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Introduction: Mastitis in dairy cows is a significant challenge faced by the global 
dairy industry, significantly affecting the quality and output of milk from dairy 
enterprises and causing them to suffer severe economic losses. With the increasing 
public concern over food safety and the rational use of antibiotics, how to identify 
cows at risk of disease early has become a key issue that needs to be urgently 
addressed. Especially subclinical mastitis, due to the lack of obvious external 
symptoms, makes detection more difficult, so early warning of it is particularly 
important.

Methods: In this study, a time series prediction method, combined with machine 
learning techniques, was used to predict the risk of mastitis in dairy cows. The 
study data were obtained from the production records of 4000 dairy cows 
in a large farm in Hexi region of Gansu. By constructing time-series features, 
production indicators such as milk yield, fat rate and protein rate of each cow in 
two consecutive months, April and May, were utilized to predict its health status 
in June. To fully exploit the value of the time series features, we designed a 
multidimensional feature set that included raw indicator values, monthly change 
rates, and statistical features. After data preprocessing and sample balancing, 
data from 2821 cows were selected for model training. Finally, the applicability 
of each model was assessed by comparing and analyzing the prediction 
performance of six models, namely eXtreme Gradient Boosting(XGBoost), 
Gradient Boosting Decision Tree (GBDT), Support Vector Machine (SVM), K 
Nearest Neighbors (KNN), Logistic Regression, and Long Short-Term Memory 
Network (LSTM).

Results: The XGBoost model demonstrated optimal performance, achieving 
an area under the ROC curve (AUC) of 0.75 with an accuracy rate of 71.36%. 
Feature importance analysis revealed three key temporal indicators significantly 
influencing prediction outcomes: May milk yield (22.29%), standard deviation 
of fat percentage (20.27%), and fat percentage change rate (19.87%). SHapley 
Additive exPlanations (SHAP) value analysis further validated the predictive value 
of these temporal features, providing dairy farm managers with clearly defined 
monitoring priorities.

Discussion: The XGBoost model demonstrates strong potential as an accurate 
predictive tool for subclinical mastitis in dairy cows. This study presents an 
effective early-warning approach through time-series modeling that offers 
significant practical value for mastitis prevention in dairy farm management.
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1 Introduction

Mastitis is one of the most common diseases in dairy cows, which 
not only significantly affects milk production and milk quality but is 
also a major cause of cow culling (1). With increasing concern about 
the use of antibiotics in animal husbandry, the early detection and 
prevention of mastitis without overreliance on antibiotic therapy have 
become a hot research topic (2). In particular, subclinical mastitis, 
which does not cause significant changes in udder appearance or milk 
quality, is mainly characterized by a significantly elevated somatic cell 
count (SCC) (usually more than 200,000 cells/mL) (3)—a feature that 
makes its diagnosis and early intervention more challenging.

In recent years, the Dairy Herd Improvement (DHI) assay system 
has gained widespread popularity in the global dairy farming industry 
due to the modernization of the dairy industry (4). The application of 
automated milking systems and routine milk testing procedures has 
accumulated a huge amount of production data for farms. These data 
include individualized metrics such as milk yield, milk fat percentage, 
and milk protein percentage as measured by DHI (5). The continuous 
and time-series characteristics of the data, along with the powerful 
data processing and pattern recognition capabilities of machine 
learning methods, have opened up new technological avenues for 
disease prediction and early warning in animal husbandry production 
(6). Among them, these technological tools have demonstrated 
distinct advantages in intelligent monitoring and early warning of 
mastitis, especially subclinical mastitis (7). In the detection of 
subclinical mastitis, diagnostic means have undergone an evolution 
from traditional manual detection to modern intelligent monitoring. 
Conventional diagnostic methods, such as SCC, microbial culture, 
and physical examination, are highly accurate but often require 
specialized personnel and are time-consuming. With the advancement 
of science and technology, monitoring technology has gradually 
developed in the direction of automation and intelligence. In recent 
years, novel detection techniques have emerged. Rodríguez-
Hernández et al. (8) demonstrated good potential in the diagnosis of 
subclinical mastitis using near-infrared spectroscopy analysis. A 
predictive model was developed by analyzing milk samples from 101 
cows, yielding classification accuracy ranging from 85.71 to 95.24%. 
This method is expected to serve as a rapid screening tool for occult 
mastitis in dairy cows and establish a basis for pathogen-based 
targeted therapy; however, the reliability of the model still needs 
improvement through increased sample diversity. Zhang et al. (9) 
proposed the CLE-UNet semantic segmentation algorithm to 
optimize the application of infrared thermography for diagnosing 
mastitis in dairy cows. By introducing the Efficient Channel Attention 
(ECA) mechanism, center-of-mass loss function, and ocular ellipse 
fitting operation, the algorithm achieved an Mean Intersection over 
Union (MioU) of 89.32%, and the accuracy, sensitivity, and F1-value 
in mastitis diagnosis were 86.67, 82.35, and 87.5%, respectively. 
However, these tests still face technical bottlenecks such as high false-
positive rates, limited early warning capabilities, and relatively high 
testing costs. To overcome these limitations, researchers have started 
to explore the application of more comprehensive machine learning 
methods in predicting mastitis. Currently, commonly used algorithms 
include single models such as support vector machine (SVM) (10), 
logistic regression (LR), and K-nearest neighbor (KNN), as along with 
integrated learning models, such as random forest (RF) (11) and 
Gradient Boosting Decision Tree. Although machine learning 

methods show promising application prospects, there are still three 
major shortcomings in existing research. First, the mining depth of 
data temporal features is insufficient, making it difficult to fully use 
the temporal evolution features embedded in continuous monitoring 
data. Second, the predictive performance and generalization ability of 
the models need improvement, especially in the face of data from 
different farming environments, where the models exhibit unstable 
performance. Third, there is a lack of systematic analysis regarding the 
significance of features, which hinders the ability to provide more 
targeted management recommendations for production practices.

To address the above problems, this study constructs a 
multidimensional enlistment that includes raw features, rate-of-
change features, and statistical features based on two consecutive 
months of production data from cattle farms. It also builds a 
prediction model using various machine learning algorithms, such as 
XGBoost (12), and thoroughly explains in depth the influence of 
features on prediction results through SHapley Additive exPlanations 
(SHAP) value analysis (13). The innovations of the study are mainly 
reflected in (1) making full use of the temporal characteristics of the 
data to construct a multilevel feature system; (2) proposing a more 
effective prediction scheme by comparing the performances of 
multiple machine learning algorithms; and (3) adopting the SHAP 
value analysis method, which improves the interpretability of the 
model. The aim of this study is to provide a reliable mastitis early 
warning tool for farms to facilitate early prevention of the disease.

2 Materials and methods

2.1 Initial dataset

The data for this study were obtained from some of the data in the 
dairy cattle performance measurement (DHI) of a large farm in the 
Hexi region of Gansu. This farm strictly adheres to industry standard 
operating procedures in terms of breeding facilities, feeding 
management, and disease prevention and control, providing a reliable 
and representative database for this study. In the initial stage, 
we selected the production records of 4,000 cows from April to May. 
Several key aspects of dairy production management were addressed. 
The basic information included cow identification numbers (CowID) 
for individual tracking, data collection dates recorded in “YYYY-
MM-DD” format, and litter size information reflecting the 
reproductive history of the cows. In terms of production performance 
indicators, they include milk yield, which reflects the production level 
of cows, milk fat percentage, and milk protein percentage, which 
measure milk quality, and SCC, which is a key indicator of 
mastitis (14).

Data quality control is a crucial aspect of ensuring the reliability 
of research. For example, milk production or milk composition data 
for individual cows are not recorded on specific dates. If there are 
fewer missing values and the data are more evenly distributed, use the 
mean-fill method, which involves filling in the missing milk 
production data based on the average of the cow’s milk production on 
other dates. For missing data on some key data (e.g., SCC), if it is not 
possible to fill them using reasonable methods and the percentage of 
missing records is too high, the data records of the corresponding 
cows may be  considered for deletion and processed to avoid 
misleading the model training. Outliers may exist in the data due to 
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equipment failure, recording errors, or other accidental factors. For 
example, a cow’s milk production suddenly shows an extraordinarily 
high or low value, which is far from the cow’s usual milk production 
level. For these types of outliers, visualization methods (e.g., drawing 
a box-and-line plot) are used to identify the range of outliers initially. 
The reasonableness of the outliers is then determined based on the 
reality of the data and expertise. If it is not possible to correct the data 
accurately, the outlier data point can also be considered for deletion 
to ensure the accuracy and reasonableness of the data.

In the data preprocessing stage, considering that the SCC showed 
an obvious right-skewed distribution, the study converted the SCC to 
somatic cell score (SCS) with the conversion formula SCS = log2 
(SCC/100,000) + 3 (15), which made the data distribution more 
resemble a normal distribution, as shown in Figure 1. This conversion 
not only helped the subsequent statistical analysis but also made the 
data more suitable for model training. This transformation not only 
helps subsequent statistical analysis but also makes the data more 
suitable for model training.

By analyzing the descriptive statistics of the preprocessed data, as 
shown in Table 1, it can be found that the sample herd as a whole 
showed better production performance and health conditions. In 
terms of milk quality indicators, the standard deviations of fat rate and 
protein percentage were 0.84 and 0.35%, respectively, indicating that 
the sample herd’s milk quality was relatively stable and fluctuated 
within normal limits. The median (29.6 kg) and the mean (29.66 kg) 
of the average daily milk yield were very close to each other with 
relatively small standard deviations, reflecting that the sample herds 
had a stable level of production performance. Although there was a 
large discrepancy between the maximum (69.6 kg) and the minimum 
(0.7 kg) values, this discrepancy mainly reflected the expected milk 
production characteristics of the different lactation stages. In terms of 
health status indicators, the distribution range of SCS (−3.64 to 9.46) 
was large, reflecting significant differences in individual health status 
in the herd. However, the interquartile range of SCC (22–98,000/mL) 
was mainly concentrated within the normal reference range, indicating 
good udder health in most cows. It is important to note that negative 
values of the converted SCS, which indicate very low raw SCC 
(<100,000/mL), typically indicate good udder health. The negative 

SCS values result from log transformation and do not indicate an 
actual negative SCC. These statistical characteristics not only reflect 
the representativeness and reliability of the sample data but also 
provide important basic data to support the subsequent development 
of disease prediction models.

This study uses box line plots (Figure 2) to depict milk yield, fat 
percentage, protein percentage, and SCS in order to more clearly 
illustrate the distributional properties of the indicators. It can 
be observed from the plots that milk yield showed large variability, 
with multiple upper outliers. This indicates that in the sample herds, 
a few cows’ milk yield was significantly higher than the group average. 
The difference in milk yield may be related to factors such as lactation 
stage and feeding management. In contrast, the relatively narrow bins 
for fat percentage and protein percentage indicate that these two 
indices remain relatively stable in the population, and this stability is 
important for maintaining milk quality. The distribution of SCS, on 
the other hand, showed a moderate degree of variability, and its outlier 
distribution characteristics reflected the presence of a small number 
of individuals with abnormal udder health status in the herd, which 
provides an essential reference for subsequent disease warning studies. 
Overall, the box plot not only visualizes the distribution of the indexes 
but also verifies the authenticity and reasonableness of the data, in 
which the observed “outliers” actually reflect the natural variability of 
the cow’s production performance, rather than errors in data 
collection or processing.

Additionally, a correlation heat map was used to analyze the data 
to identify the inherent relationship between the indicators (Figure 3). 
The color shades in the heat map visualize the strength of correlation 
between the variables. The data showed that milk yield was negatively 
correlated with SCC and SCS, which was in line with the biological 
law that udder health affects the milk production performance of 
cows. Meanwhile, the fat percentage and protein percentage showed a 
positive correlation with each other, which reflects the physiological 
correlation between dairy components. Notably, the strong correlation 
between SCC and SCS validated the data transformation.

To fully utilize the time-series characteristics of the data, the study 
systematically organized the data of three consecutive months, 
constructed monthly rate of change indicators reflecting the dynamic 

FIGURE 1

Comparison of the distribution of somatic cell count (SCC) and somatic cell fraction (SCS). (A) SCC distribution. (B) SCS distribution.
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changes in production performance, and calculated statistical 
characteristics of the indicators, such as the mean and the standard 
deviation, to capture the long-term trend in the data and the 
fluctuation characteristics. These treatments laid a solid data 
foundation for the subsequent model construction.

The determination of udder health status in characterization 
studies primarily relies on somatic cell count (SCC) thresholds. 
According to international standards, SCC thresholds are categorized 
as follows: (1) 0–200,000 cells/mL for healthy status; (2) 200,000–
500,000 cells/mL for subclinical mastitis; and (3) above 500,000 cells/
mL for clinical mastitis. Given that no samples in our dataset exceeded 
SCC levels of 500,000 cells/mL, this study focused on the prediction 
of subclinical mastitis in cows with SCC values in the range of 0 to 
500,000 cells/mL. Based on a previously validated SCC–SCS 
conversion model, where SCS = 4 corresponds to SCC = 200,000 cells/
mL, we defined SCS ≥3 (equivalent to SCC ≥100,000 cells/mL) as 
being at risk for subclinical mastitis (label = 1), while SCS <3 was 
classified as healthy (label = 0). This threshold enables earlier disease 
intervention by detecting latent infection risks prior to reaching the 
diagnostic cutoff.

This study developed a comprehensive feature set comprising 13 
predictive features, with the objective of effectively leveraging the 
temporal properties of the data in predictive feature construction. 
These features can be categorized into three main groups: first, raw 
features reflecting the basic production status of cows, including milk 
yield, milk fat percentage and protein percentage data for two 
consecutive months (April and May); second, rate-of-change features 
capturing the dynamic changes in production performance, including 
the monthly rate of change of milk yield, fat percentage and protein 
percentage; finally, statistical features reflecting the overall 
performance and stability, including the mean and standard deviation 
of milk yield and mean and standard deviation of fat percentage. The 
multilevel feature construction scheme aims to capture all aspects of 
cow health comprehensively, and these treatments lay a solid data 
foundation for subsequent model construction.

In terms of model selection, this study employed a variety of 
typical machine learning algorithms for comparative research. First, 
benchmark models representing different machine learning paradigms 
were selected: logistic regression as a representative of linear models, 
support vector machines (using the RBF kernel) based on kernel 
methods, the instance-based K-nearest neighbors algorithm (K = 5), 
Gradient Boosting Decision Tree (with 100 base learners) based on 
tree ensembles, and the XGBoost algorithm, which has shown 
excellent performance in structured data prediction tasks. The 
selection of these classical algorithms not only considered the diversity 
of model types but also took into account the differences in 
algorithmic complexity, thereby facilitating a comprehensive 
evaluation of the characteristics of the prediction task. However, most 
machine learning models have limitations in capturing the nonlinear 
features of real-world time series. In recent years, deep learning (DL) 
techniques have been successfully applied to time series prediction 
tasks, demonstrating significant advantages (16). To this end, this 
study also introduced the Long Short-Term Memory (LSTM) model 
to further explore complex patterns in time series data, providing new 
perspectives for enhancing predictive performance.

FIGURE 2

Distributional characteristics of the indicators.

TABLE 1 Descriptive statistics of dataset.

Milk 
yield

Fat 
percentage

Protein 
percentage

SCC SCS

Mean 29.66 4.67 3.78 9.91 1.94

Standard 

deviation

7.53 0.84 0.35 26.55 1.54

Minimum 0.7 1.41 2.46 0.1 −3.64

25% 24.8 4.1 3.53 2.2 0.81

50% 29.6 4.7 3.77 4.5 1.84

75% 34.4 5.19 4.03 9.8 2.97

Maximum 69.6 9.96 5.71 879.7 9.45
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2.2 Experimental design

In this study, a systematic and rigorous methodology was used for 
the experimental design. First, to ensure the reliability of the model 
evaluation, a randomized division strategy was applied to the 
preprocessed production records of 2,821 cows, dividing the data into 
training and test sets in the ratio of 8:2. This division ratio ensured that 
there was sufficient data for model training, while retaining an 
appropriately sized test sample for independent assessment of 
model performance.

Prior to model training, the dataset was analyzed for category 
imbalance. As shown in the figure, there is a significant category 
imbalance in the original dataset, with approximately 2,000 healthy 
samples (labeled 0) and only approximately 800 unhealthy samples 
(labeled 1). Consequently, the number of healthy samples is 
approximately 2.5 times that of unhealthy samples. This significant 
class imbalance may cause the model to be overly biased toward the 
majority class during training, thus affecting the model’s prediction 
performance for the minority class. To address this issue, this study 
used the Synthetic Minority Oversampling Technique (SMOTE) to 
balance the data (17). The SMOTE technique increases the number 
of minority classes by generating synthetic samples in the feature 
space instead of merely replicating existing samples. As shown on the 
right-hand side of Figure  4, the number of unhealthy samples is 
boosted to approximately 2,000 after SMOTE processing, which is 
roughly equal to the number of healthy samples. This balanced 
processing method not only maintains the distribution characteristics 
of the original data but also effectively eliminates the category 
imbalance problem, creating more ideal data conditions for 
subsequent model training.

To comprehensively assess the performance and stability of the 
model, a 5-fold cross-validation (CV) method (18) was employed in this 

study. Specifically, the training dataset was randomly divided into five 
equal-sized subsets, with four subsets used for model training and the 
remaining subset used for model validation each time. This process was 
repeated for five iterations, and the average performance was then taken 
as the overall evaluation index of the model. During each iteration, the 
model is evaluated on different combinations of training and validation 
sets. This approach not only maximizes the utilization of limited data 
resources but also effectively evaluates the stability and generalization 
ability of the model. In the implementation process, AUC is used as an 
evaluation metric for each fold of validation, which is between 0 and 1. 
The closer the score is to 1, the better the performance of the model. By 
calculating the average AUC scores of the five validations, a more robust 
and reliable assessment of the model performance can be obtained. The 
advantages of this cross-validation method are that each sample is used 
as a training set and a validation set, which ensures the full utilization 
of the data; the impact of randomness brought about by a single division 
can be  reduced by training and validating multiple times; the 
performance of the model on different data subsets can be effectively 
assessed, which can better reflect the generalization performance of the 
model; and the stability of the model performance can be assessed by 
analyzing the variance of the performance between different folds. In 
addition, to ensure the reproducibility of the experiments, a fixed 
random seed is set during the data division process, ensuring that the 
same data division results are obtained each time the experiment is run. 
Ultimately, the comprehensive performance of the model is not merely 
measured by the average AUC score, but a multidimensional evaluation 
system is adopted. Accuracy, as the most basic performance metric, 
intuitively reflects the overall judgmental accuracy of the model. F1-
scores, as a reconciled average of precision and recall, provide a more 
comprehensive assessment of model performance. The combined use 
of these metrics ensures a thorough assessment of model 
performance (19).

FIGURE 3

Indicator correlation heat map.
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For feature engineering, a sliding time window approach is used 
to integrate three consecutive months of data into a single forecasting 
unit. This design takes into account the temporal characteristics of the 
data, ensuring the real-time nature of the prediction. By calculating 
the rate of change and statistical characteristics of each index, the 
dynamic change characteristics of cow production performance were 
effectively captured.

A parameter optimization strategy combining grid search 
(20) and cross-validation was adopted during model training. By 
systematically exploring different combinations of parameters, 
such as the depth of the tree, the learning rate, and the minimum 
number of leaf node samples, the optimal model configuration 
was finally determined. Meanwhile, an early-stop strategy is used 
to avoid model overfitting by promptly stopping the training 
process when the performance of the validation set is no 
longer improving.

3 Results

3.1 Model performance comparison

This study systematically evaluated the predictive performance of 
six machine learning models, revealing significant differences in their 
predictive capabilities (Table 2). All key model performance metrics 
are provided with a 95% confidence interval. The XGBoost model 

demonstrated the best predictive performance, achieving an AUC of 
0.75 and an accuracy of 0.71, outperforming other models across all 
evaluation metrics. Although deep learning models have significant 
advantages in time series prediction, the results indicate that the Long 
Short-Term Memory (LSTM) model also exhibited commendable 
performance. It was able to capture specific patterns in the time series 
data, achieving an accuracy of 65% and an AUC of 0.73. However, 
compared to the XGBoost model, which achieved an accuracy of 71% 
and an AUC of 0.75, the XGBoost model still outperformed the LSTM 
model. The Gradient Boosting Decision Tree (GBDT) model 
performed second best, with an AUC of 0.67 and an accuracy of 0.67. 
In contrast, the KNN (AUC of 0.64, accuracy of 0.65), SVM (AUC of 
0.63, accuracy of 0.63), and logistic regression (AUC of 0.61, accuracy 
of 0.61) models showed relatively weaker performance. Based on the 
comprehensive evaluation metrics in Table 2, the XGBoost model 
maintained high levels across all indicators, including AUC, accuracy, 
precision, recall, and F1-score, demonstrating robust overall 
performance. To verify the stability of the model’s performance, the 
study used a five-fold cross-validation method for evaluation. As 
shown in Figure 5, the XGBoost model not only achieves the highest 
average performance but also exhibits the most stable performance 
across each fold, with receiver operating characteristic curve (ROC)-
area under the curve (AUC) values consistently maintained between 
0.72 and 0.78. This stability confirms that the model has good 
generalization ability and does not overly rely on specific training data. 
In contrast, while the other models also show some predictive ability, 

FIGURE 4

Before and after experiencing SMOTE sample distribution.

TABLE 2 Indicators for the evaluation of different models.

Model AUC Accuracy Precision Recall F1-score

XGBoost 0.75 (0.72, 0.78) 0.71 (0.69–0.73) 0.71 (0.68–0.74) 0.71 (0.68–0.74) 0.71 (0.68–0.74)

LR 0.61 (0.58, 0.64) 0.61 (0.58–0.63) 0.62 (0.59–0.65) 0.62 (0.59–0.65) 0.62 (0.59–0.65)

GBDT 0.67 (0.64, 0.70) 0.67 (0.65–0.69) 0.67 (0.64–0.70) 0.67 (0.64–0.70) 0.67 (0.64–0.70)

SVM 0.69 (0.66, 0.71) 0.63 (0.60–0.66) 0.63 (0.60–0.66) 0.63 (0.60–0.66) 0.63 (0.60–0.66)

KNN 0.64 (0.61, 0.67) 0.65 (0.61, 0.68) 0.64 (0.61, 0.67) 0.64 (0.61, 0.67) 0.64 (0.61, 0.67)

LSTM 0.73 (0.70, 0.76) 0.65 (0.61, 0.68) 0.63 (0.60–0.66) 0.63 (0.60–0.66) 0.67 (0.64–0.70)
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their performance fluctuates relatively more across folds, reflecting 
their limitations in handling complex biological prediction tasks. 
Although the gradient boosting tree model has the second-best overall 
performance, it is still less stable than the XGBoost model, which 
illustrates the unique advantage of XGBoost in handling the data of 
this study.

The performance of each model under different decision 
thresholds was further evaluated by ROC curve analysis (Figure 6). In 
the ROC curve graph, the horizontal axis indicates the false positive 
rate (1-specificity), and the vertical axis indicates the true positive rate 
(sensitivity). The closer the curve is to the upper left corner, the better 
the model performance. From the figure, it can be observed that the 
ROC curve of the XGBoost model is consistently located above the 
curves of the other models, and its AUC value reaches 0.77, which is 
significantly better than the other models. Especially in the middle 
part of the curve, the performance gap between the XGBoost model 

and other models is more prominent, which indicates that the model 
has a better ability to regulate the balance of sensitivity and specificity, 
and can flexibly adjust the prediction thresholds according to the 
needs of practical applications. The advantage of the ROC curve is of 
great significance for practical applications, because in disease 
prediction, we often need to adjust the sensitivity and specificity of the 
model according to the specific situation.

3.2 Analysis of the XGBoost model

Analyzing the classification effect of the XGBoost model in depth, 
we find that the model achieves a better balance in predicting both 
healthy and diseased samples. For both healthy samples (label 0) and 
diseased samples (label 1), the model achieved a precision of 0.71, a 
recall of 0.73 and 0.70, and F1-scores of 0.72 and 0.71, respectively. 

FIGURE 5

Cross-validation of different models.

FIGURE 6

ROC curve for different models.
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FIGURE 8

SHAP feature importance analysis.

This well-balanced performance is extremely important for real-world 
applications, suggesting that the model neither over-alarms nor misses 
potentially diseased cases.

To understand the decision-making mechanism of the model, 
we performed a feature importance analysis based on SHAP values. 
This analysis revealed the order of contribution of each feature to the 
prediction results, as shown in Figure 7. May milk production, as the 
most important predictive feature, occupied an importance weight of 

22.29%, indicating that the current month’s milk production 
performance had the most direct impact on predicting subclinical 
mastitis. Fat rate-related characteristics, including standard deviation 
(20.27%) and rate of change (19.87%), ranked second and third, 
indicating that the fluctuating characteristics of fat rate are key 
indicators of health status. In addition, the importance of April milk 
production (15.46%) and standard deviation of milk production 
(15.45%) should not be  overlooked, as they reflect the vital 

FIGURE 7

XGBoost feature importance analysis.
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contribution of historical milk production data and yield stability 
to prediction.

Figure 8 illustrates the distribution of SHAP values, revealing 
the impact of various features on the prediction of subclinical 
mastitis. May milk yield emerges as the most significant predictive 
feature: high milk yield (represented by red dots) is generally 
associated with a healthy status, with positive SHAP values 
indicating that high milk yield reduces the risk of subclinical 
mastitis; conversely, low milk yield (represented by blue dots) is 
typically linked to health risks, with negative SHAP values 
suggesting that low milk yield increases the risk of subclinical 
mastitis. The standard deviation (Fat Rate Std.) and change rate (Fat 
Rate Change Rate) of fat percentage also demonstrate significant 
influence, as larger fluctuations are generally associated with an 
increased risk of disease. These findings provide specific monitoring 
directions for farm managers, such as tracking changes in milk yield 
and fat percentage to early identify potential health issues and 
implement intervention measures.

3.3 Timing characterization

Based on the above SHAP value analysis results, we can gain 
a deeper understanding of the role of time-series features in 
enhancing model performance. In this study, the predictive 
ability of the model was significantly enhanced by introducing 
the production data of two consecutive months (April and May) 
as predictive features. As can be  seen from the analysis in 
Figures 7, 8, both May milk production (22.29%) and April milk 
production (15.46%) ranked among the top five in terms of 
importance, validating the value of continuous data in prediction. 
This application of time-series data allows the model to capture 
dynamic trends in cow performance rather than relying solely on 
static information at a single point in time, which is particularly 
important for predicting latent diseases such as 
subclinical mastitis.

When dairy cows experience mammary gland infections 
leading to subclinical mastitis, the immune system releases a 
variety of cytokines that disrupt the normal metabolic activities 
of mammary epithelial cells. This interference adversely affects 
the synthesis and secretion of milk components, such as fat and 
protein, resulting in significant alterations in milk yield and 
composition. These changes are prominently reflected in dynamic 
production indicators. The study revealed that the rate of change 
in fat percentage holds a critical predictive value, ranking third 
with an importance weight of 19.87%. As illustrated in the SHAP 
distribution in Figure 8, fluctuations in the rate of change in fat 
percentage exhibit a strong correlation with health risks, 
underscoring the importance of dynamic indicators in identifying 
potential health issues. Furthermore, the standard deviation of 
fat percentage ranked second with an importance weight of 
20.27%, while the standard deviation of milk yield (15.45%) also 
featured among the top five most important indicators. These 
statistical metrics effectively capture the variability in production 
parameters, providing robust evidence for the early identification 
of cows at risk of disease. The SHAP value distribution plot 
further demonstrates that higher variability in these indicators is 
often associated with increased health risks, even when individual 
measurements fall within the normal range. These findings 

underscore the value of dynamic indicators in reflecting the 
immune system’s impact on mammary metabolism,  
offering a reliable approach for the early detection of 
subclinical mastitis.

The combined application of these three types of time-series 
features (consecutive month data, rate of change, and statistical 
features) forms a multilevel prediction system. From the results of the 
SHAP value analysis, this feature construction scheme not only 
improves the prediction accuracy of the model but also enhances the 
reliability and interpretability of the prediction results. From a 
practical point of view, the design of this feature system is also in line 
with the clinical experience of veterinary experts that performance 
and trends at multiple time points need to be considered together to 
assess the health status of cows.

4 Discussion

In this study, we  have thoroughly discussed and analyzed the 
developed model for predicting subclinical mastitis. First, in terms of 
model prediction ability, the XGBoost-based prediction model 
achieved an accuracy of 71.36%, which is a more desirable result in 
complex biological prediction tasks. The results of the five-fold cross-
validation show that the model’s performance remains stable across 
different datasets, with the AUC value consistently ranging from 0.72 
to 0.78, which confirms the model’s good generalization ability. 
Meanwhile, the model achieves a good balance in predicting positive 
and negative samples, and the precision and recall of healthy and 
diseased samples are maintained at similar levels. This balanced 
classification performance is significant for practical applications.

The SHAP value analysis identified several important predictors in 
terms of feature importance. The trend of milk production as the most 
crucial predictive feature is reflected in the importance ranking of 
current-month milk production and historical milk production. The 
stability of fat percentage showed significant predictive value through 
its standard deviation feature, suggesting that the volatility of 
production metrics may be significant in determining health status. 
These findings not only improve the interpretability of the model but 
also provide specific guidance for practical production management.

In terms of practical application value, the predictive model 
developed in this study can serve as an effective early warning tool 
to help farms identify potential health problems promptly. By 
analyzing daily production data, the model provides early warning 
information before disease symptoms are evident, enabling to 
achieve accurate management and reduces detection costs. 
However, there are some limitations in the application of models. 
First, the effective operation of the model relies on continuous 
monitoring data, which puts high demands on the data collection 
and management system of the farm. Second, although the 71.36% 
prediction accuracy is of practical value, it still has room for 
improvement. In addition, the generalization performance of the 
model needs to be validated on a larger dataset comprising farms of 
varying sizes and management levels.

In light of these limitations, we  propose several directions for 
future research to enhance the predictive models further. First, 
expanding the dimensionality of the data by incorporating additional 
types of production indicators, such as environmental parameters and 
feeding management data, could provide new predictive insights. 
Second, broadening the scope of data collection by integrating data 
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from different regions and farms of varying scales could improve the 
adaptability and generalization capabilities of the models. On a 
methodological level, further optimization of feature engineering 
techniques, such as exploring intelligent optimization algorithms for 
feature extraction, is recommended. Remarkably, given the temporal 
nature of the data, adopting more advanced deep learning architectures 
like recurrent neural networks (RNNs) may lead to significant 
breakthroughs. Through these improvements, predictive models are 
expected to achieve greater accuracy and practicality, offering more 
robust technical support for dairy cow health management.

5 Conclusion

In this study, a prediction model for subclinical mastitis in dairy 
cows, based on the XGBoost algorithm, was successfully developed 
and achieved significant results in several aspects. The experimental 
results demonstrated that the model achieved a prediction accuracy 
of 71.36%, which is a significant improvement over traditional 
methods such as logistic regression. This performance improvement 
is not only reflected in the overall accuracy, but more importantly, the 
AUC value, which is crucial in practical applications, reaches 0.75, 
proving that the model has a strong differentiation ability.

To address data imbalance, which is a common challenge in the field 
of disease prediction, this study was effectively handled using the SMOTE 
method. This processing strategy enabled the model to achieve a more 
balanced performance in predicting both healthy and diseased samples, 
as reflected in similar precision and recall rates. This balanced prediction 
performance is important for practical applications, as it avoids both over-
warning and reducing the risk of under-detection.

The time-series feature introduced in the study is one of the key 
factors for the success of the model. By constructing a multilevel feature 
system that includes consecutive-month data, rate of change, and 
statistical features, the model can effectively capture the dynamic change 
characteristics of cow production performance. The analysis of SHAP 
values shows that these time-series features play an important role in the 
prediction process, especially indicators such as milk yield, standard 
deviation of fat rate, and rate of change of the current month, which are 
ranked high, verifying the necessity and effectiveness.

The interpretability of the model is another important advantage. By 
analyzing the importance of the features, we clearly identified the key 
indicators that have the most significant influence on the prediction 
results. These findings are highly consistent with the clinical experience 
of veterinary experts, providing a clear guidance for the actual production 
management. This interpretability not only enhances the credibility of the 
model but also provides specific guidance for the refined management of 
farms. Overall, the prediction model developed in this study 
demonstrating promising application prospects and provides effective 
technical support for dairy farms to realize early warning of diseases and 
precise management.
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