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and applications of subretinal 
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The subretinal injection technique is an important intraocular drug delivery modality 
that allows access to the subretinal space to directly act on target cells or the 
administration of medications, markedly improving the therapeutic efficacy of 
ocular diseases. Subretinal injection in experimental animals is a commonly used 
manipulation method for investigating vitreoretinal diseases, particularly when gene 
therapy and cell therapy studies are involved. In this study, we conducted a systematic 
review on the injection methods, operation sites, post-injection indicators, as well 
as the progress and significance of subretinal injection in experimental animals, 
discussed and compared the advantages and disadvantages of the subretinal 
injection technique, summarized its specific application of subretinal injection in 
experimental animals, and explored the development and application of this new 
technology of subretinal injection, hoping to offer insights that may facilitate the 
further development of this technology.
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Introduction

The eye’s intricate structure comprises the eyeball wall, ocular contents, and appendages, 
with the eyeball wall divided into three layers: sclera, choroid, and retina. This complexity 
necessitates diverse methods of drug administration to treat various ocular conditions. 
Traditional methods such as topical application, intraocular injection, and systemic 
administration have their limitations, including poor penetration, potential for systemic 
side effects, and challenges in targeting specific ocular tissues. Therefore, the development 
of more precise and effective injection techniques has become crucial for advancing ocular 
therapy. In experimental animals, intraocular drug administration primarily involves 
intravitreal and subretinal injections, with subretinal injection being a particularly 
prevalent technique in retinal research. Compared with other delivery methods like 
intravitreal injection, subretinal injection techniques have its unique advantages. Firstly, 
it enables the direct delivery of therapeutic agents to the subretinal space, where the target 
cells reside, thereby maximizing the local drug concentration and minimizing systemic 
exposure. This is particularly advantageous for gene therapy and cell therapy, where precise 
targeting is crucial for therapeutic success. Secondly, subretinal injection allows for the 
controlled release of therapeutic agents, enabling sustained drug levels in the target tissue 
and prolonged therapeutic effects. This method involves the direct injection of drugs, cells, 
nucleic acids, small molecules, macromolecules, viruses, or biomaterials such as nanobeads 
into the subretinal space of experimental animals (1, 2). It is commonly applied in the 
treatment of retinal diseases such as macular degeneration (3, 4), funduscopic diseases (5, 
6), retinal detachment (7), and certain infectious eye conditions (8). Subretinal injection 
plays a pivotal role in ophthalmology and neuroscience, significantly contributing to the 
study of ocular diseases, drug delivery, and gene therapy (9).
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Advancements in subretinal injection technology for 
experimental animals have significantly enhanced the precision of 
drug delivery and therapeutic outcomes. Consequently, its clinical 
application has expanded. For instance, subretinal injection of anti-
VEGF drugs is now a standard treatment for wet AMD (10), and 
ocular nanocarriers are in clinical trials (11). Furthermore, 
subretinal injection is employed for delivering viral vectors across 
various animal models (12, 13). This technology also holds promise 
for gene therapy and regulation, facilitating the delivery and 
expression of gene therapies through the injection of vectors 
carrying specific genetic information into the subretina (9). 
Technological innovations, such as precision injection robots (14) 
and intraoperative OCT imaging (15, 16), have further improved 
safety and precision, reducing surgical risks and improving 
treatment efficacy.

The subretinal injection technique is vital for ophthalmic 
research and clinical practice. Its ongoing evolution is anticipated 
to open up new possibilities for the treatment and study of 
ocular diseases. Nevertheless, to ensure its reliability and 
effectiveness in medical applications, there is a critical need to 
improve the standardization, safety assessment, and clinical 
validation of this technique in experimental animals. This review 
delineates the operational methods, procedures, advantages, and 
drawbacks of subretinal injection in experimental animals. It also 
encapsulates its application in animal modeling and therapy and 
explores the development and application of novel subretinal 
injection techniques.

Methods of subretinal injection in 
experimental animals

In experimental animals, subretinal injection is performed 
using three primary techniques: transcorneal, posterior scleral, 
and pars plana subretinal injection, as depicted in Figure  1. 
The detailed procedures for each method are outlined below. 
Additionally, Figure  2 illustrates the overall process of 
subretinal injection.

Transcorneal subretinal injection

The transcorneal subretinal injection method is a widely 
adopted technique for delivering substances to the subretinal 
space of rodent eyes. The procedure begins with general 
anesthesia, administered via intraperitoneal injection of a mixture 
containing 12.5 mg/kg mephenothiazine and 62.5 mg/kg 
ketamine. Following this, the pupil is dilated with 2.5% 
phenylephrine, and topical anesthesia is applied using 0.5% 
proparacaine. The eyelashes are trimmed to enhance visibility of 
the eye and fundus. A dissecting microscope is then utilized to 
monitor the pupillary dilation process. Once the anesthesia takes 
effect, the pupil is further dilated, and additional local anesthetic 
drops are applied. With the pupil fully dilated, the rat is positioned 
laterally under the microscope. A drop of 2.5% methylcellulose is 
placed on the cornea to facilitate visualization of the fundus. A 
28-gauge hypodermic needle is carefully inserted nasally into the 
cornea, approximately 0.5 to 1 mm from the dilated pupil’s edge. 
The needle is then fully penetrated through the cornea into the 
anterior chamber, parallel to the anterior lens surface, ensuring at 
least 50% of its beveled surface is within the cornea to create an 
entry point for a 33-gauge blunt needle. The blunt needle’s tip is 
delicately advanced through the corneal puncture into the anterior 
chamber, taking care to avoid the iris and lens. The needle is then 
angled slightly nasally towards the posterior chamber, positioning 
the iris laterally and the lens medially. The lens is gently moved 
medially to allow the needle to reach the injection site. Resistance 
felt during needle advancement indicates successful penetration 
of the retina into the subretinal stroma. At this juncture, the 
syringe is held steady, and the contents are slowly injected over 
approximately 30 s by an assistant, leading to a visible retinal 
detachment. Post-injection, the needle is carefully withdrawn to 
minimize reflux of the injected material through the corneal 
wound. For successful subretinal injections, deep anesthesia 
should be maintained for 20 to 30 min. Real-time microscopic 
monitoring is essential, and full pupil dilation is mandatory to 
prevent complications. This method is unsuitable for neonatal 
mice due to their immature ocular structures and insufficient 

FIGURE 1

Diagram of three subretinal injections. (A) The corneal approach. (B) The transscleral posterior approach. (C) The pars plana approach.
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pupil dilation. Nonetheless, it is effective and safe for adult mice 
when executed by experienced practitioners (17).

It is straightforward to learn and requires minimal equipment and 
preparation. Typically, between 10 to 30 eyes can be injected per hour. 
Importantly, the procedure is designed to avoid damaging the lens, 
retina, or retinal pigment epithelium (RPE).

Posterior scleral subretinal injection

Parikh et  al. (18) investigated the posterior scleral subretinal 
injection method in mouse eyes, which offers a safer alternative to 
transretinal approaches. Mice were anesthetized with an 
intraperitoneal injection of a saline mixture containing 100 mg/kg 

ketamine and 8 mg/kg xylazine. Following anesthesia, the pupils were 
dilated with 2.5% phenylephrine eye drops, and the whiskers were 
trimmed to enhance visibility during the procedure. A 5 μL syringe 
was prepared with an injection volume ranging from 0.3 to 1.0 μL. The 
mice were positioned beneath a dissecting microscope with their eyes 
facing upwards to ensure clear visualization. The temporal conjunctiva 
was gently held with fine-tipped forceps, and a 90-degree 
circumferential incision was made through the conjunctiva and ocular 
fascia using curved Vannas scissors. The eye was rotated nasally, and 
connective tissue was carefully excised with forceps to expose the 
injection site approximately 0.5 mm temporal to the optic nerve, 
taking care to avoid the retro-orbital sinus. A small scleral incision was 
made at this site using a 22.5-degree ophthalmic blade, creating an 
opening sufficient for a 33-gauge needle. The 33-gauge needle, beveled 

FIGURE 2

The general flow of subretinal injection.
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at a 5–10° angle, was inserted into the scleral incision with the bevel 
facing the retina. The plunger was slowly depressed within 
approximately 3 s, maintaining even pressure throughout the 
injection. It is important to note that slight resistance indicates the 
needle is in the subretinal space, whereas no resistance suggests the 
retina has been pierced, and significant resistance indicates the needle 
has not penetrated the sclera or RPE. The needle was left in situ for 
several seconds to avoid reflux before being carefully removed. 
Following the injection, the eye was flushed with sterile buffered saline 
to ensure it returned to its normal position.

To ensure the procedure’s success, the depth of anesthesia was 
monitored to eliminate the corneal touch reflex, and the mouse’s body 
temperature was maintained at 37°C with a warming pad. 
Methylcellulose eye drops were applied post-anesthesia to prevent eye 
dryness and minimize the risk of anesthesia-induced cataracts. All 
instruments were sterilized using iodophor and ethanol or hot beads 
before surgery, and syringes were cleaned thoroughly with a suitable 
solvent and deionized water between injections. For enhanced 
visualization, a 0.01% fluorescein solution in 0.9% saline could 
be injected, and its distribution recorded using OCT fundus imaging. 
It is crucial to trim only the obstructive portion of the whiskers to 
preserve the mice’s sensory input.

The posterior scleral subretinal injection method allows for the 
observation of normal structural and functional contours of the 
subretinal space 4 weeks post-surgery. This technique has a high 
success rate, low exclusion rate, and minimal complications. It is safer 
as it avoids retinal perforation and vitreous penetration, limiting 
collateral damage to local sclerotomy-related injury and transient 
plasma retinal detachment. This method is highly effective at 
delivering viral vectors, drugs, stem cells, or induced pluripotent stem 
(iPS) cells into the subretinal space of mice with high efficacy, minimal 
damage, and rapid recovery. The complications and limitations of 
posterior scleral subretinal injection include potential scleral 
perforation, intraocular hemorrhage, and retinal detachment, albeit 
at lower rates compared to other techniques. Careful manipulation of 
instruments and precise needle placement are paramount to mitigate 
these risks. Additionally, the use of a warming pad to maintain body 
temperature and meticulous sterilization protocols contribute to 
reducing postoperative complications. Despite these potential 
complications, the posterior scleral subretinal injection technique 
remains a favored approach due to its enhanced safety profile and 
efficacy in delivering therapeutic agents to the subretinal space 
of mice.

Pars plana subretinal injection

In animal models, the pars plana subretinal injection is a prevalent 
technique for delivering substances to the subretinal space. In a study 
(19), rats were anesthetized with an intraperitoneal injection of a 
ketamine and thiazide mixture and received local anesthesia with 
Obrocaine. The pupils were dilated using a combination of 
phenylephrine and tropicamide, and the anesthesia’s duration was 
approximately 30–50 min, providing ample time for the subretinal 
injection. Once the pupils were dilated, the anesthetized rats were 
positioned laterally under a surgical microscope. A 6 mm diameter 
rubber ring was placed on the corneal surface, and a drop of carbomer 
eye drop was applied inside the ring to enhance visualization of the 

fundus. A 27-gauge needle was then used to puncture the sclera 
temporally approximately 1–2 mm from the corneal limbus. The 
needle was inserted at a 45-degree angle behind the lens, beveled 
upward, and passed through the sclera into the vitreous body. At least 
50% of the bevel was pushed through the sclera to create an opening 
sufficient for a 33-gauge blunt needle. The blunt needle’s tip was 
carefully inserted through the scleral puncture into the vitreous body. 
Upon feeling slight resistance, indicating the needle had reached the 
subretinal space, the procedure required cautious advancement to 
prevent lens damage. Subsequently, 4 μL of fluid was slowly injected 
into the subretinal space over 20 s, and the needle was gently 
withdrawn once the injection was complete.

Pars plana subretinal injection is one of the most commonly used 
techniques for subretinal injection. This technique avoids the macular 
region and critical structures in the central retina, thereby minimizing 
retinal damage and offering better protection of visual function. 
Additionally, the pars plana, located between the anterior and 
posterior poles of the eye, is a relatively flat area of the ocular wall, 
devoid of complex vascular and neural networks, which allows for 
minimal interference with surrounding tissues. This significantly 
reduces the risk of intraoperative bleeding and other complications. 
Overall, pars plana subretinal injection offers the benefits of being 
minimally invasive, highly precise, with rapid recovery and fewer 
complications. Despite its advantages, pars plana subretinal injection 
is not devoid of complications. One potential issue is intraocular 
bleeding, which can occur due to inadvertent injury to scleral blood 
vessels during needle insertion. Careful manipulation of the needle 
and meticulous attention to anatomical landmarks can minimize this 
risk. Additionally, cataract formation is a concern, particularly if the 
needle comes into contact with the lens during the procedure. 
However, advancements in needle design and injection techniques 
have significantly reduced the incidence of this complication. Retinal 
detachment is another potential risk, but it is usually manageable with 
prompt surgical intervention. Other less common complications 
include endophthalmitis, vitreous hemorrhage, and increased 
intraocular pressure. Despite these potential complications, pars plana 
subretinal injection remains a valuable tool in the arsenal of 
ophthalmic surgeons for the delivery of therapeutic agents to the 
subretinal space. The key to minimizing complications lies in 
meticulous preoperative planning, precise intraoperative technique, 
and vigilant postoperative care.

In summary, the three injection methods, including transcorneal 
subretinal injection, posterior scleral subretinal injection, and pars plana 
subretinal injection, each present a unique set of attributes. Transcorneal 
subretinal injection offers the advantage of direct visualization and ease 
of access, particularly suitable for anterior segment diseases. However, 
it may be accompanied by complications such as corneal edema and 
intraocular pressure spikes. Posterior scleral subretinal injection, on the 
other hand, allows for a more posterior approach, minimizing the risk 
of anterior segment complications. Yet, it requires a higher degree of 
surgical skill and may be associated with scleral perforation. Pars plana 
subretinal injection, as previously emphasized, stands out due to its 
reduced risk of retinal detachment and vitreous hemorrhage, which is 
particularly favored in gene and cell therapy applications where precise 
delivery to the subretinal space is crucial. However, it may involve more 
complex preoperative planning and postoperative monitoring.

In terms of application ranges, transcorneal injection is often used 
for anterior segment interventions, while posterior scleral and pars 
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plana injections are more suited for posterior segment diseases. The 
selection of the injection method should be  based on the specific 
disease, location, and therapeutic needs, along with the surgeon’s 
experience and preference. Operational challenges vary across methods. 
Transcorneal injection may face difficulties in maintaining intraocular 
pressure stability, while posterior scleral injection demands precise 
scleral localization. Pars plana injection, despite its advantages, may 
encounter challenges such as vitreous hemorrhage and endophthalmitis, 
necessitating vigilant preoperative and postoperative care.

In conclusion, each injection method has its own merits and 
drawbacks, and the choice should be tailored to the individual patient’s 
condition and treatment goals, ensuring the safest and most 
effective outcome.

Assessment methods and common 
changes after subretinal injection

Experimental animals undergo various assessment methods 
following subretinal injection, including optical coherence 
tomography (OCT), electroretinography (ERG), color fundus 
photography (CFP), fluorescein fundus angiography (FFA), and 
retinal histologic sections (20, 21). These methods are crucial for 
monitoring changes in retinal morphology and function post-
injection. Typically, a short period after subretinal injection, most 
mice experience retinal detachment, which gradually resolves as the 
retinal structure returns to normal over time (22). OCT 
examinations conducted by José et al. (23) at 30 and 240 days post-
injection demonstrated spontaneous reattachment of the retina to 
the choroid. In cynomolgus monkeys injected with a balanced 
solution under the retina, ERG measurements revealed initial 
functional suppression followed by almost complete recovery 
within 9 days (24). Notably, 7 to 9 months post-injection, ERG 
amplitude was significantly affected compared to uninjected mice 
(1). In rabbits, a marked reduction in total retinal thickness, 
particularly the photoreceptor layer, was observed (25). Maya et al. 
(4) documented the formation of subretinal blebs and subsequent 
retinal reattachment through CFP and noted mild inflammatory 
reactions in some eyes via retinal histologic sections.

These observations indicate that subretinal injections significantly 
impact both the structure and function of the eye in animals. The 
extent of these effects is influenced by factors such as the injected dose, 
the distribution of the fluid, and the time elapsed since injection. 
These insights are vital for comprehending the pathogenesis of retinal 
diseases and for the development of innovative therapeutic strategies.

Advantages and disadvantages of 
subretinal injections

Subretinal injection is a widely used technique in ocular treatment 
and research, offering distinct benefits and challenges. It allows for the 
precise delivery of drugs or therapeutic substances directly to the 
subretinal layer, enhancing the specificity and effectiveness of 
treatments for various ocular diseases. Stranak et al. (26) showed that 
direct subretinal cannula injection, without the need for vitrectomy, 
can achieve surgical goals in a shorter time frame with quicker 
recovery, without postoperative complications such as 

endophthalmitis, retinal detachment, or increased intraocular 
pressure. The rapid absorption of drugs into the retinal tissue through 
subretinal injection accelerates their arrival at the treatment site, 
optimizing therapeutic outcomes and minimizing discomfort and side 
effects (13). This method also circumvents the digestive system, 
preventing enzymatic degradation and preserving drug stability and 
efficacy. In the realm of gene therapy, subretinal injection has proven 
to be a safe and effective method of localized administration to the 
subretinal space in animal models, with minimal systemic toxicity and 
excellent tolerance (12, 27–30). Unlike intravitreal or choroidal 
injections, subretinal injection enables more targeted delivery, 
lowering the required dose and systemic exposure—especially 
advantageous for potentially toxic drugs.

Despite its advantages, subretinal injection is a highly technical 
procedure that necessitates specialized training and experience to 
avoid complications and ensure safety. Although it carries a risk of 
medically induced retinal detachment, the technique is generally 
associated with minimal trauma and rapid recovery of retinal 
structure and function, presenting an overall favorable safety profile 
(31). As with any form of injection, there is a risk of infection, and 
subretinal injections are no exception either. They may also lead to 
potential complications such as retinal detachment, requiring careful 
consideration, including the need for general anesthesia (32). Other 
risks associated with the transcorneal anterior injection route include 
total retinal detachment, mild corneal and lens clouding, anterior 
adhesions, iris hemorrhage, and external photoreceptor segment 
damage (17). These factors highlight the need for precision and 
caution in the application of subretinal injection, balancing its 
precision and rapid absorption benefits against the operational 
complexity and infection risk (Table 1).

Application of subretinal injection in 
experimental animals

The commonly used animal models for subretinal injection 
include mice, rats, guinea pigs, rabbits, and others. It has also been 
applied in crab-eating monkeys and Beagles, and these animal models 
play an important role in experimental research, which can help 
researchers better understand the pathogenesis of retinal diseases, 
assess the effectiveness of therapeutic methods, and provide theoretical 
support for clinical treatment. The application of subretinal injection 
in animal models was summarized in Figure 3.

Application of subretinal injection in 
the establishment of animal disease 
models

The subretinal injection technique facilitates the creation of 
various animal disease models by administering different drugs to the 
subretinal space. Specifically, retinal degeneration (RD) can 
be modeled through the injection of sodium hyaluronate (33–36), 
while RPE atrophy and degeneration are induced by injecting 0.9% 
sodium chloride combined with bevacizumab (37, 38). An in situ 
model is also achievable by injecting a suspension of Rb-200 cells into 
the eyes of mice (39). Additionally, retinitis can be  induced via 
subretinal injection of murine cytomegalovirus (MCMV) (40), and 
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retinoblastoma (RB) can be triggered in rabbit eyes by injecting the 
cultured WERI-RBb-1 cell line (41). Furthermore, choroidal 
neovascularization (CNV) is induced in a rat model by injecting the 
AAV-VEGFA165 vector (42), and a uveal melanoma model is 
established by injecting B16 cells (43).

Boyd et al. (44) provided a summary of different approaches to 
subretinal injections in the most common animal model species, 
including rats and mice, dogs, cats, rabbits, pigs non-human primates 
and sheep. Subretinal injections in animal models require familiarity 
with the anatomy of the species used, best surgical approach, and 
potential complications.

Application of subretinal injection in 
experimental animal therapy

In the realm of experimental animal therapy, subretinal injections 
have become a cornerstone in the past decade, particularly for gene 
therapy and the clinical treatment of retinal degenerative diseases. 
Such treatments have been effectively applied to conditions like 
age-related macular degeneration (AMD), Retinitis pigmentosa (RP) 
(45–47), Leber congenital amaurosis (LCA) (48), and Stargardt 
disease (49).

Gene therapy

Subretinal injection plays a pivotal role in the gene therapy of 
various retinal diseases, as evidenced by its application in multiple 
animal models. For instance, in the LCA animal model, subretinal 
injection of recombinant AAV 2/5-OPTIRPE65 enhances the 
retinal resistance of RPE65 knockout mice against degeneration 
(50). Similarly, delivering the RPE65 gene to the retina of young and 
old RPE65 mutant/deficient dogs can rescue the remaining 
photoreceptors and aid in restoring vision (30, 51). Watanabe et al. 
(52) utilized 7 adeno-associated virus (AAV) serotypes in mice to 
illustrate the link between Crx deficiency, developmental disorders, 
and subsequent retinal photoreceptor degeneration. The LPCAT1-
deficient mouse model exhibited electroretinogram responses and 
preserved retinal structure following subretinal injection of the 

AAV8 smCBA Lpcat1 vector (53). Moreover, subretinal injection of 
AAV8-GRK-Cwc27-FLAG in mutant mice improved both retinal 
function and morphology (54). Haldrup et al. (55) discovered that 
injecting a novel AAV-related RNA into a porcine choroidal 
neovascularization (CNV) model could inhibit CNV formation. Xu 
et  al. (56) demonstrated that AAV2-mediated human 
erythropoietin, when delivered subretinally, can provide long-term 
protection against diabetic retinopathy in a mouse model. 
Furthermore, in a mouse model of Bardet-Biedl syndrome type 1 
(BBS1) with severe retinal degeneration, subretinal injection of 
AAV-BBS1 can ameliorate the condition (57). José et  al. (23) 
showed that subretinal injection of semiconductor polymer 
nanoparticles could rescue the vision of rats with retinal dystrophy. 
Collectively, these studies underscore the potential of subretinal 
injection in gene therapy, particularly for retinal degenerative and 
genetic defect diseases, where targeted gene delivery via vectors can 
restore retinal function to a significant degree.

Cell therapy

Subretinal injection is a favored approach for stem cell 
transplantation in current studies, largely due to the immune-
privileged status of the subretinal space, which reduces the risk of 
graft rejection (6, 58–68). Over recent years, this method has been 
extensively utilized to deliver various cell types into animal retinal 
models for treating retinal degenerative diseases. For instance, adult 
peripheral blood mononuclear cells were pre-induced and 
transplanted into the subretina of mice with chronic retinal 
degeneration (RDS) (69). Additionally, human fibroblasts 
engineered to express high levels of CNTF were transplanted into 
rats, effectively rescuing photoreceptor degeneration (70). 
Subretinal transplantation of RPE has been shown to inhibit laser-
induced CNV (71), and the transplantation of rAAV2-CCN5 can 
suppress CNV and RPE fibrosis (72). Furthermore, subretinal 
injection of rAAV8-hGRK1-Tlcd3b has been found to overexpress 
Tlcd3b, rescuing retinal degeneration and significantly improving 
photoreceptor function in mutant mice (9). These findings have 
positioned progenitor and stem cells as promising candidates for 
subretinal treatment of retinal degeneration. These cells are believed 

TABLE 1 The advantages and disadvantages of subretinal injections.

Advantages Disadvantages

1 Precision drug delivery:

Ability to deliver drugs or therapeutic substances directly to the subretinal 

layer to achieve more accurate treatment effects.

High technical requirements:

It requires professionally trained and experienced operators to perform, and 

improper operation may lead to complications and injuries.

2 Rapid absorption:

The drug can be quickly absorbed by the retinal tissue and quickly reach the 

treatment site.

Safety risks:

There is a risk of iatrogenic retinal detachment, although it is associated with 

minimal trauma and early recovery of retinal structure and function.

3 Improve treatment effectiveness:

Maximize treatment effectiveness and minimize discomfort and side effects.

Potential complications:

Retinal detachment and other potential complications may occur, and general 

anesthesia may be required.

4 Gene delivery:

As a local delivery method, the vector is relatively safe, has non-systemic 

toxicity, and is well tolerated.

Risk of eye injury:

Total retinal detachment, mild corneal and lens opacities, anterior synechiae, iris 

hemorrhage, and outer photoreceptor segment damage.
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to integrate into the retinal layers, restoring function or promoting 
the regeneration of various retinal cells. In particular, human 
embryonic stem cell-derived RPE cells delivered via subretinal 
injection have demonstrated safety and non-toxicity in animal 
models, with reports confirming feasibility and safety post-
implantation, without cell migration from the scaffold or the 
emergence of ocular or systemic tumors (73).

New techniques for subretinal 
injection

Ultra-micro subretinal injection technology, such as the 41G 
ultra-micro needle, is an advanced method for precise drug 
delivery in ophthalmic surgery, particularly for conditions like 
macular degeneration and in the realm of gene and stem cell 
therapy. This technique enables direct targeting of retinal tissue, 
reducing drug dispersion within the eye and prolonging the drug-
retina contact time. However, due to the extremely high precision 
and stability required for such injections, the integration of robot-
assisted technology has become a focal point in this field. A study 
introduced a robotic assisted subretinal injection system (RASR), 
which was preliminarily tested in a freshly isolated pig eye model 
(74). The findings indicated that robot-assisted procedures offer 
greater stability and reduced operator fatigue, with less tremor 
compared to manual injections, suggesting superior precision and 
operability. This enhanced visualization can boost surgical accuracy 
and safety while minimizing potential retinal damage. This research 
establishes a foundation for future advancements in ophthalmic 
surgical robots and the development of additional functionalities. 
Furthermore, another studies compared manual and robot-assisted 
subretinal injections through simulation experiments (75, 76). It 
was discovered that robotic assistance significantly enhances 

injection stability, decreases drift and tremor, and consequently, 
improves the operation’s success rate. These findings reinforce the 
potential of robotic technology to enhance subretinal injection 
surgery outcomes.

Several promising paths for the development of subretinal 
injection technology can be anticipated. For instance, the development 
of advanced robotics and AI algorithms may lead to more precise and 
less invasive injection techniques. Additionally, the exploration of 
novel biomaterials could enhance the biocompatibility and 
functionality of the injected cells or genes, thereby improving 
therapeutic outcomes. Furthermore, interdisciplinary collaborations 
may yield innovative solutions to address current technical challenges, 
such as minimizing tissue damage and enhancing cell survival post-
injection. Continuous advancements in these areas will undoubtedly 
pave the way for more effective and efficient subretinal injection 
therapies in the future.

In conclusion, the fusion of ultra-micro subretinal injection 
technology with robotic-assisted systems is poised to significantly 
impact future ophthalmic surgeries, particularly those demanding 
high precision and stability. As this technology evolves, its application 
in experimental animals’ subretinal injections will be  facilitated, 
offering standardized and reproducible drug delivery independent of 
injection speed (14), leading to more precise and reliable 
experimental outcomes.

Conclusion

Subretinal injection is a critical technique in experimental 
ophthalmology, with three primary methods that are vital for 
animal modeling, diagnosis, and treatment. This technology has 
seen rapid advancements in recent years, leading to broader 
applications. The advent of advanced imaging and sophisticated 

FIGURE 3

Application of subretinal injection in experimental animals.
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microsurgical instruments has significantly enhanced the precision 
and safety of subretinal injections. Nonetheless, challenges remain, 
including the complexity of the procedure and the inherent risks of 
infection. To address these issues, operators must undergo rigorous 
training to ensure the consistency of each injection and to mitigate 
factors that could compromise the assessment of treatment efficacy 
or safety. Additionally, postoperative measures such as the 
appropriate use of antibiotics or anti-inflammatory drugs are 
essential to prevent infection.

It’s crucial to highlight that when translating subretinal injection 
techniques from experimental animals to clinical applications, 
particularly how to safely and effectively apply these techniques in 
human patients, as well as the associated risks and benefits. In 
translating subretinal injection techniques from experimental 
animals to clinical applications, current clinical challenges include 
precise targeting, minimizing tissue damage, and managing 
potential complications such as retinal detachment or infection. 
Solutions to these challenges involve the use of advanced imaging 
techniques for guidance, refined surgical instruments, and rigorous 
postoperative care. Researchers and clinicians must work 
collaboratively to overcome these hurdles and ensure the safe and 
effective translation of subretinal injection techniques from the 
laboratory to the clinic.
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