36.952 < 0.001 – – – – – –

Age−2 2.308 0.021 2.178 2.445 < 0.001 – – – – – –

Owner age 0.034 0.002 0.029 0.039 < 0.001 – – – – – –

Breed size

  Toy −0.242 0.016 −0.264 −0.218 < 0.001 37.8 37.1 38.5 40.3 39.2 41.5

  Small −0.199 0.018 −0.225 −0.171 < 0.001 38.5 37.6 39.3 40.5 39.2 41.9

  Medium-

small
−0.061 0.016 −0.089 −0.032 < 0.001 41.4 40.6 42.3 43.8 42.6 45.1

  Medium-

large
Reference category 41.0 40.4 42.7 42.9 42.0 43.6

  Large 0.049 0.014 0.020 0.079 0.005 41.9 41.2 42.8 42.9 41.9 44.1

  Giant −0.014 0.026 −0.062 0.037 0.996 36.2 35.0 37.4 40.0 38.1 41.7

Weight status

  Ideal weight Reference category 39.5 38.9 40.1 42.4 41.9 42.9

  Overweight −0.004 0.002 −0.008 0.000 0.481 39.3 38.8 39.9 41.8 41.2 42.5

Neuter status

  Entire Reference category 39.8 38.8 40.9 42.3 40.4 43.9

  Neutered −0.019 0.014 −0.045 0.008 1.000 39.0 38.7 39.4 42.3 41.8 42.8

Sex

  Male Reference category 40.3 39.7 40.9 43.2 42.4 43.8

  Female −0.043 0.006 −0.054 −0.031 < 0.001 38.6 38.0 39.2 41.3 40.6 42.0

Location

  Rural Reference category – – – – – –

  Urban −0.004 0.006 −0.016 0.008 1.000 – – – – – –

Breed size-age interaction

  Toy 0.010 0.002 0.006 0.014 < 0.001 – – – – – –

  Small 0.003 0.002 −0.001 0.007 0.833 – – – – – –

  Medium-

small
−0.013 0.002 −0.016 −0.009 < 0.001

– – – – – –

  Medium-

large
−0.026 0.001 −0.028 −0.023 < 0.001

– – – – – –

  Large 0.049 0.002 −0.034 −0.026 < 0.001 – – – – – –

  Giant −0.045 0.004 −0.062 −0.037 < 0.001 – – – – – –

The details include intercept, fixed effects coefficients and their 2.5 and 97.5% confidence limits (CL) and p-values. Estimated marginal mean activity is displayed for values of categorical 
variables for the linear model (LM) and the BART model, where all other variables are adjusted for mean values (dog age of 6.0 years and owner age of 41.7 years). The model had an R2 of 
0.528 and a RMSE of 0.461 on log-transformed active minutes, whilst pet ID as a random effect accounted for 0.214 of the variance in the data.
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TABLE 4 Linear mixed-effects model of log-transformed activity as a function of owner and environmental variables using the all-visits dataset.

Variables Estimate Error 2.5% 
CL

97.5% 
CL

p-value Marginal 
mean 
(LM)

2.5% 
CL

97.5% 
CL

Marginal 
mean 

(BART)

2.5% 
CL

97.5% 
CL

Intercept 28.650 0.038 26.581 30.874 < 0.001 – – – – – –

Latitude 0.072 0.009 0.054 0.090 < 0.001 – – – – – –

Climate

  Cold Reference category 41.8 41.2 42.4 40.4 40.0 41.8

  Hot humid −0.006 0.010 −0.026 0.014 1.000 41.5 41.1 41.9 41.3 40.6 42.2

  Hot dry 0.060 0.013 0.035 0.087 < 0.001 44.2 43.5 45.0 44.1 42.8 45.7

  Marine 0.061 0.014 0.034 0.090 < 0.001 44.6 43.5 45.7 44.3 41.7 47.1

Season

  Spring Reference category 44.1 43.7 44.5 42.7 42.2 43.4

  Summer −0.009 0.003 −0.014 −0.003 0.083 43.0 42.6 43.4 40.2 39.7 40.8

  Autumn −0.012 0.003 −0.017 −0.006 0.004 43.3 42.9 43.7 41.7 41.1 42.3

  Winter −0.082 0.003 −0.087 −0.077 < 0.001 41.6 41.2 42.0 41.8 41.2 42.4

Day

  Weekday Reference category 41.3 41.0 41.7 40.6 40.2 41.1

  Weekend 0.114 0.002 0.110 0.119 < 0.001 44.7 44.3 45.1 44.1 43.6 44.6

Location

  Rural Reference category 43.6 43.1 44.1 42.6 41.9 43.3

  Urban −0.027 0.006 −0.038 −0.014 < 0.001 42.4 42.0 42.8 41.9 41.2 42.6

Owner age

  18–30 Reference category 44.6 44.1 45.1 37.8 39.0 39.8

  30–45 −0.031 0.005 −0.040 −0.022 < 0.001 42.8 42.4 43.2 38.2 39.1 40.9

  45–60 −0.027 0.006 −0.039 −0.016 < 0.001 42.7 42.3 43.2 39.9 41.1 42.3

 60+ −0.029 0.008 −0.044 −0.014 0.002 41.9 41.3 42.5 42.8 44.7 46.6

Day-owner age interaction; day = weekend (reference category = weekday)

  18–30 Reference category – – – – – –

  30–45 −0.018 0.003 −0.023 −0.0013 < 0.001 – – – – – –

  45–60 −0.030 0.003 −0.036 −0.025 < 0.001 – – – – – –

  60+ −0.064 0.004 −0.070 −0.057 < 0.001 – – – – – –

Season-climate interaction (season reference category = spring; climate reference category = cold)

  Summer: 

hot humid

−0.039 0.003 −0.046 −0.033 < 0.001 – – – – – –

  Summer: 

hot dry

−0.047 0.005 −0.056 −0.038 < 0.001 – – – – – –

  Summer: 

marine

0.025 0.006 0.013 0.037 0.003 – – – – – –

  Autumn: 

hot humid

−0.004 0.004 −0.011 0.003 0.850 – – – – – –

  Autumn: 

hot dry

−0.012 0.005 −0.022 0.003 0.249 – – – – – –

  Autumn: 

marine

−0.010 0.006 −0.022 0.002 0.612 – – – – – –

  Winter: hot 

humid

0.043 0.003 0.036 0.050 < 0.001 – – – – – –

(Continued)
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We were able to estimate typical activity patterns of pet dogs with 
differing characteristics living in a range of different environments. It 
is hoped that such large-scale estimates of dog activity, at the 
population-level, could be used to inform daily exercise and caloric 
requirements for dogs, across a range of different settings. The study 
design combined a population-level epidemiological analysis, utilizing 
EHRs from >1,000 veterinary hospitals, with objective physical 
activity recording at an individual level by accelerometer. Therefore, 
this analysis provides a unique insight into the activity levels of pet 
dogs living in different environments, enabling the effects of many 
different animal and environmental variables to be studied. Previous 
research on dog activity has been based on either small accelerometer-
based datasets (19, 21, 22, 38, 69), which may not generalize at the 
population-level, or owner survey data (9, 70–72), which may 
be subjective. Given that actual movement is recorded, accelerometers 
can more accurately measure physical activity than subjective 
approaches such as owner surveys. In previous research on human 

adults, agreement between reported activity estimates and 
accelerometer measurements was poor (73), which is also likely to 
be the case also for estimates of dog activity. For example, in one study, 
owners were asked to estimate how active their dog was (9) with the 
average being 2.4 h per day, which is markedly greater than estimates 
of recorded activity in the current study (51 active minutes per day).

The dog variable most strongly associated with physical activity 
was dog age where, not surprisingly, younger dogs were far more 
active than older dogs. Physical activity also varied with dog size, 
whereby larger breeds of dog were more active, which is supported by 
previous findings (7, 70). Exercise requirements are usually defined by 
breed (strongly linked to size), based on the average energy levels and 
exercise motivations of each breed (6, 70). However, there was also an 
interaction between dog age and breed size, with the greatest 
age-related decline seen in larger breeds of dog, especially those of the 
giant breeds. Although the reasons for this are not known, it might 
be  related to a greater prevalence of orthopedic diseases, such as 

TABLE 4 (Continued)

Variables Estimate Error 2.5% 
CL

97.5% 
CL

p-value Marginal 
mean 
(LM)

2.5% 
CL

97.5% 
CL

Marginal 
mean 

(BART)

2.5% 
CL

97.5% 
CL

  Winter: hot 

dry

0.059 0.005 0.049 0.070 < 0.001 – – – – – –

  Winter: 

marine

0.010 0.006 −0.002 0.002 0.647 – – – – – –

The marginal means for the linear model (LM) and the BART model are displayed. The details include intercept, fixed effects coefficients and their 2.5 and 97.5% confidence limits (CL) and 
p-values. Estimated marginal mean activity is displayed for values of categorical variables, where all other variables are adjusted for mean values (dog age of 6.0 years and owner age of 
41.7 years). The model had an R2 of 0.533 and a RMSE of 0.447 on log-transformed active minutes, whilst pet ID as a random effect accounted for 0.246 of the variance in the data.

FIGURE 5

Relationship between active minutes as a function of season and climate, whilst holding all other relevant variables (location, latitude, owner age and 
day type) constant, estimated using linear mixed-effects (LM; blue) and Bayesian additive regression trees (BART; red) models. The ribbons show either 
the 95% confidence intervals or 95% credible intervals for of those predictions (LM and BART, respectively).
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osteoarthritis, in larger breeds of dog, the incidence of which increases 
with age (74). However, given that lifespan varies by dog size (75), 
from an aging perspective, a 10-year-old small-breed dog is 
biologically younger than a large-breed dog of the same age.

In this study, there was no significant association between neuter 
status and activity levels. The effect of sex was marginally greater 
whereby, compared with female dogs, recorded physical activity in 
male dogs was greater by approximately 2 active minutes per day, on 
average. These findings for neutering and sex are similar to previous 
research, where both significant and non-significant associations have 
been seen for both relationships (7, 76, 77).

Previous studies exploring the relationship between physical 
activity and BCS in dogs have been inconclusive, with some indicating 
that dogs with a BCS in the overweight range are less active than those 
with a BCS in the optimal range (28, 76), and other studies not 
reporting such an association (11, 30). In the current study, no 
significant relationship between BCS and physical activity was 
observed. However, a limitation of the current study was the fact that 
the DAG might not have accurately depicted interactions between 
BCS and either illness or injury. In this respect, we assumed that BCS 
would have an effect on illness and injury, rather than the other way 
round, not least given the evidence of associations between obesity 
and various illnesses, including osteoarthritis, cardiorespiratory 
function, neoplasia, diabetes mellitus, cruciate ligament disease, 
condylar fractures and disc disease (78–82). However, effects might 
also occur in the opposite direction, whereby some illnesses and 
injuries could affect weight status unrelated to physical activity; for 
example, chronic kidney disease (83), neoplasia (84) and diabetes 
mellitus (85) can also lead to weight loss and loss of body condition; 
since they might also negatively affect physical activity, it will tend to 
oppose the effect of overweight condition on physical activity. A 
limitation of the measurement approach was that we only studied 
minutes active and not the intensity of activity (which is also measured 
by the activity monitors), and this might have differed more by weight 
status. We  also did not consider the possible impact of dogs 
undergoing weight management; in this respect, owners might have 

increased physical activity as part of controlled weight reduction 
protocol as this is commonly recommended (86).

This study also explored the associations between environmental 
attributes and physical activity. Dogs living in hot-dry or marine 
climates were more active than those living in cold or hot-humid 
climates. Such associations are probably related to either challenges 
with exercising, both for the owner and dog, when weather conditions 
are more extreme, for example very hot or cold weather. Recorded 
activity was also marginally greater in dogs living in rural areas 
compared with those in urban areas, which could be due to availability 
of spaces for walking or the size of yards to enable dogs to exercise at 
home. It might also be because the number of working dogs was 
greater in rural areas.

Much of the physical activity undertaken by dogs occurs in the 
presence of their owners and includes walking and other 
interactions (87). Not surprisingly, therefore, more activity was 
recorded at weekends, when owners are more likely to be available, 
than on weekdays. Physical activity also varied with owner age 
whereby most active minutes were recorded in dogs whose owners 
were either aged between 18 and 30 years or were 60 plus. Although 
the reasons for this are not clear, it might be the result of complex 
interactions between variables such as physical fitness (likely to 
be  greater in younger adults) and both work and family 
commitments including parenthood (likely to be greatest in adults 
between 30 and 60). Besides these simple associations with day of 
the week and owner age, there was also an interaction between the 
two, whereby the difference between weekday and weekend activity 
decreased as owner age increased. Again, this could be the result of 
difference in availability of exercise at different time due to work or 
family commitments; most notably, the difference between 
weekday and weekend activity was least pronounced for the 
60 + age group, which is likely due to many owners in that age 
group being retired.

On average, dogs recorded 51 active minutes per day, although the 
exact amount varied widely from less than 10 to over 600 min. If 
representative of the general dog population, these data might help to 

FIGURE 6

Relationship between active minutes as a function of owner age for each day type (weekday or weekend), whilst holding all other relevant variables 
(season, climate, location and latitude) constant, estimated using a linear mixed-effects (LM; blue) and a Bayesian additive regression trees (BART; red) 
models. The LM predictions (blue) are for categories of owner age, where the points represent the median age for the category, and error bars 
represent 95% confidence intervals. The BART model predictions (red line) depict continuous values for owner age, with the ribbon depicting the 95% 
credible interval.
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inform population-based recommendations on activity and, in 
particular, food requirements. Most notably, given the wide 
distribution in amounts of physical activity, single population-level 
recommendations would be problematic and, instead, a degree of 
tailoring based on dog and environmental characteristics would 
be  sensible. For example, reductions in food intake could 
be considered during seasons where dogs are less active (e.g., winter 
and summer), for dogs in hot humid climates, those in urban areas 
and also on weekdays; further, adjustments could also be considered 
based on age (less for older dogs), breed (less for giant breeds) and sex 
(less for female dogs). For dogs routinely wearing an activity monitor, 
it might also be feasible to tailor food portions to daily activity counts. 
Of course, given the limitations in technology and accuracy, further 
validatory work would be required before such an approach could 
be recommended. It may be that food intake is best optimized to the 
individual, based on response of bodyweight to a known amount of 
food. Such a trial-and-error approach could be used by pet owners, 
guided by veterinary professionals.

This study utilized a DAG to identify the relevant adjustment sets 
for modeling the associations between activity and dog and 
environmental attributes using linear regression. This technique is 
becoming more popular within human healthcare research (48) but is 
not commonly used in dog health research. The technique has several 
advantages, for example, helping to guide statistical analysis by 
ensuring that appropriate variables are included, and also flagging 
possible biasing effects in model creation (42, 43, 45). A limitation of 
this approach is that any DAG is only as good as the variables that are 
included: some important effects might have been overlooked, either 
because they are unknown or because data on the variable is not 
available. However, this is equally likely in traditional associational 
linear modeling, and the construction of the DAG and validation with 
data help understand the likelihood of missing or unknown variables 
within the process.

In light of the limitations with our approach of linear modeling 
using variables identified by the DAG, we employed a second novel 
technique for validation, creating BART models. This statistical 
method is relatively new within both human healthcare and dog 
health research but has the advantage of fitting the data in a 
non-parametric and non-linear manner; this allows potentially 
non-linear relationships between attributes to be fitted more accurately 
and flexibly than with a linear methods, whilst avoiding overfitting as 
a result of Bayesian priors. Such BART models have proved to 
be  successful in causal inference competitions (88). In a similar 
manner to linear modeling, results generated by this method can 
be interpreted using marginal means and partial dependence plots, 
although their non-parametric nature precludes them from producing 
coefficient estimates. Nonetheless, where the BART model supports 
the linear model, more confidence may be  given to the estimates 
produced; in this respect, the fact that an inductive approach (BART) 
produced similar results to a deductive approach (linear modeling), 
would suggest that the adjustment set used was correct and, of course, 
would also support the underlying DAG as a representation of the 
real-world. In contrast, disagreement between the models would 
indicate a poor fit of the linear model, either due to misspecification 
or limitations of linear modeling approaches. In future, the results of 
the BART model could be used to guide the specification of the linear 
model; however, for this work, the BART model was used as a 

validation approach and the results were not iterated back to the 
linear model.

As always, study limitations should be considered. First, study data 
were collected from the Pet Insight Project, which involved the 
distribution of 100,000 free activity monitors to Banfield clients. Since 
this was a voluntary process, there may have been bias in the owners 
who engaged toward those interested in physical activity and fitness, or 
more conscientious dog owners. Further, long-term use of an activity 
monitor might be more likely in dogs that are already more active, for 
example younger dogs, whilst owners of older dogs with health issues 
might also be interested in monitoring their activity. Very small dogs 
(such as Chihuahuas) may be less likely to wear activity monitors, which 
is supported by the comparison of the population of pets visiting 
Banfield Pet Hospitals and those wearing Whistle monitors. Further, 
there might have been differences in activity for working dogs and 
competition dogs (e.g., those engaging in agility trials) but, since there 
was no way of identifying them from the records, this group could not 
be studied specifically. However, the population selected for this study 
was similar to the general population attending the veterinary hospital 
network, in terms of proportions of dogs and visits of each breed size. 
Further, for each breed size group, the average age at a visit for dogs in 
the study was within one standard deviation of the veterinary hospital 
population. These findings imply that the influence of possible selection 
bias in the study population was limited.

A second limitation was the fact that we did not attempt to assess 
different types of activity separately, for example walking versus 
running. Although the activity monitors used do categorize activity 
into different categories, given that more complex algorithms are 
required for these endpoints, we were concerned that there would 
be  greater variability and inaccuracies within the data. Therefore, 
we instead chose to focus on total activity above a particular threshold, 
to ensure consistency in data measurement. A third limitation was the 
fact that the study utilized a DAG to explore possible relationships and 
potential biases among various dog and environment attributes and 
how they might impact physical activity. The approach was evidence 
based because the attributes included in the DAG were based on 
previous research findings (Supplementary information). However, 
we might have missed some variables influencing physical activity, due 
to lack of awareness. Further, the assumption of a unidirectional 
associations among variable could also be problematic, as discussed 
above for associations between weight status and the presence of 
illness or injury. Nonetheless, the fact that there was consistency 
between the results identified with two different statistical approaches, 
non-parametric inductive BART model and the linear model, partially 
mitigates this concern. Further, the impact of treating various medical 
conditions was not considered. Finally, we did not specifically examine 
the impact of neoplastic diseases on activity, not least given that they 
have a wide spectrum of severity, from benign with minimal health 
impact (e.g., small lipoma not affecting movement) to severe with a 
major health impact (e.g., malignant, metastatic disease process). 
However, by using the “unhealthy visit” tag for EHRs, neoplastic 
diseases, and indeed those caused by other etiologies, could 
be identified. Nonetheless, given that no checks were performed to 
confirm the reliability of this approach, we cannot be certain that all 
dogs with illnesses affecting physical activity were identified, 
potentially impacting on the accuracy of estimates from our 
statistical models.
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5 Conclusion

In conclusion, we  have used accelerometer-derived activity data 
gathered from pet dogs living in North America, to determine associations 
with both dog and environmental characteristics. Age was the dog 
characteristic most strongly associated with the number of daily active 
minutes, whilst associated environmental variables included climate, 
season, location (urban vs. rural) and day of the week (weekday vs. 
weekend). Knowledge of these associations could be used to inform daily 
exercise and caloric requirements for dogs, and how they should 
be adapted according to individual circumstances. The wide variation in 
activity levels suggest population-level recommendations, particularly for 
feeding guides, may be unsuitable, and more individualization is required.
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