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Foot-and-mouth disease (FMD) is a highly contagious viral disease that poses a 
significant threat to the global livestock industry. Despite extensive vaccination 
efforts, outbreaks continue to occur frequently, highlighting the need for effective 
therapeutic interventions. This review comprehensively examines the recent advances 
in antiviral therapies targeting the foot-and-mouth disease virus (FMDV), alongside 
an overview of recent developments in FMD vaccines. We extensively reviewed the 
published literature on various antiviral agents targeting FMDV, including small-
molecule inhibitors, biologics, RNA-based therapeutics, gene delivery systems, and 
innovative approaches such as virus protease inhibitors and nanomaterials. Among 
the notable findings are the promising results of monoclonal antibodies, porcine 
interferon-α fusion proteins, and RNA interference (RNAi)-based therapeutics. This 
review also discusses the antiviral properties of naturally derived substances, such 
as quercetin and homoharringtonine, and their mechanisms of action against 
FMDV. The efficacy of these antiviral agents in inhibiting FMDV replication has been 
demonstrated by both in vitro and in vivo studies, underscoring their potential as 
adjunctive tools in FMD control. Despite these advancements, challenges persist, 
including the emergence of drug-resistant strains, limited in vivo efficacy, and lack 
of approved antivirals for FMD. This review critically analyzes the advancements 
in both vaccines and antiviral compounds against FMDV. Continued research 
is essential to optimize antiviral candidates, address emerging challenges, and 
improve overall response efforts to FMDV infections.
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1 Introduction

Foot-and-mouth disease virus (FMDV) belongs to the Picornaviridae family and is 
characterized by its positive-sense RNA genome and high genetic variability (1). FMDV 
isolates are classified into seven distinct serotypes: O, A, C, Asia 1, and South  African 
Territories (SAT 1, 2, and 3). Each serotype exhibits unique serological characteristics and 
contains various genetically and geographically diverse subtypes, often referred to as topotypes 
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(2). FMD outbreaks lead to considerable economic losses due to trade 
restrictions, livestock mortality, and reduced productivity (3).

The control of FMDV remains challenging due to its high genetic 
variability, which results in the emergence of antigenically distinct 
viral strains that can evade existing immune responses generated by 
current vaccines (4). The high mutation rate of the RNA genome 
contributes to this genetic variability, complicating the development 
of effective vaccines and antivirals. The rapid evolution of FMDV 
strains and the emergence of vaccine escape variants underscore the 
need for complementary control measures, including the use of 
antiviral drugs, despite the widespread implementation of vaccination 
campaigns (5). Thus, it is essential to investigate and develop antivirals 
that target various stages of the FMDV life cycle, offering an additional 
layer of defense alongside vaccination efforts.

In this review, we  examine the advancements in antiviral 
approaches and vaccines against FMDV, emphasizing the most 
promising compounds and their mechanisms of action. We  also 
examine the potential of combining antiviral agents with vaccination 
to enhance protection against this highly contagious viral disease.

2 FMDV structure and replication

FMDV is a nonenveloped virus with a single-stranded RNA 
genome of approximately 8,400 nucleotides. The genome contains a 
single open reading frame that encodes a polyprotein. This polyprotein 
is cleaved by the viral proteases leader protease (Lpro) and 3C protease 
(3Cpro) to generate several polypeptides: P1 (comprising VP1–VP4), 
P2 (including 2A, 2B, and 2C), and P3 (comprising 3A, 3B, 3Cpro, and 
3Dpol). These polypeptides are processed to yield four mature 

structural proteins (VP4, VP2, VP3, and VP1) and eight nonstructural 
proteins (Lpro, 2A, 2B, 2C, 3A, 3B, 3Cpro, and 3Dpol) (Figure 1), all 
of which are essential for host cell infection and immune evasion (6, 7).

Several key FMDV proteins play crucial roles in viral replication. 
The structural proteins VP1, VP2, VP3, and VP4 assemble to form the 
viral capsid, which mediates host cell attachment and invasion. The 
nonstructural protein 3Cpro processes the viral polyprotein and 
enables viral replication, making it an important target for antiviral 
drug development. Lpro interferes with the innate immune response 
by cleaving specific host proteins. RNA-dependent RNA polymerase 
(3Dpol) mediates viral RNA genome replication, making it a critical 
target for antiviral drugs (8, 9).

The FMDV replication cycle begins with viral attachment to 
specific host cell surface receptors, followed by endocytosis and 
uncoating of the viral RNA genome. FMDV primarily uses integrins, 
such as αvβ3 and αvβ6, as receptors for host cell entry. These receptors 
recognize the RGD (Arg-Gly-Asp) sequence in the VP1 protein of 
FMDV, facilitating viral attachment and entry, particularly in epithelial 
tissues. Some FMDV strains also bind to heparan sulfate, expanding 
the virus host range (10). These interactions are key to viral infectivity 
and are essential for developing antiviral therapies.

3 Economic impact of FMD on 
livestock industries

FMD is a highly contagious viral disease that affects cloven-
hoofed animals, including cattle, pigs, sheep, and goats (11). It has a 
considerable economic impact on livestock industries, leading to 
substantial financial losses due to decreased productivity, trade 

FIGURE 1

Mechanisms of action of antivirals targeting foot-and-mouth disease virus (FMDV). FMDV lifecycle highlights stages targeted by antiviral agents. Red 
crosses indicate specific intervention points by antiviral agents, targeting processes such as viral entry, genome replication, and virion assembly to 
inhibit viral propagation.
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restrictions, and high costs associated with disease management and 
eradication (12).

The annual economic impact of FMD, including visible 
production losses and vaccination costs in endemic regions, ranges 
from US$6.5 to US$21 billion. Outbreaks in FMD-free countries and 
zones incur additional annual losses exceeding US$1.5 billion (3).

In the context of agroterrorism, FMD is considered a high-risk 
agent due to its ease of transmission and potential to cause widespread 
economic disruption. The deliberate introduction of FMD into a 
country with a susceptible livestock population may devastate the 
agricultural sector, leading to food shortages, inflation, and economic 
instability. To prevent such circumstances, robust biosecurity 
measures, early detection systems, and effective response strategies are 
required (13).

4 Global strategy and implementation 
of FMD control

Effective control of FMD involves strict biosecurity measures, 
vaccination programs, and surveillance. Biosecurity measures, which 
include controlling animal movement and enforcing quarantine 
protocols, are crucial in preventing the introduction and spread of 
FMDV within and between farms (3). Regular and widespread 
vaccination campaigns are necessary to maintain herd immunity and 
reduce the risk of outbreaks (14). Additionally, continuous surveillance 
and early detection systems enable rapid response to outbreaks, 
helping to contain the disease before it spreads widely (15).

The Global Foot-and-Mouth Disease (FMD) Control Strategy, 
established in 2012 by the World Organization for Animal Health 
(WOAH, formerly OIE) and the Food and Agriculture Organization 
of the United Nations (FAO) as part of the Global Framework for the 
Progressive Control of Transboundary Animal Diseases (GF-TADs), 
aims to alleviating FMD’s impact in affected regions while supporting 
nations in either maintaining or achieving WOAH-recognized 
FMD-free status (16). The cornerstone of this global strategy is the 
Progressive Control Pathway for FMD (PCP-FMD), developed 
collaboratively by the FAO and the European Commission for the 
Control of Foot-and-Mouth Disease (EuFMD) and subsequently 
endorsed by WOAH (17). This framework implements a systematic, 
evidence-based approach to risk management, designed to gradually 
reduce disease impact and viral presence in endemic areas. The 
PCP-FMD framework acknowledges and accommodates the diverse 
stages of progress across different nations, ranging from those with 
established FMD-free status to those in the initial phases of 
implementing control measures (18).

Vaccination serves as a fundamental component within the 
PCP-FMD framework, playing a crucial role in reducing disease 
occurrence and interrupting viral transmission patterns. The success 
of vaccination programs depends significantly on ensuring that 
vaccines are well-matched to circulating viral strains (19). The 
vaccination strategy encompasses multiple objectives that vary 
according to the specific stage of disease control, including (i) 
reducing the clinical incidence of FMD, (ii) eliminating the circulation 
of FMD virus (FMDV), (iii) maintaining FMD-free status, or (iv) 
regaining freedom from FMD after an outbreak. A critical aspect of 
the PCP-FMD framework, particularly in stages 2 and 3, is the 
implementation of comprehensive post-vaccination monitoring 

(PVM) and population immunity surveillance. These monitoring 
systems are crucial for countries adopting vaccine-based strategies to 
control FMD effectively (20).

5 Advancements in vaccine 
development against FMDV

Inactivated vaccines, which contain killed virus particles, are 
widely used because of their safety and ability to induce protective 
immunity. These vaccines stimulate the production of neutralizing 
antibodies, which are crucial for preventing FMDV infection and 
spread (21). Despite their effectiveness, several factors limit the 
utility of FMDV vaccines. One significant challenge is strain-specific 
protection, as the high genetic variability of FMDV leads to the 
emergence of new strains that may not be adequately protected by 
current vaccines, necessitating frequent updates to vaccine 
formulations. The immunity provided by inactivated vaccines is of 
limited duration, requiring regular booster doses to ensure 
continued protection. Furthermore, the necessity for a consistent 
cold chain during storage and transportation presents logistical 
difficulties, especially in areas with limited infrastructure (15). 
Recent advancements in vaccine technology aim to address these 
limitations. Novel vaccine platforms, including virus-like particles 
(VLPs), peptide-based vaccines, and recombinant vaccines, are 
being explored for their potential to provide broader and longer-
lasting immunity. Adjuvants are also being explored to enhance 
vaccine efficacy and induce stronger immune responses (22). In the 
following sections, we shall discuss various types of vaccines that 
have been tested for their potential to prevent/control FMD. Figure 2 
provides an overview of the key advancements in FMDV 
vaccine development.

5.1 Inactivated (killed) vaccines

Inactivated or killed vaccines, produced as monovalent, bivalent 
or multivalent, have long been used for the control of FMD (22). 
Recent advancements in inactivation methods and adjuvant 
formulations have greatly enhanced the efficacy and safety of 
inactivated vaccines. Binary ethyleneimine–mediated inactivation 
ensures reliable virus inactivation while preserving antigenic 
integrity, thereby increasing vaccine immunogenicity (23). 
Conventionally, killed vaccines are concentrated to the equivalent of 
three times the 50% protective dose (PD50%). Killed vaccines are 
concentrated to the equivalent of six times PD50 for emergency use 
in FMD vaccine free countries (24). Novel adjuvants for FMD 
vaccines have been developed to boost the immune response, 
conferring extended protection with fewer doses. Successful 
adjuvants include mineral oils such as montanide ISA-206 and 
ISA-201, aluminum hydroxide, saponins like Quil-A, and Toll-like 
receptor ligands targeting pattern recognition receptors (23). 
Furthermore, improvements in cold chain logistics and vaccine 
stability have made inactivated vaccines more accessible in regions 
with limited infrastructure, enhancing their global application (22). 
Advances in multivalent vaccine formulations now enable broader 
protection against multiple FMDV serotypes, addressing one of the 
major challenges in FMD vaccination (25).
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5.2 Live attenuated vaccines

Recent advancements in genetic engineering and viral attenuation 
techniques have reignited interest in the use of live attenuated vaccines 
for FMD despite previous restrictions due to safety concerns. Modern 
live attenuated vaccines are developed using precise genetic 
modifications that reduce the risk of reversion to virulence (26). 
Advancements in understanding the role of various viral proteins in 
pathogenesis have played a crucial role in developing these attenuated 
vaccines. For example, the deletion of the gene encoding viral leader 
protease (Lpro) that blocks innate immune response via blocking beta 
interferon induction made the virus avirulent for pigs and cattle (27). 
So far, various attenuated vaccines have been developed and tested, 
including generation of a leaderless virus (LLV), deletion of Lpro, 
excision of the conserved SAP domain from Lpro, Chimera of FMDV 
and bovine rhinitis B virus (BRVB) and codon pair optimization 
(28–30, 31, 32). Additional improvements in vector design and 
delivery methods have strengthened the safety profile of these 
vaccines. These innovations have the potential to produce highly 
immunogenic vaccines that can induce robust and long-lasting 
immunity with fewer doses. However, ongoing research is necessary 
to fully evaluate their safety and efficacy in large-scale applications (33).

5.3 Subunit vaccines

The identification of key immunogenic proteins of FMDV has 
driven significant progress in the development of protein-based and 

peptide-based subunit vaccines through the use of recombinant DNA 
technology (26). Once it was confirmed during the 70s that VP1 had 
prominent exposure on virus surface against which neutralizing 
antibodies are produced, attempts were made to develop protein-
based vaccines as an alternative to inactivated vaccines (34, 35). 
Subsequent studies showed that VP1-based vaccines, prepared from 
split virus particles or recombinant DNA technology, conferred 
protection against FMDV challenge in swine and cattle (36).

With the increase in understanding of the immunogenic 
epitopes in VP1, peptide-based vaccines emerged. Initially, peptide-
based vaccines comprised of C terminal half or G-H loop of VP1 
(37). The main advantage of peptide-based vaccines is in their 
ability to stimulate a targeted immune response while avoiding the 
use of live virus, thus enhancing safety. However, their main 
limitations were poor immunogenicity/protection in  vivo. 
Therefore, different methods have been tested to enhance the 
immunogenicity of peptide-based vaccines. Some of these included 
optimizations of B and T cells sites in peptide, combining vaccine 
with adjuvants, a multiepitope recombinant chimeric protein 
consisting of different FMDV variants and one T-cell epitope or the 
use of dendrimer peptides as vaccines (38–40). Despite these 
challenges, peptide-based vaccines have shown promise in 
preclinical and clinical studies. A synthetic peptide-based vaccine 
(UBITh vaccine) has been developed by United Bomedical Inc. and 
licensed for use in Taiwan and mainland China for the prevention 
of FMD in pigs. Further research is needed to optimize their 
formulation and assess their long-term efficacy in diverse animal 
populations (41).

FIGURE 2

Advancements in vaccine development against foot-and-mouth disease virus (FMDV). This figure illustrates the design of six main types of FMDV 
vaccines. (A) Inactivated virus vaccine. (B) Live-attenuated vaccine. (C) Subunit vaccine. (D) Vectored vaccine. (E) DNA vaccine. (F) Virus-like particles 
(VLP) vaccine. The figure was created with Biorender.com.
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5.4 Vectored vaccines

Vectored vaccines deliver the sequence of interest, i.e., a viral 
protein, peptide or an epitope to stimulate ideally both humoral and 
cell mediated immune responses. A number of viruses, including 
vaccina virus, fowl pox virus, pseudorabies virus, alphaviruses, 
replication- defective human adenovirus virus, simian adenovirus, 
and Semliki Forest virus have been used as vectors showing various 
pros and cons. A recombinant Sendai virus expressing FMDV P 
protein induced protective immunity in vaccinated mice (42). 
Vaccination with recombinant infectious bovine rhinotracheitis virus 
(IBRV) expressing FMDV-VP1 has been shown to induce protective 
titers in calves (43). Bovine enterovirus expressing an FMDV-VP1 
epitope has also been reported, though not tested by a challenge 
protection study (44).

A limiting factor in using host-specific virus-based vectors is the 
presence of pre-existing antibodies that limit the virus replication, 
thus resulting in low antibody titers. Another way to avoid 
neutralization by pre-existing antibodies is the use of non-host specific 
virus-vectored vaccines. Bamboo Mosaic virus expressing VP1 
antigenic epitope provided protection in swine against challenge (45). 
Canine adenovirus expressing FMDV-VP1 protein induced humoral 
response in pigs (46). A number of studies have shown the usefulness 
of human adenovirus-based vaccines against FMD, such as the 
replication-deficient human adenovirus vectored FMD (AdtA24) 
vaccine (47), bivalent Ad5A24 + O1 vaccine (48), adenovirus 5 (Ad5) 
vectored FMDV serotype O1-Manisa subunit vaccine (Ad5-O1Man) 
(49) etc.

Advances in genetic engineering have enabled the incorporation 
of multiple FMDV antigens into a single vector. A recombinant 
Ad5-vectored vaccine expressing VP1 of O, A and Asia-1 serotypes 
was tested. The study showed that this trivalent vaccine showed poor 
protective efficacy in cattle compared to Ad5-vectored monovalent 
vaccines (50). The advantage of using human adenovirus-based 
vaccines is DIVA capability, induction of both humoral and cellular 
responses and easy mass-production. Furthermore, improvements 
in vector delivery methods, including intranasal and intradermal 
administration, have enhanced the immune response by targeting 
mucosal immunity, which is crucial for protecting against 
FMDV (51).

5.5 DNA vaccines

DNA vaccines represent a cutting-edge approach for FMD 
prevention, with significant advancements in vaccine design and 
delivery. DNA vaccines are usually plasmid-based vaccines containing 
the gene of interest and promoter for gene expression and immunity 
induction. DNS-based vaccines have been tested against many 
bacterial, viral, and parasitic disease models and tumors. Several 
strategies in developing DNA vaccines against FMD have been tested, 
including DNA vaccines encoding VP1 and 3D RNA polymerase (52), 
a DNA vaccine producing antisense RNA binding with 5′ UTR and 
expressing the VP1 protein (53), a DNA vaccine expressing B and T 
cells epitopes directed to antigen-presenting cells or swine MHC 
class-II antigen (54) and co-expression of anti-apoptotic protein 
Bcl-Xl with FMDV B and T cells epitopes (55). The main challenges 
with DNA vaccines are the large amount of DNA needed and 

repetitive inoculations to achieve protective titers. Techniques such as 
electroporation, which uses electrical pulses to increase cell 
membrane permeability, have greatly enhanced the delivery of 
plasmid DNA into host tissues, eliciting stronger immune 
responses (56).

5.6 Virus-like particle (VLP) vaccines

Virus-like particle vaccines have become a promising approach 
for FMD prevention because they closely mimic viral structures but 
lack any viral genetic material. Recent advancements in VLP 
production technology, including recombinant expression systems in 
yeast, insect, and mammalian cells, have enabled the large-scale 
production of highly immunogenic VLPs (57). These particles can 
present multiple epitopes in their native conformation, eliciting a 
strong and broad immune response (57). Advancements in adjuvant 
formulations and delivery systems, such as encapsulation in 
biodegradable nanoparticles, have also enhanced the stability and 
immunogenicity of VLP vaccines (58).

6 Brief history of antiviral 
development

While vaccines are essential in preventing viral infections such 
as FMD, antivirals are also needed to prevent the spread of 
infections once they occur. Therefore, there is also a growing focus 
on developing antiviral therapies in addition to vaccines. There have 
been significant advancements since the discovery of the first 
antiviral agents, transforming the management of viral infections. 
Antiviral therapy was first reported in the mid-20th century with 
the identification of compounds capable of inhibiting viral 
replication. Idoxuridine, one of the first antiviral drugs, was 
developed in the 1950s to treat herpes simplex virus (HSV) 
infections. This drug marked the beginning of targeted antiviral 
therapy, paving the way for the development of more specific and 
effective antiviral agents (59). The 1990s marked a breakthrough in 
human immunodeficiency virus (HIV) treatment with the 
introduction of highly active antiretroviral therapy (HAART). 
Using a combination of antiretroviral drugs that target various 
stages of the HIV life cycle, HAART transformed HIV from a life-
threatening illness into a manageable chronic condition (60). In the 
late 20th century, antiviral research expanded to include broad-
spectrum agents capable of targeting multiple viruses (61). 
Ribavirin, a nucleoside analog effective against a range of RNA 
viruses, has been used to treat various viral infections, including 
hepatitis C (62), respiratory syncytial virus (RSV) (63), and certain 
viral hemorrhagic fevers. The approval of ribavirin treatment 
highlighted the potential of broad-spectrum antivirals in managing 
several viral diseases (64).

As the pursuit of better and safer antiviral agents continued, 
the library of potential antiviral agents expanded. Now, these 
antiviral agents can be  grouped into two broad categories. i.e., 
direct virus-targeting antivirals or cell-targeting antivirals have 
been investigated. Examples of direct virus-targeting antivirals 
include influenza A virus M2 ion channel inhibitors such as 
Amantadine, Neuraminidase inhibitors such as Oseltamivir, or 
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hepatitis C virus non-structural protein inhibitors such as 
Boceprevir, Ombitasvir (65, 66). Examples of cell-targeting 
antiviral include Lauryl Gallate, valproic acid inhibiting FMDV, 
African swine fever virus and VSV (67).

Rapid advancements in molecular biology and biotechnology 
have fueled innovations in antiviral research. Studies are exploring the 
potential of RNA-based therapies, such as small interfering RNAs 
(siRNAs) and antisense oligonucleotides, to silence viral genes and 
inhibit replication. Moreover, the CRISPR–Cas9 gene-editing 
technology holds promise for directly targeting and eliminating viral 
genomes from infected cells (68).

7 Advancements in antivirals targeting 
FMDV

Considering FMDV’s high transmissibility and economic 
impact, developing antiviral drugs specifically targeting the virus 
is crucial. This section presents different classes of antiviral drugs 
that have shown potential FMDV-targeting activity, highlighting 
their mechanisms of action and efficacy. Antivirals that have 
been tested in vitro, in vivo, or both against FMDV are summarized 
in Table  1, and their mechanisms of action are illustrated in 
Figure 1.

7.1 Small molecule inhibitors

Small molecule inhibitors include diverse chemotherapeutic 
agents known for their ability to affect various stages of the viral life 
cycle. They are broadly classified as selective small molecule kinase 
inhibitors, selective small molecule nonkinase inhibitors, and 
multikinase small molecule inhibitors (69).

7.1.1 T-1105, a pyrazine-carboxamide derivative
T-1105, a derivative of pyrazine–carboxamide, is an antiviral 

agent that is currently being explored for its efficacy against various 
RNA viruses. It inhibits viral RNA polymerase, thereby preventing 
viral replication.

In 2022, Nishi et al. (70) demonstrated that T-1105 effectively 
inhibited the replication of 28 FMDV reference strains across all 7 
serotypes. In domestic pigs infected with a porcinophilic FMDV 
serotype O (topotype CATHAY), treatment with T-1105 resulted in 
no clinical signs of FMD. At 48 h after inoculation, no infectious 
FMDV or FMDV-specific genes were detected in the sera, oral or 
nasal discharges, or tissues, suggesting the compound’s potential for 
controlling FMDV spread in pigs.

7.1.2 Merimepodib
Merimepodib (MMPD, VX-497) has antiviral and 

immunosuppressive activities in  vitro and in  vivo. MMPD 
selectively inhibits inosine monophosphate dehydrogenase 
(IMPDH), thus reducing the production of guanine nucleotides 
essential for RNA and DNA synthesis (71). Merimepodib exhibits 
antiviral activity against a wide range of RNA and DNA viruses, 
including hepatitis C virus (HCV), hepatitis B virus (HBV), HSV 
type 1, human cytomegalovirus, RSV, Venezuelan equine 

encephalomyelitis virus (72) Zika virus (73) and SARS-CoV-2 
virus (74).

The antiviral activity of MMPD against the O and A serotypes 
of FMDV was demonstrated in  vitro and in  vivo (75). MMPD 
provided dose-dependent inhibition of the FMDV O and A 
serotypes, with IC50 values of 7.859 μM and 2.876 μM, respectively. 
MMPD also significantly prolonged survival in FMDV-infected 
suckling mice, emphasizing its potential as a novel antiviral agent 
against FMDV.

7.1.3 Vesatolimod
Vesatolimod (GS-9620) is a Toll-like receptor 7 (TLR-7) 

agonist that stimulates antiviral immune responses by activating 
TLR-7, an endosomal innate immune sensor. This activation 
triggers the production of type I  interferon (IFN) and other 
inflammatory cytokines, enhancing the host’s antiviral defense 
mechanisms (76). The drug is being used in clinical therapy for 
chronic hepatitis B and HIV (77, 78). Studies have also 
demonstrated its antiviral efficacy against human hepatitis C virus 
and enterovirus 71 (77, 79). Given its broad antiviral activity, its 
antiviral potential against FMDV serotype O was investigated 
in vitro and in vivo (80). In vitro, vesatolimod caused more than a 
100-fold reduction in FMDV load compared to ribavirin. In mice, 
vesatolimod conferred protection against FMDV for up to 5 days 
postinjection, accompanied with detectable levels of cytokines 
such as IL-6, IL-12, IFN-γ, and IFN-γ inducible protein-10. 
Combining vesatolimod with an inactivated FMD vaccine proved 
highly effective for early protection in mice.

7.1.4 IMPDH and DHODH inhibitors
Inosine monophosphate dehydrogenase (IMPDH) and 

dihydroorotate dehydrogenase (DHODH) are essential enzymes that 
play crucial roles in the de novo synthesis of purines and pyrimidines, 
respectively. Inhibitors of IMPDH and DHODH ultimately lead to 
depletion of guanine and uridine nucleotides of cells thereby 
inhibiting RNA and DNA synthesis. AVN-944 and mycophenolate 
mofetil target IMPDH, while teriflunomide targets DHODH. These 
enzymes are involved in nucleotide biosynthesis, and their inhibition 
disrupts viral replication. Mei-Jiao et al. (81) reported that IMPDH 
inhibitors (AVN-944 and mycophenolate mofetil) and the DHODH 
inhibitor (teriflunomide) effectively suppressed FMDV serotypes O 
and A in IBRS-2 cells in a dose- and serotype-dependent manner. The 
antiviral effects were most pronounced during the early stages of 
infection (0–8 h post-infection). Furthermore, treatment with 
AVN-944 and teriflunomide significantly increased the survival rates 
of FMDV-infected mice, demonstrating their broad-spectrum 
antiviral potential. However, concerns about toxicity and potential 
side effects due to interference with host cellular processes remain. 
Additionally, serotype-specific responses may limit their universal 
application. Future research should focus on optimizing dosages, 
assessing long-term safety, developing serotype-targeted therapies, 
and exploring combination treatments to enhance their 
antiviral efficacy.

7.1.5 Sorafenib
Sorafenib, a bi-aryl-urea compound, is a multiprotein kinase 

inhibitor that is well known for its anticancer and antiviral 
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TABLE 1  Classification of antiviral agents against foot-and-mouth disease virus.

Classification Antiviral agent group Mechanism of action Examples Ref.

Small molecule inhibitors Nucleoside analog antiviral 

agents

Inhibiting the synthesis of viral 

RNA and proteins.

T-1105 (Pyrazine-Carboxamide 

Derivative)

(70)

Ribavirin (94)

IMP dehydrogenase inhibitors inhibiting inosine 

monophosphate dehydrogenase 

(IMPDH).

Merimepodib (75)

TLR7 (Toll-Like Receptor 7) 

agonists

stimulating the immune system 

to recognize and respond to viral 

infections.

Vesatolimod (80)

IMPDH and DHODH 

Inhibitors

Targeting enzymes involved in 

nucleotide biosynthesis.

IMPDH Inhibitors (AVN-944 and 

mycophenolate mofetil) and 

DHODH Inhibitors (teriflunomide)

(81)

Multikinase inhibitor inhibits tyrosine protein kinases 

and serine/threonine protein 

kinases

Sorafenib (85)

Biologics Interferons Modulate immune 
response

Porcine IFN-α-Fc (102)

Natural products Plant alkaloids Inhibit protein synthesis, 

interfere with viral replication

Homoharringtonine (108)

Flavonoids Inhibit viral replication, 

modulate immune response

Quercetin (109)

Insects Venom Induce antiviral state, enhance 

immune response

Bee Venom (112)

RNA-based therapeutics Short-hairpin RNAs (shRNAs) Target viral RNA through RNA 

interference

Various shRNAs (116)

Artificial microRNAs 

(amiRNAs)

Customizable to target specific 

viral strains

Various amiRNAs (116)

Synthetic non-coding RNAs Mimic natural RNA sequences, 

induction of innate immune 

response

FMDV ncRNAs (121)

Gene delivery systems (viral 

vectors)

Baculovirus vectors (BacMam) Introducing antiviral genes into 

mammalian cells

BacMam expressing glycosylated 

IFN-α

(101)

Pyrimidine synthesis inhibitors Dihydroorotate Dehydrogenase 

(DHODH) Inhibitors

inhibiting (DHODH), involved 

in the de novo pyrimidine 

biosynthesis pathway

Brequinar (125)

Immunosuppressive agents Inosine Monophosphate 

Dehydrogenase (IMPDH) 

Inhibitors

inhibiting inosine 

monophosphate dehydrogenase 

(IMPDH) and guanosine 

monophosphate synthetase

Mizoribine (127)

Antiparasitic agent Macrocyclic Lactone inhibiting the nuclear transport 

of viral proteins

Ivermectin (98)

Minerals/Trace elements Manganese ions (Mn2+) Modulate immune response, 

influence viral infections

Manganese (135)

Growth factors Fibroblast growth factors Regulate gene expression, inhibit 

viral replication

FGF11 (136)

Nanomaterials Bimetallic nanoparticles Disrupt viral membranes, 

generate reactive oxygen species

Ag-CuO nanoparticles (139)

Virus protease inhibitors Protease inhibitors Inhibit viral protease 3Cpro 

activity

Rupintrivir (142)
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activities (82). It inhibits tumor cell proliferation by blocking 
Raf-1, B-Raf, and kinase activities in the Ras/Raf/MEK/ERK 
signaling pathways while also reducing tumor angiogenesis by 
targeting vascular endothelial growth factor receptors, platelet-
derived growth factor receptors, and hepatocyte factor receptor 
(c-KIT) (83, 84). Theerawatanasirikul et al. explored the antiviral 
activity of sorafenib against FMDV (85). They reported that 
sorafenib effectively reduced FMDV replication in a dose-
dependent manner, with EC50 values of 2.46 μM at the previral 
entry stage and 2.03 μM at the postviral entry stage. Molecular 
docking analysis indicated that sorafenib binds to the critical 
catalytic residues (D245, D338, S298, and N307) in the active site 
of FMDV 3DPol. Furthermore, sorafenib inhibited the c-RAF, 
AKT, and PI3K pathways, which are vital for the viral life cycle. The 
main concern with sorafenib is its potential toxicity, as it also 
affects host cell signaling pathways involved in cell proliferation 
and survival. Further clinical trials are needed to confirm its real-
world effectiveness in treating FMDV.

7.1.6 Ribavirin
Ribavirin (1-ribosyltriazole), a guanosine analog, is well known 

for its broad-spectrum antiviral activity against many RNA and DNA 
viruses (86). Multiple mechanisms have been proposed to explain the 
antiviral activity of ribavirin. The drug inhibits RNA-dependent RNA 
polymerase and IMPDH enzyme activities and upregulates 
IFN-stimulated genes (ISGs) (87). Ribavirin has been used to treat 
infections caused by respiratory syncytial virus (RSV) in children, as 
well as Lassa fever virus, influenza A and B, and hepatitis C virus 
infections (88–91). Several studies have demonstrated its potent 
antiviral efficacy against various FMDV serotypes in vivo and in vitro. 
Soumajit et  al. (92) showed that ribavirin inhibited the in  vitro 
replication of FMDV serotypes O, A and Asia 1. Choi et  al. (93) 
demonstrated that ribavirin effectively inhibited FMDV in vitro and 
in  vivo. In vivo, studies in mice and pigs demonstrated that oral 
antiviral treatment complemented with a vaccine led to synergistically 
enhanced antiviral activity against FMDV. Nikunjkumar et al. (94) 
systematically investigated ribavirin’s antiviral efficacy against FMDV 
in suckling and adult C57BL/6 mice and revealed that ribavirin 
significantly reduced viral titers and conferred protection against 
FMDV infection.

7.1.7 Small molecule inhibitors targeting FMDV 
3Cpro

FMDV 3Cpro plays a crucial role in viral replication by cleaving 
the viral polyprotein into mature, functional proteins. Given its 
essential function and high degree of conservation across FMDV 
serotypes, 3Cpro is considered an ideal target for antiviral drug 
development. Small molecule inhibitors targeting FMDV 3Cpro 
disrupt the viral life cycle and inhibit replication. Kim et  al. (95) 
screened an in-house library of small molecule inhibitors targeting 
FMDV 3Cpro and identified potent inhibitors based on aldehyde and 
α-ketoamide structures. Their structure–activity relationship studies 
demonstrated that these compounds are highly effective in enzyme- 
and cell-based assays. Theerawatanasirikul S. et al. (96) used molecular 
docking studies to screen potential 3Cpro inhibitors. Of the seven 
selected compounds, NSC116640 and NSC332670 showed strong 
in vitro inhibition of FMDV replication.

These studies highlight the potential of various small-molecule 
antiviral agents in controlling FMDV, providing a foundation for 
developing effective therapeutics against this economically 
significant virus.

7.2 Biologics

Biologics, including monoclonal antibodies, interferons (IFNs), 
and vaccines, are emerging as effective antivirals against FMDV. These 
biologics act by either directly neutralizing the virus or enhancing the 
host’s immune response.

7.2.1 Porcine INF-α linked to porcine IgG-Fc
Type I IFNs are produced rapidly following viral infection, 

eliciting a host innate immune response involving the stimulation/
production of several IFN-stimulated genes, some of which 
possess antiviral activity. IFNs have been successfully used to treat 
viral infections such as RSV and hepatitis B and C infections (97). 
A previous study showed that pretreatment with IFN-α/β 
significantly inhibited FMDV replication in cell culture (98). 
However, the efficacy of this approach is limited by the short half-
life of IFN in the host. To overcome this limitation, Chinsagaram 
et al. developed a replication-defective human adenovirus type 5 
vector containing porcine IFN-α genes (Ad5-pIFNα). They 
demonstrated that at 24 h post-challenge, treatment with 
Ad5-pIFNα conferred complete protection from clinical disease 
in pigs (99). Other approaches have been developed to boost the 
antiviral effects of IFN against FMDV. Pegylated porcine IFN-α 
protein (100) and highly glycosylated porcine IFN-α protein (101) 
have proven extremely effective in conferring protection against 
FMDV challenge in pigs. Recently, Kim et al. (102) reported a 
further advancement in the use of porcine IFN-α–based therapy. 
They demonstrated the broad antiviral activity of the porcine 
IFN-α–IgG-Fc fusion protein against seven serotypes of FMDV, 
in vitro and in pig models. They also showed that mice receiving 
the combination of porcine IFN-α-Fc and an inactivated vaccine 
showed increased neutralizing titers compared with those 
receiving the vaccine alone.

7.3 Natural products

Natural products have gained attention as potential antiviral 
agents due to their diverse bioactive properties and lower likelihood 
of inducing resistance. Various natural compounds, including essential 
oils, plant extracts, and bee venom, have demonstrated promising 
efficacy against FMDV. Compounds such as flavonoids, alkaloids, and 
terpenoids can inhibit FMDV replication by targeting viral entry, 
replication, or assembly.

7.3.1 Homoharringtonine
Homoharringtonine, a plant alkaloid and protein synthesis 

inhibitor, blocks translation elongation by binding to the ribosome 
and preventing the correct positioning of aminoacyl-tRNA, thereby 
interfering with viral replication. Homoharringtonine has 
demonstrated broad antiviral activity against various viruses such as 
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HBV, bovine viral diarrhea virus (BVDV), chikungunya virus, 
varicella–zoster virus, vesicular stomatitis virus (VSV), Newcastle 
disease virus (NDV), porcine epidemic diarrhea virus, and HSV-1 
(103–107). Due to the broad antiviral activity of Homoharringtonine, 
Gong et al. (108) tested the antiviral activity of homoharringtonine 
against serotypes O and A in vitro and revealed strong inhibition of 
FMDV strains (O/MYA98/BY/2010 and A/GD/MM/2013) in swine 
kidney cells (IBRS-2) during the early stages of infection. They further 
proposed in  vivo testing of the drug. The main advantage of 
homoharringtonine is its broad-spectrum antiviral potential. 
However, its use is limited by potential toxicity and adverse effects on 
host cell protein synthesis. Future research should focus on optimizing 
dosages, evaluating long-term safety, and conducting in vivo studies 
to assess its efficacy in field settings.

7.3.2 Quercetin
Quercetin is a flavonoid with broad-spectrum antiviral activity at 

various stages of viral replication and immune-modulating activity. A 
study by Lee et  al. (109) revealed that quercetin induced dose-
dependent inhibition of FMDV (serotype O) in porcine kidney 
(LFBK) cells while also upregulating IFN-α and ISGs. When combined 
with an inactivated FMD vaccine, quercetin increased the production 
of several cytokines, enhanced survival rates, and neutralized antibody 
titers in mice, thus acting as an adjuvant. The main advantage of 
quercetin is its dual action in both antiviral activity and immune 
enhancement. However, its effectiveness may vary depending on the 
viral strain. Future research should focus on testing its antiviral effect 
on more FMDV strains.

7.3.3 Bee venom
The antiviral properties of bee venom are attributed to its complex 

mixture of peptides and enzymes, including melittin, apamin, and 
phospholipase A2. These components have demonstrated efficacy 
against mainly enveloped viruses through mechanisms such as 
disrupting viral membranes, inhibiting viral replication, or modulating 
the immune response (110, 111).

The activity of bee venom against FMDV seems to 
be multipronged. Direct treatment of FMDV with bee venom resulted 
in a 25.7% reduction in viral titers, demonstrating its virucidal activity. 
Additionally, bee venom significantly inhibited viral replication in 
treated cells. A notable increase in IFN-γ levels suggested that bee 
venom induced an antiviral state. (112). Another study showed that 
bee venom induced long-lasting, specific immunity against FMDV if 
inoculated with the FMD vaccine (113).

7.4 RNA-based strategies

The first report of using antisense oligonucleotide against Rous 
sarcoma virus paved the way for innovative RNA-based therapeutic 
strategies to combat a range of viral infections (114). These include 
using RNA molecules that directly interfere with virus replication or 
modulating the host immune response.

7.4.1 RNAi-based strategies
RNAi regulates gene expression by silencing sequence-specific 

posttranscriptional genes. It also serves as a cellular defense 
mechanism against viral infections. RNAi has shown promising 
in  vitro results against IAV, HBV, Ebolavirus, HIV, and 

RSV. Interestingly, RNAi-based therapies against RSV, HBV and HIV 
are in different phases of clinical trials (115). Therefore, RNA 
interference-based approaches to control viral infections have also 
opened up a new avenue for controlling FMD.

Currá et al. (116) identified three potential target sequences within 
the FMDV 3D coding region and evaluated the antiviral potential of 
short-hairpin RNAs (shRNAs) and artificial microRNAs (amiRNAs). 
They reported that shRNAs and amiRNAs caused 70–95% inhibition of 
FMDV in BHK-21 cells. Santos et al. demonstrated that using a shRNA 
targeting the 2B nonstructural protein coding region of FMDV RNA in 
porcine cells significantly reduced viral titers and protein levels. This 
shRNA approach was effective against multiple FMDV serotypes (117). 
Recently, Sahu et al. (118) conducted a comprehensive database search 
of microRNAs (miRNAs) and identified 12 mature host miRNAs that 
targeted 284 sites across 98 distinct FMDV genomic sequences. Among 
these, eight miRNAs significantly reduced virus titers in BHK-21 cells.

7.4.2 Non-coding RNA-based strategies
Noncoding synthetic RNAs (ncRNA) are RNA-based antiviral 

agents designed to mimic natural RNA sequences. They interfere with 
viral replication response by targeting specific viral RNA sequences 
(114) or modulate the host immune system. ncRNAs that mimic in 
sequence and structure of three different domains in the non-coding 
regions of FMDV genome have been shown to induce antiviral 
immune responses via Toll-like receptor and retinoic acid-inducible 
gene-I (RIG-I) pathways (119, 120). Rodríguez-Pulido et al. (121) 
showed that these ncRNAs induced strong type I  IFN-dependent 
antiviral activity in porcine cultured cells and mice, independent of 
FMFDV serotypes. These results demonstrate the biological activity 
of ncRNAs in FMDV host cells and their potential for conferring 
protection against FMDV.

7.5 Gene delivery systems (viral vector)

Gene delivery systems using viral vectors have demonstrated 
significant potential as FMD antiviral approaches. Adenoviruses, 
lentiviruses, and adeno-associated viruses are modified to carry 
genetic material into host cells, enabling the expression of antiviral 
genes or RNA molecules that can disrupt viral replication and enhance 
the host’s immune response to the virus. These vectors can carry genes 
encoding antiviral proteins, siRNAs, or other therapeutic RNAs 
targeting FMDV.

7.5.1 BacMam expressing highly glycosylated 
porcine IFN-α

BacMam is a baculovirus Autographa californica nuclear 
polyhedrosis virus (AcMNPV)-based viral vector used as a 
mammalian cell gene delivery vector. Kord et al. (122), first reported 
the successful use of a BacMam-based vaccine against HCV infection, 
showing that the vaccine triggered cellular and humoral immunity 
against HCV. The antibodies against the HCV surface E2 glycoprotein 
displayed strong cross-neutralizing activities. Kim et  al. (101) 
developed a recombinant BacMam vector expressing consensus 
porcine IFN-α with three additional N-glycosylation sites (Bac-Con3N 
IFN-α). This vector facilitated enhanced protein expression in 
mammalian cells and induced high levels of IFN-α in vitro and in vivo. 
Moreover, Bac-Con3N IFN-α demonstrated in vivo antiviral activity 
and adjuvant effects when combined with an inactivated FMD vaccine 
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in pigs. Thus, Bac-Con3N IFN-α holds promise as an antiviral and 
adjuvant agent, enhancing protection against FMDV when used 
alongside inactivated FMD vaccines in pigs.

7.6 Immunosuppressive agents

7.6.1 Brequinar
Brequinar, known for its antiviral and anticancer properties, is 

primarily a potent selective inhibitor of dihydroorotate 
dehydrogenase (DHODH), an enzyme critical for de novo 
pyrimidine synthesis. Brequinar is a host-acting antiviral compound 
with demonstrated antiviral activity against HIV-1 (123), 
COVID-19 (124) dengue virus, VSV, ZIKA virus, hepatitis E virus, 
and FMDV.

Li et  al. (125) demonstrated the in  vitro antiviral activity of 
brequinar in swine kidney cells (IBRS-2) against the FMDV O and A 
serotypes. This effect was validated in a mouse model, where a 50 μg 
dose of brequinar conferred 25% protection for 5 days post-FMDV 
exposure, indicating its potential as an effective antiviral agent against 
FMD. However, its effectiveness against FMDV is limited, as seen by 
the modest protection observed in animal models. Additionally, 
concerns about potential toxicity and long-term safety arise from its 
impact on host cell metabolism. Future research should focus on 
improving its efficacy against FMDV through optimized dosing and 
evaluating its safety profile.

7.6.2 Mizoribine
Mizoribine, a nucleoside analog, is an immunosuppressive agent 

that inhibits lymphocyte proliferation by targeting inosine 
monophosphate dehydrogenase and guanosine monophosphate 
synthetase. It has shown synergistic anti-CMV activity when 
combined with antiviral agents like ganciclovir and ribavirin (126).

Mizoribine effectively inhibited FMDV replication in IBRS-2 cells 
(127). A time-of-drug-addition assay showed that mizoribine targets an 
early phase of the viral replication cycle. Antiviral efficacy against FMDV 
was also demonstrated in vivo, highlighting its potential as a therapeutic 
agent for FMDV infections. However, its immunosuppressive properties 
could limit its use, potentially increasing susceptibility to secondary 
infections. Future research should focus on optimizing its therapeutic 
potential and assessing its safety.

7.7 Macrocyclic lactones

The subfamilies of macrocyclic lactones are avermectin and 
milbemycin. Avermectins include ivermectin, abamectin, 
doramectin, and selamectin; the milbemycin subfamily includes 
moxidectin, milbemycin oxime, and nemadectin. Ivermectin, 
moxidectin, and milbemycin oxime are used in veterinary 
medicine (128, 129).

7.7.1 Ivermectin
Ivermectin is a popular antiparasitic drug used worldwide, 

making it one of the most important global health medicines. Its 
creators were awarded the Nobel Prize in medicine in 2015. Since its 
first approval for animal use in 1981, the drug has demonstrated 
efficacy in  vitro and in  vivo against nematodes, arthropods, 
mycobacteria, and viruses such as SARS-CoV-2, Zika virus, 
pseudorabies virus, and porcine circovirus 2 (130, 131).

Naeem et  al. (132) investigated the antiviral potential of 
ivermectin against FMDV serotypes O, A, and Asia-1. Ivermectin 
decreased viral titers by two to three logs in BHK-21 cells at 2.5 μM 
and 5 μM. The greatest reduction in viral titer occurred during the 
replication phase, with less impact observed during attachment and 
entry phases. This research highlights the potential of ivermectin as 
an effective in vitro treatment for FMDV and suggests that it could 
be valuable in managing FMDV infections.

7.8 Minerals/trace elements

7.8.1 Manganese (Mn)
Mn is a crucial enzyme cofactor that plays roles in different 

physiological processes, such as synthesis and metabolism, immunity, 
development, reproduction, and neuronal function, and acts as an 
antioxidant (133). It exerts its antiviral effects by modulating the 
innate immune system. A previous study showed that Mn exerted its 
antiviral effects against DNA viruses via the cGAS–STING pathway 
(134). However, Zhang et al. (135) reported that the effect of Mn on 
RNA viruses, specifically FMDV, was mediated by activating NF-κB 
and upregulating ISGs in a cGAS–STING pathway-independent 
manner. Animal experiments showed that Mn2+ effectively conferred 
protection to C57BL/6 N mice from FMDV infection, suggesting its 
potential utility in antiviral defense.

7.9 Novel antiviral approaches

7.9.1 Fibroblast growth factor 11 (FGF11)
In addition to its role in cell growth and differentiation, FGF11 

possesses antiviral activity. Kang et al. (136) reported that FGF11 
inhibits transcription and translation in FMDV. A plasmid reporter 
system was constructed by linking the FMDV 5′-UTR, which contains 
the cis-acting replication element and internal ribosome entry site, 
with a luciferase reporter gene. FGF11 was found to reduce the 
expression of the FMDV 5′-UTR–luciferase reporter gene in a dose-
dependent manner. Additionally, FGF11 suppressed FMDV gene 
expression and replication in infected pig cells, reducing RNA 
production by FMDV RNA polymerase 3D and significantly reducing 
the cytopathic effects of FMD. These findings suggest that FGF11 can 
be  used as an intervention approach against FMDV pathogenesis 
and transmission.

7.9.2 Nanomaterial-based antiviral agents
Bimetallic silver–copper oxide nanoparticles are nanomaterial-

based antiviral agents that utilize the combined properties of silver 
and copper to disrupt viral membranes, generate reactive oxygen 
species, and bind to viral particles, thus inhibiting viral replication and 
conferring broad-spectrum antiviral protection (137, 138). El-Batal 
et al. (139) synthesized bimetallic silver–copper oxide nanoparticles 
using gamma irradiation, with gum Arabic polymer serving as a 
capping and reducing agent. The nanoparticles were characterized by 
UV–Vis spectroscopy, high-resolution transmission electron 
microscopy, scanning electron microscopy, dynamic light scattering, 
and X-ray diffraction, and their antimicrobial and antibiofilm 
properties were assessed. Clinical investigations of cows and buffaloes 
revealed ulcerative lesions on the mouth and interdigital regions, 
which healed within a week of topical application of silver–copper 
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oxide nanoparticles. Cytotoxic assays showed the nanoparticles’ 
protective effects on BHK-21 cells before viral infection, demonstrating 
the inhibition of FMDV. Future research should focus on refining 
nanoparticle formulations and assessing long-term safety.

7.9.3 Virus protease inhibitors
Protease inhibitors act as enzyme-targeted antiviral agents by 

targeting viral proteases, which play a vital role in the viral life cycle 
by cleaving polyproteins into functional components (140). 
Specifically, FMDV utilizes Lpro and 3Cpro proteases to degrade 
cGAS in swine cells, thereby disrupting the cGAS–STING-mediated 
antiviral response (141). This degradation impairs innate immunity, 
allowing the virus to evade host defenses. Notably, inhibiting the 
cGAS–STING pathway was found to enhance viral replication, 
underscoring the pathway’s critical role in antiviral defense. Given 
this, protease inhibitors like rupintrivir, a well-characterized 3Cpro 
inhibitor, was shown to prevent cGAS degradation, restore innate 
immune signaling, and suppress FMDV replication (142). Developing 
specific 3Cpro inhibitors and combining them with STING agonists 
presents a potential therapeutic approach to counteract FMDV 
immune evasion and strengthen antiviral defenses.

8 Challenges in developing antivirals 
against FMDV

Animal models are essential for developing antivirals against 
FMDV as they provide critical insights into the pharmacokinetics, 
efficacy, and safety profiles of potential drugs. The efficacy of antiviral 
agents is assessed through challenge studies, which measure the 
reduction in viral load and the alleviation of clinical signs of 
FMD. Additionally, in vivo studies play a key role in determining the 
safety of these drugs by monitoring animals for adverse effects and 
toxicities, ensuring their suitability for use in livestock. Animal models 
such as pigs and cattle are particularly valuable as they bridge the gap 
between in  vitro findings and practical applications, offering a 
comprehensive understanding of antiviral performance.

However, several challenges persist in developing effective 
antivirals against FMDV. One major obstacle is the emergence of 
drug-resistant viral strains due to the virus’s continuous evolution, 
thus complicating treatment and necessitating ongoing adaptation of 
antiviral approaches. One way to reduce the rate of emergence of 
resistant viral strains is to use cell-targeting antivirals (143).

Another occasionally faced challenge is that many antiviral 
compounds that show promise in vitro fail to achieve similar success 
in  vivo due to factors such as pharmacokinetics, drug delivery 
challenges, and host immune responses. Furthermore, the lack of 
approved antiviral drugs for FMD in livestock highlights a significant 
gap in current research, mainly due to the high production costs of 
antiviral drugs for animal use, as the cost/effect ratio in veterinary 
medicine is less favorable compared to human treatments. This limits 
the adoption of antiviral agents, particularly in developing countries. 
To address these challenges, it is crucial to reduce production costs 
while maintaining efficacy, ensuring that antiviral therapies are 
economically viable for large-scale use in the veterinary industry.

The potential combination of antiviral compounds with vaccines 
against FMD offers a promising strategy to minimize the susceptibility 
window and achieve early effective protection. By combining antivirals 
with vaccines, it is possible to enhance both immediate and long-term 

protection against FMDV infections. Innate immunity activators 
represent a critical aspect of this approach. Borrego et al. reported that 
pigs inoculated with FMD vaccines and ncRNAs developed better T-cell 
responses than those inoculated with vaccines alone (144). Mice 
receiving FMD vaccine with ncrRNAs developed earlier, higher and 
longer B and T cell responses compared to the mice receiving FMD 
vaccine only. This study demonstrates that strategies involving activating 
innate immune responses along with adaptive immune responses can 
generate a more robust, specific and lasting immune response.

9 Future directions in antiviral 
approaches against FMDV

Advancing antivirals against FMDV involves several promising 
approaches. Combination therapies, for instance, can improve treatment 
effectiveness and minimize the risk of resistance development by 
targeting multiple stages of the viral life cycle or using drugs with 
different mechanisms of action. Drug repurposing is another valuable 
approach, where existing medications with established safety profiles are 
adapted for new antiviral purposes. For example, ivermectin, traditionally 
used as an antiparasitic, has demonstrated potential antiviral activity 
against FMDV. Additionally, novel drug discovery methods, driven by 
advancements in biotechnology and molecular modeling, are opening 
new avenues for developing antiviral agents. Techniques like high-
throughput screening, structure-based drug design, and RNA 
interference (RNAi) enable the identification of innovative targets and 
therapeutic compounds to combat FMDV more effectively.

10 Conclusion

Antiviral drugs have significant potential as a supplementary 
approach for managing FMD outbreaks and reducing their devastating 
socioeconomic consequences. Current antiviral candidates’ diverse 
mechanisms of action - from inhibiting viral attachment and entry to 
suppressing replication and gene expression - offer targeted approaches 
to disrupt the critical stages of the FMDV lifecycle. These interventions 
enhance existing vaccination programs and provide immediate control 
options in situations where vaccines may be unavailable, ineffective 
against emerging strains, or delayed in deployment.

Ongoing research is essential to refine these antiviral agents, 
addressing challenges such as viral resistance, host toxicity, and 
large-scale production. Efforts must focus on optimizing drug 
efficacy through structure-based drug design, exploring 
combination therapies to enhance antiviral potency and reduce 
resistance, and developing innovative delivery systems to ensure 
practical application in the field. Moreover, identifying and 
characterizing new therapeutic targets, such as viral proteases and 
host factors critical for viral replication, could expand the arsenal 
of effective treatments.

Enhanced global readiness and response to FMD outbreaks also 
require the integration of antiviral solutions into comprehensive 
disease management plans. This includes developing robust 
surveillance systems to detect outbreaks early, evaluating antiviral 
drugs under field conditions, and ensuring accessibility for resource-
limited regions that substantially rely on livestock industries. By 
addressing these challenges, the scientific community can develop 
effective, sustainable strategies to control FMD, safeguard global food 
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security, and protect the livelihoods of millions who are dependent on 
livestock production.
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Glossary

FMD - Foot-and-mouth disease

FMDV - Foot-and-mouth disease virus

RNA - Ribonucleic acid

DNA - Deoxyribonucleic acid

VLPs - virus-like particles

HSV - herpes simplex virus

RSV - respiratory syncytial virus

HIV - human immunodeficiency virus

HAART - highly active antiretroviral therapy

IAV - influenza A virus

siRNAs - small interfering RNAs

MMPD - Merimepodib

IMPDH - inosine monophosphate dehydrogenase

HCV - hepatitis C virus

HBV - hepatitis B virus

SARS-CoV-2 - Severe acute respiratory syndrome coronavirus 2

TLR-7 - Toll-like receptor 7

IFN - interferon

DHODH - dihydroorotate dehydrogenase

ISGs - IFN-stimulated genes

Ad5-pIFNα - adenovirus type 5 vector containing porcine 
IFN-α genes

BVDV - bovine viral diarrhea virus

VSV - vesicular stomatitis virus

NDV - Newcastle disease virus

RNAi - RNA interference

shRNAs - short-hairpin RNAs

amiRNAs - artificial microRNAs

ncRNAs - noncoding RNAs

CMV - Cytomegalovirus

FGF11 - Fibroblast growth factor 11
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