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Introduction: Highly pathogenic avian influenza (HPAI) continues to threaten 
the poultry industry, particularly in duck farms, where early detection is critical 
to preventing widespread outbreaks. In South Korea, risk-based antigen and 
antibody surveillance strategies have been implemented to enhance early 
warning capabilities. However, the effectiveness of these strategies—especially 
in terms of testing frequency, timing, and spatial alignment with outbreak risks—
remains under-evaluated.

Methods: This study analyzed antigen and antibody surveillance data from South 
Korean duck farms between 2019 and 2022. Testing frequencies and intervals 
were assessed across high-risk (October–May) and low-risk (June–September) 
periods, as well as during non-epidemic (2019–2020) and epidemic (2020–2021 
and 2021–2022) seasons. Spatial hotspot analysis (Getis-Ord Gi*) and negative 
binomial regression were applied to evaluate associations between test patterns 
and HPAI outbreak occurrence. Additionally, test-to-outbreak intervals were 
calculated to assess the timeliness of detection.

Results: Antigen testing frequencies were significantly associated with HPAI 
outbreaks during high-risk periods (coefficient = 0.56, IRR = 1.75, p < 0.001). 
Hot-spot analysis revealed that cold spots received disproportionately more 
antigen testing than outbreak hotspots (p < 0.001), indicating a misalignment 
in surveillance priorities. Despite intensified testing during epidemic seasons, 
no significant reductions were observed in the time intervals between the last 
diagnostic test and outbreak onset (p > 0.05), suggesting limited improvement 
in early detection.

Discussion: The findings highlight both the strengths and limitations of South 
Korea’s current HPAI surveillance strategy in duck farms. While antigen testing 
serves as a useful predictor of outbreak risk, the spatial and temporal mismatch 
between surveillance intensity and actual outbreak distribution undermines its 
effectiveness. A more adaptive and geographically targeted testing approach 
is needed to enhance outbreak preparedness and response. These results 
provide a foundation for optimizing future surveillance strategies to minimize 
the economic and public health impacts of HPAI.
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1 Introduction

Systematic documentation of infection cases, infected birds, 
livestock, and environmental factors is essential for efforts to 
understand disease epidemiology, detect incursions, monitor 
incidence, and evaluate the impact of management practices. This 
process, known as surveillance, involves the systematic collection and 
analysis of data related to the health statuses of birds and livestock. A 
surveillance system consists of various measures designed to provide 
information regarding disease prevalence, incidence, geographic 
distribution and transmission dynamics within a population (1). This 
study presents the first comprehensive evaluation of an active 
serological surveillance system in South Korean duck farms, with the 
goal of assessing its effectiveness and impact on HPAI prevention 
through timely detection.

A subtype of the influenza A virus, avian influenza virus (AIV), 
primarily causes disease in birds. This virus belongs to the 
Orthomyxoviridae family and comprises 19 hemagglutinin subtypes 
(H1–H19) and 11 neuraminidase subtypes (N1–N11). In 2022, the 
highly pathogenic avian influenza (HPAI) H5 virus affected 
approximately 25 million domestic and wild birds worldwide, leading 
to an estimated 5.28 million fatalities (2).

HPAI outbreaks in South Korea have been associated with 
migratory wild birds carrying HPAI viruses (3). Between 2020 and 
2022, the number of avian influenza outbreaks in South Korea varied 
among regions. In 2020, 42 cases were reported, predominantly in 
Gyeonggi (12 cases), Jeonnam (nine cases), and Chungnam (10 cases), 
indicating a substantial increase in outbreaks. The highest number of 
outbreaks occurred in 2021, with 86 cases, primarily in Gyeonggi (25 
cases) and Jeonnam (21 cases). Although only 28 outbreaks were 
reported in 2022, Chungnam (nine cases) and Chungbuk (six cases) 
remained high-incidence regions (4, 5). The affected areas used in this 
study can be  seen in Supplementary material “Study Areas Maps 
(.docx).” These patterns highlight the need for targeted surveillance 
and control measures that consider the dynamic and regionally 
specific nature of avian influenza epidemics.

Ducks, geese, and other wild, migratory, and free-flying birds constitute 
important carriers of influenza viruses; they continuously disperse the virus 
through respiratory fluids and droppings, thereby contributing to its 
persistence in the environment (6). AIVs have been reported to cross 
species barriers, spreading from birds to mammals (including humans). 
Considering the substantial morbidity and mortality associated with 
human avian influenza infections, this interspecies transmission presents 
a serious threat to public health. Over the past 20 years, at least six 
hemagglutinin subtypes of AIVs—H3 (H3N8), H5 (HPAI H5N1, H5N6, 
and H5N8), H6, H7, H9 (LPAI H9N2), and H10—have demonstrated the 
ability to infect humans (7). Among these subtypes, H5 and H7 are more 
important as they are associated with highly pathogenic” (HPAI) strains, 
whereas H9N2 and H3N8 are considered “low pathogenic” (LPAI) strains 
but have zoonotic potential of cross species transmission. Due to the 
zoonotic nature of avian influenza viruses, it is important to strengthen 
control measures and implement active surveillance systems in birds to 
prevent potential spread to humans.

In 2008, the South Korean government implemented a nationwide 
influenza virus surveillance program to detect influenza A viruses in birds 
that could potentially trigger poultry HPAI outbreaks and pose a risk to 
human health (8). These existing efforts have primarily concentrated on 
monitoring migratory and wild birds to track seasonal trends and viral 
ecology in natural reservoirs (9). While this wildlife-based surveillance 

has provided valuable insights, it does not adequately assess the 
effectiveness of surveillance practices within domestic poultry sectors. 
Our study addresses this gap by focusing specifically on duck farms, 
which are known amplifiers of HPAI outbreaks. Evaluating the structure 
and performance of active surveillance in these farms is essential to 
strengthen early detection and response mechanisms.

Duck farms are receiving increased attention as key sites for HPAI 
transmission due to the central role of domestic ducks in maintaining 
and spreading HPAI viruses (10). Efforts to strengthen early detection 
and control of avian influenza epidemics require a thorough assessment 
of antigen and antibody testing strategies in duck farm monitoring 
networks. The sensitivity and timeliness of outbreak detection can 
be  substantially improved through structured and evidence-based 
surveillance strategies. These include increasing the frequency of 
testing, ensuring rapid sample collection following risk events, and 
incorporating both live and dead ducks into routine testing protocols. 
Such robust surveillance systems enhance the likelihood of early 
detection before widespread transmission occurs, thereby improving 
the overall effectiveness of outbreak control measures (11).

The implementation of precise surveillance techniques—defined 
as targeted, risk-based antigen and antibody testing protocols with 
optimal frequency and spatial coverage— may reduce the risk of virus 
transmission while enhancing the monitoring and management of 
influenza outbreaks. To address this issue, statistical methods and 
spatial analysis were utilized to examine the relationship between 
HPAI outbreaks and testing frequencies in South Korean duck farms. 
The analysis of the surveillance system aims to identify deficiencies or 
gaps that can be addressed to enhance future surveillance strategies 
and improve the early detection of HPAI outbreaks.

2 Methodology

2.1 Data collection

Between 2019 and 2022, a comprehensive dataset was collected to 
evaluate the performance of HPAI surveillance systems in South 
Korean duck farms. “The dataset comprising 30,395 individual test 
records from duck farms, covering the period from 2019 to 2022. 
These records represent surveillance activities. The data encompass 
nationwide coverage, including all major poultry-producing provinces 
in South Korea such as Gyeonggi-do, Jeollabuk-do, 
Chungcheongnam-do, and Jeju Island which can be observed in the 
Supplementary material “Study Areas Maps (.docx).” The surveillance 
involved multiple test types, with the most frequently recorded 
method being rRT-PCR, used for antigen detection of avian influenza 
virus in duck populations. The Animal and Plant Quarantine Agency 
(South Korea) provided surveillance data. These data are available in 
the Supplementary material as “avian_influenza_surveillance.zip.” 
One non-epidemic season (2019–2020) and two epidemic seasons 
(2020–2021, 2021–2022) were analyzed. A 10-meter buffer zone was 
applied around each duck farm coordinate to define spatial boundaries 
and prevent overlap with neighboring farms. This ensured that each 
farm was treated as a distinct spatial unit in the cluster analysis, 
minimizing the risk of duplicate inclusion or analytical distortion due 
to farm proximity (12).

Surveillance involved two diagnostic approaches: antibody tests—
including ELISA and hemagglutination inhibition (HI)—to detect 
prior HPAI exposure, and antigen tests—such as rRT-PCR, qRT-PCR, 
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multitube PCR, and egg inoculation—to detect active infections. 
Testing activities were grouped by two risk periods: high-risk 
(October–May), and low-risk (June–September) (13). Testing was 
categorized into two main risk periods: low-risk (June–September) 
and high-risk (October–May), with the high-risk period aligning with 
the winter season during which bird migration occurs, potentially 
facilitating virus dissemination (14).

2.2 Descriptive statistics

Descriptive statistics—including maximum, minimum, mean, 
median, and standard deviation—were computed to assess variations 
in antigen and antibody test frequencies and time intervals across risk 
periods (high-risk vs. low-risk) and seasons (epidemic vs. 
non-epidemic). Each observation represents a farm and period/
season combination.

The following metrics were analyzed:

 (1) Test frequency: number of antigen or antibody tests conducted 
at a farm during a specific risk period and season.

 (2) Test interval: number of days between two consecutive 
antigen or antibody tests at the same farm (Not shown 
in methodology).

 (3) Test-to-outbreak interval: number of days between the last test 
completion date and the subsequent outbreak onset date at the 
same farm (Not shown in methodology).

Descriptive summaries of these metrics were calculated for each 
category to evaluate testing intensity, consistency, and responsiveness 
over time. Stratified analysis by surveillance periods (non-epidemic 
high-risk, non-epidemic low-risk, epidemic high-risk, epidemic 
low-risk) provided insights into seasonal and risk-based variations in 
surveillance implementation.

Maximum (max(X)) and minimum (min(X)) test frequencies for 
each period (high-risk, low-risk) and season (epidemic, non-epidemic) 
were calculated using Equation 1, which defines the extrema across all 
farms within a specified time stratum:

 ( ) { } ( ) { }= … = …max max 1, 2, , ,min min 1, 2, ,X X X Xn X X X Xn  (1)

where:
Xi represents the number of antigen or antibody tests conducted 

for the i-th farm within the specified time stratum, and n is the total 
number of farms observed in that period.

The mean test frequency was calculated using Equation 2, which 
computes the average number of tests conducted across all farms 
within a given time stratum:
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where:
X  represents the average number of tests, iX  denotes the test 

frequency for the i-th farm within the specified time stratum, and n is 
the total number of farms observed in that period.

The standard deviation (SD), quantifying variability in test 
frequencies, was computed using Equation 3, which measures the 
dispersion of test counts across farms:

 

( )
=

−

=
−

∑ 2

1
1

n

i
i

x x
SD

n  
(3)

where:
SD denotes the standard deviation, iX  denotes the test frequency 

for the i-th farm within the specified time stratum, and n is the total 
number of farms observed in that period.

2.3 Statistical analysis

All statistical tests were two-tailed, with p-values less than 0.05 
considered statistically significant. In the text, p-values were reported 
using threshold notation only (e.g., p < 0.05, p > 0.05), with very small 
values shown as p < 0.001. In tables, exact p-values are provided unless 
very small (e.g., p < 0.001) or near the significance threshold (e.g., p ≥ or 
≤ 0.05), in which case threshold-based reporting is used.

2.3.1 Negative binomial regression analysis for 
antigen and antibody test frequencies in high-risk 
and low-risk seasons (epidemic vs. 
non-epidemic)

To ensure reliable estimation of count-based results, 
overdispersion in testing frequency data was adjusted for via negative 
binomial regression, as shown in Equation 4:
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(4)

Where:
μi = expected count of antigen or antibody test frequency.
Dependent variable: Antigen or antibody test frequency per 

season and risk period.
Independent variables (Categorical Predictors):

 • Reference category: Non-Epidemic Season, Low-Risk Period.
 • β1 = Epidemic Season (Ref: Non-Epidemic Season).
 • β2 = High-Risk Period (Ref: Low-Risk Period).
 • β3 = Interaction Term (Epidemic Season × High-Risk Period).

2.3.2 Zero-inflated negative binomial regression 
analysis for time intervals (days) between 
consecutive antigen and consecutive antibody 
tests by season and epidemic status

Time intervals between consecutive antigen and consecutive 
antibody tests within specific poultry farms were analyzed via zero-
inflated negative binomial regression to identify temporal trends in 
testing patterns. Time intervals were calculated separately for antigen 
and antibody tests. The unit of interval measurement was “days.” 
Intervals in days were computed within each individual farm, identified 
by a unique farm ID and geocoordinates. For each farm, test records 
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were chronologically sorted, and the difference in time between 
consecutive tests was calculated. To ensure proper estimation of interval 
days within the same year and period, the high-risk period (October–
May) was divided into two distinct phases: October–December and 
January–May. This temporal division is based on epidemiological 
evidence of differing outbreak intensity within these sub-periods and 
winter migratory bird patterns in South Korea, where HPAI outbreaks 
typically begin between October and December, coinciding with peak 
waterfowl migration. Dividing the high-risk period into October–
December and January–May allows the analysis to reflect seasonal 
variation in outbreak dynamics and surveillance intensity throughout 
the migratory and post-migratory seasons, throughout the winter season 
in South Korea (14). The regression model was defined as:

(i) Count Model (Negative Binomial component): The regression 
model was defined as shown in Equation 5 for the negative binomial 
count component, estimating the expected time interval between 
consecutive antigen or antibody tests:

 

( ) ( )
( )
( )
( )
( )

µ β β
β
β
β
β

= + − − +
− − +
− − +

− − +
− −

log 0 1
2
3
4
5

i Epidemic HighRisk JanMay
Epidemic LowRisk JunSep
Epidemic HighRisk OctDec
NonEpidemic LowRisk JunSep
NonEpidemic HighRisk OctDec  

(5)

where:
μi = the expected interval in days between consecutive antigen/

antibody tests for observation i.
Dependent variable: Interval (in days) between consecutive 

antigen and antibody tests.
Independent variables (Predictor Variables):

 • Reference category: Non-Epidemic, High-Risk (January–May).
 • β1 = Epidemic, High-Risk (January–May).
 • β2 = Epidemic, Low-Risk (June–September).
 • β3 = Epidemic, High-Risk (October–December).
 • β4 = Non-Epidemic, Low-Risk (June–September).
 • β5 = Non-Epidemic, High-Risk (October–December).

(ii) Zero-Inflation Model (Logistic component): The 
corresponding zero-inflation component is defined in Equation 6, 
modeling the probability of observing a structural zero (i.e., no 
interval between tests due to repeated or null testing)
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(6)

where:
πᵢ: the probability that observation i has a structural zero (i.e., an 

interval of zero days not generated from the count process).
γ0: intercept: log-odds of being a structural zero for the reference 

category (e.g., Non-Epidemic, High-Risk Jan–May).
γ1: difference in log-odds of being a structural zero when the season 

is Epidemic–HighRisk–JanMay, compared to the reference.

γ2 to γ5: Effects of other seasonal categories on the probability of 
structural zero.

2.3.3 Zero-inflated negative binomial regression 
analysis for intervals between last test 
completion and onset of infection (2019–2022)

Zero Inflated Negative binomial regression was performed to 
estimate the time interval between last test completion and outbreak 
detection for each season. The “last test” refers to the most recent 
antigen or antibody test (based on test completion date) conducted at 
the same farm prior to the outbreak occurrence. For each outbreak 
farm, both antigen and antibody test records were screened, and the 
test closest in time before the outbreak onset was identified. If multiple 
test types were conducted, the latest among them was selected. The 
outbreak date used for interval calculation was the official 
confirmation date of HPAI, determined through active follow-up 
testing of all farms within a 3 km radius of the outbreak location. 
Intervals were computed at the individual farm level. Each test-
outbreak pair was required to share identical farm geocoordinates (X, 
Y) and administrative address. The dependent variable in the model 
is the interval in days between the last test and the confirmed outbreak 
date, as calculated using the following model:

(i) Count Model (Negative Binomial Component): The dependent 
variable in the model is the interval in days between the last test and 
the confirmed outbreak date, calculated using the negative binomial 
regression shown in Equation 7:

 

( ) ( )
( )

µ β β
β

= + − +
−

log 0 1 2020 2021
2 2021 2022

i Season
Season

 
(7)

where:
μi = expected number of days between the last test and outbreak 

for observation i.
Dependent variable: Time interval (in days) between last test 

completion and the onset of avian influenza outbreaks.
Independent variables (Categorical Predictors):

 • Reference category: Season 2019–2020.
 • β1 = Season 2020–2021.
 • β2 = Season 2021–2022.

(ii) Zero-Inflation Model (Logistic Component): The probability 
of observing a structural zero — i.e., a 0-day interval between the last 
test and outbreak onset — was modeled using a logistic regression as 
presented in Equation 8:

 

( ) ( )
( )

π γ γ
γ
= + − +

−
logit 0 1 2020 2021

2 2021 2022
i Season

Season
 

(8)

where:
πᵢ: the probability that observation i is a structural zero (i.e., a 

zero-day interval not explained by random variation).
γ0: intercept (baseline log-odds of a structural zero during Season 

2019–2020).
γ1: Change in log-odds of structural zero in Season 2020–2021, 

relative to 2019–2020.
γ2: Change in log-odds of structural zero in Season 2021–2022, 

relative to 2019–2020.
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2.3.4 Hot-spot analysis
Spatial and temporal analyses were conducted to assess the 

relationship between county-level testing frequencies and the spatial 
intensity of HPAI outbreaks. To identify regions with significant 
clustering of outbreak cases, we applied the Getis-Ord Gi* statistic, as 
defined in Equation 9:

 

( )
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= =
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−
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Where:
jx is the value of the attribute for feature j, i.e., the total number of 

HPAI outbreak cases in county j,
ijw  is the spatial weight between features i and j,

x  is the mean of the attribute values,
S is the standard deviation of the attribute values used in the Gi* 

statistic was calculated using Equation 10:
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n denotes the total number of features.
The Gi* statistic produces a Z-score (Zi*), which identifies spatial 

clusters of statistical significance:

 • Positive and significant Gi∗ values (p ≤ 0.05) indicate hot spots 
(high-value clustering).

 • Negative and significant Gi∗ values (p ≤ 0.05) denote cold spots 
(low-value clustering).

 • Non-significant values (p > 0.05) illustrate spatial randomness.

Getis-Ord Gi* spatial statistic were applied using the esda. G_Local 
package (15) in Python programming language version 3.9.21 (16). This 
method calculates a Z-score (Gi*) for each spatial unit, indicating the 
degree to which observed values (e.g., number of outbreak cases) are 
clustered spatially relative to a random distribution. A positive and 
statistically significant Gi* indicates a hot spot (high-value clustering), 
while a negative significant Gi* denotes a cold spot (low-value clustering). 
Non-significant values suggest spatial randomness.

We constructed spatial weights using a k-nearest neighbor matrix 
with k = 2, which defines the neighborhood of each county. The Gi* 
statistic relies on assumptions of spatial dependence and requires 
accurate spatial representation of data points, which we ensured using 
high-resolution shapefiles and verified outbreak locations from 2003 to 
2022. Results were visualized using choropleth maps, and each county 
was classified into hot spot, cold spot, or non-significant category based 
on the Z-score distribution. This method is useful for detecting localized 
outbreak clusters and prioritizing surveillance allocation (17).

2.3.5 Kruskal-Wallis and Dunn’s tests for antigen 
and antibody tests across hot-spot categories

To assess disparities in testing intensity across different spatial risk 
zones, we applied the Kruskal-Wallis H test (variance > mean) —a 

non-parametric method suitable for comparing comparing ranked 
distributions among more than two groups—to antigen and antibody 
test frequencies grouped by Gi* categories (hot spot, cold spot, and 
non-significant). This test assumes independent samples and ordinal 
or continuous outcome variables (18).

Following significant Kruskal-Wallis results, Dunn’s post hoc test 
was used to identify specific group differences, with Bonferroni 
adjustment for multiple comparisons. This approach allowed us to 
determine whether testing frequencies differed systematically based 
on spatial risk categorization, thereby revealing gaps or concentration 
in surveillance efforts (19).

2.3.6 Comparison of global and south Korean 
weekly HPAI outbreak trends (2003–2022)

To investigate broader epidemic patterns, we compared weekly HPAI 
outbreak trends in South Korea with global trends before and after 2020. 
We employed the Mann-Kendall trend test, a non-parametric method for 
detecting monotonic upward or downward trends in time-series data.

This test was selected because it does not require assumptions of 
linearity or normality, making it suitable for outbreak count data. 
We calculated Kendall’s Tau coefficient to indicate trend direction and 
strength, and Sen’s slope to estimate the magnitude of change. This method 
enabled us to evaluate whether global or national HPAI epidemics were 
intensifying, stabilizing, or declining across two distinct temporal phases 
(pre- and post-2020), contributing to understanding how surveillance and 
control efforts align with changing epidemiological patterns (20).

3 Results

3.1 Testing frequencies of antigen and 
antibody tests

Table 1 presents a summary of descriptive statistics for antigen 
and antibody test frequencies across all seasons and risk periods. 
Antigen tests exhibited greater variability and were more frequently 
performed than antibody tests, with increased testing during periods 
of high epidemic risk (mean: 3.59, maximum: 123 tests). Additionally, 
testing frequencies remained relatively high during the non-epidemic 
high-risk period (mean: 3.92), indicating a deliberate emphasis on 
active infection detection. Conversely, antigen testing was less 
frequent during the epidemic low-risk period (mean: 1.95), reflecting 
a lower level of monitoring during these time frames.

Antibody tests were conducted less frequently but with greater 
consistency, averaging 1.90 tests during the epidemic high-risk period 
and 1.12 tests during the non-epidemic low-risk period.

3.2 Time interval between consecutive 
antigen tests and consecutive antibody 
tests

Table 2 presents summaries of the time intervals for antigen and 
antibody testing, demonstrating that testing during high-risk periods 
was prioritized in epidemic seasons, whereas a more flexible approach 
was adopted in non-epidemic periods. Analysis of antigen test 
intervals revealed a systematic surveillance approach, such that the 
highest testing frequency occurred during high-risk periods in 
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epidemic seasons. The January–May high-risk period exhibited 
relatively longer intervals (mean: 26.67 days) with greater variability, 
whereas the October–December period had the shortest intervals 
(mean: 17.79 days, median: 13 days), reflecting increased early 
detection efforts. During low-risk periods (June–September), testing 
frequency substantially declined; the mean interval increased to 
43.23 days, indicating reduced surveillance intensity. A similar pattern 
was observed during non-epidemic seasons, where testing intervals 
were slightly longer (mean: 40.51 days), supporting a strategic shift 
toward lower testing intensity when outbreak risks were minimal.

For antibody testing, a less frequent but more consistent testing 
approach was noted. Testing was increased during high-risk epidemic 
periods; the shortest mean interval (9.19 days) was recorded between 
October and December, coinciding with the highest outbreak risk. During 
non-epidemic seasons, antibody test intervals were considerably longer, 

particularly during the high-risk January–May period (mean: 37.43 days, 
median: 36 days) and the low-risk June–September period (mean: 
48.33 days). These findings indicate a transition from frequent active 
detection to broader, periodic serological monitoring.

3.3 Time intervals (days) between last test 
completion and onset of outbreaks

Table 3 presents data regarding testing intervals prior to outbreak 
onset for three seasons (2019–2022), illustrating improvements in 
surveillance strategies over time. Between 2019 and 2020, 16 outbreaks 
were reported and testing intervals remained long (mean: 30.92 days, 
maximum: 78 days), indicating inconsistent surveillance and delayed 
detection (high variability, SD: 26.23). By 2020–2021, the number of 

TABLE 1 Descriptive statistics of antigen and antibody test frequencies for HPAI detection during epidemic and non-epidemic seasons and high-risk 
and low-risk periods.

Diagnostic 
tests

Season Period Count/
Observations

Mean 
tests

Median Std_
Dev

Min 
tests

Max 
tests

Antibody

Epidemic High-risk 478 1.90 1 2.61 1 29

Epidemic Low-risk 75 1.29 1 0.69 1 4

Non-epidemic High-risk 204 1.76 1 1.34 1 15

Non-epidemic Low-risk 49 1.12 1 0.33 1 2

Antigen

Epidemic High-risk 4,140 3.59 2 4.34 1 123

Epidemic Low-risk 2,970 1.95 2 1.62 1 36

Non-epidemic High-risk 1,693 3.92 3 4.12 1 55

Non-epidemic Low-risk 1,183 2.07 2 1.96 1 45

Antigen + Antibody
Epidemic High-risk 3 1 1 0 1 1

Non-epidemic High-risk 13 1 1 0 1 1

Diagnostic Tests: Represents HPAI surveillance testing, including antibody, antigen, or a combination (antigen + antibody) tests. Season: Specifies whether the data correspond to an epidemic 
or non-epidemic (2019–2020) season. Period: Indicates the testing period is either high-risk (October–May) or low-risk (June–September). Count/Observations: Total number of observations 
or test instances. Mean Tests: Average number of tests conducted during the specified season and period. Median: Middle value of tests conducted. Std_Dev: Standard deviation, indicating 
variability in the number of tests conducted. Min Tests and Max Tests: Minimum and maximum number of tests recorded for the group.

TABLE 2 Time intervals between consecutive antigen and antibody tests during epidemic and non-epidemic seasons for HPAI surveillance.

Tests Season Risk 
Period

Count/
Observations

Mean 
Interval 
(Days)

Median Std_
Dev

Min 
Interval 
(Days)

Max 
Interval 
(Days)

Antigen

Epidemic

Jan-May 5,553 26.67 14 25.32 0 142

Jun-Sep 2,835 43.23 52 26.98 0 117

Oct-Dec 3,226 17.79 13 17.88 0 78

Non-Epidemic

Jan-May 2,324 28.93 16 24.61 0 140

Jun-Sep 1,274 40.51 49 25.46 0 114

Oct-Dec 1,680 20.44 14 17.29 0 83

Antibody

Epidemic

Jan-May 152 21.54 7 29.99 0 137

Jun-Sep 21 25.52 14 28.69 0 87

Oct-Dec 137 9.19 1 15.28 0 85

Non-Epidemic

Jan-May 51 37.43 36 28.29 0 100

Jun-Sep 6 48.33 31 40.47 9 107

Oct-Dec 13 9.54 10 10.47 0 33

Season: Categorized as epidemic or non-epidemic. Risk Period: Time intervals classified as Jan-May (high-risk), Jun-Sep (low-risk), and Oct-Dec (high-risk). Count/Observations: Total number 
of observations or tests recorded. Mean Interval (Days): Average number of days between consecutive tests. Median: Middle value in the interval distribution. Std_Dev: Standard deviation, 
representing variability in test intervals. Min Interval (Days): Shortest recorded interval (in days) between tests. Max Interval (Days): Longest recorded interval (in days) between tests.
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outbreaks increased to 19, whereas testing intervals decreased (mean: 
20.64 days, median: 12.5 days, maximum: 75 days), suggesting a more 
structured testing approach with reduced variability (SD: 19.62). During 
the 2021–2022 season, testing intervals further shortened (mean: 
17.36 days, median: 8 days, maximum: 67 days), coinciding with the 
highest outbreak count (31 outbreaks). This trend reflects improved 
reliability and early detection efforts, as indicated by lower variability (SD: 
21.11). Figure  1 illustrates the trend of progressively shorter testing 
intervals during extended outbreak seasons.

3.4 Multivariable regression analysis of 
antigen and antibody testing frequency

Table  4 presents the results of the regression analysis, which 
identified significant variations in testing frequency across risk 
periods. For antigen tests, testing frequency was 1.75 times higher 
during high-risk periods compared to low-risk periods (IRR: 1.75, 
p < 0.001), indicating significantly intensified surveillance activity 
during high-risk seasons. However, No statistically significant 

difference in antigen testing was observed between epidemic and 
non-epidemic seasons (IRR: 0.95, p > 0.05), and the interaction 
between season and risk period also showed no significant effect (IRR: 
0.97, p > 0.05), suggesting that increases in testing frequency during 
high-risk periods were independent of epidemic status.

Table 5 shows antibody tests frequency to be 4.35 times higher in 
high-risk periods (IRR: 4.35, p < 0.001), while a modest but marginally 
statistically significant reduction was observed during epidemic 
seasons (IRR: 0.71, p ≤ 0.05). The interaction term approached 
marginal significance (IRR: 1.42, p ≥ 0.05), suggesting a possible, 
though not conclusive, season-specific increase in antibody testing 
during high-risk periods.

3.5 Zero-inflated negative binomial regression 
analysis of antigen and antibody test intervals

Table 6 displays the zero-inflated negative binomial regression 
analysis of antigen test intervals, revealing significant differences 
between high-risk and low-risk periods, as well as between epidemic 

TABLE 3 Time intervals between last test completion date and the onset of avian influenza outbreaks.

Season Period No. of 
outbreaks

Mean 
interval
(Days)

Median 
interval
(Days)

Std_
Dev

Min 
interval 
(Days)

Max 
interval
(Days)

Total 
observations of 
intervals (days)

2019–20 High-Risk 16 30.92 21 26.23 0 78 36

2020–21 High-Risk 19 20.64 12.5 19.62 0 75 44

2021–22 High-Risk 31 17.36 8 21.11 0 67 61

Season: Year of observation (2020, 2021, 2022). Period: High-risk period (January–May and October–December). Mean Interval (Days): Average time (in days) between last test and outbreak 
onset. Median Interval (Days): Middle value of test intervals. Std_Dev: Standard deviation, indicating variability in test intervals; higher values represent greater variation. Min/Max Interval 
(Days): Shortest and longest intervals observed. Total Observations of Intervals (days): Number of test intervals recorded.

FIGURE 1

Time intervals between last test completion and onset of infection during each season (2019–2022). This figure presents a box plot illustrating the 
distribution of intervals (in days) between final test completion date and the onset of outbreaks across three high-risk periods (2020–2022). The 
horizontal line inside each box represents the median interval, whereas boxes indicate the interquartile range (IQR). The whiskers extend to the 
minimum and maximum intervals, excluding outliers. The findings show a steady decrease in median intervals over time, suggesting an increased 
testing frequency. Additionally, the decreasing variability in intervals between 2020 and 2022, as evidenced by compression of the box and whiskers, 
indicates improved testing consistency during high-risk periods.
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and non-epidemic seasons. Antigen test intervals were significantly 
shorter during epidemic high-risk period (IRR: 0.64, p < 0.001 for 
October–December), indicating increased surveillance for early 
outbreak detection. In contrast, longer testing intervals were observed 
during the June–September epidemic low-risk period (IRR: 1.55, 
p < 0.001), suggesting a reduction in surveillance intensity during this 
time. A similar trend was observed in non-epidemic seasons, where 
shorter test intervals were recorded during high-risk periods 
(October–December, IRR: 0.73, p < 0.001) and longer intervals were 
detected during low-risk periods (June–September, IRR: 0.73, 
p < 0.001). These findings suggest that proactive surveillance efforts 
were maintained even in non-epidemic years.

Table 7 shows a similar pattern for antibody test intervals, with 
increased surveillance during epidemic and non-epidemic high-risk 
periods. Antibody test intervals were significantly shorter from 
October to December (IRR: 0.37, p < 0.001), reflecting enhanced 
serological surveillance for early viral circulation detection. The June–
September low-risk period (IRR: 0.95, p > 0.05) showed no significant 
change, suggesting that antibody testing was not prioritized when 
outbreak risks were minimal. The shortest antibody test intervals were 
recorded during the October–December high-risk period highlighting 
the importance of early outbreak detection. Although the results were 
not statistically significant, testing frequency remained moderate in 
non-epidemic seasons (IRR: 1.15, p > 0.05); shorter intervals were 
observed during the high-risk period.

3.6 Zero-inflated negative binomial 
regression for time intervals between last 
test completion and onset of avian 
influenza outbreaks

Table  8 shows the results of zero-inflated negative binomial 
regression analysis, which showed no significant reduction in time 
intervals between last tests and avian influenza outbreaks over the 
study period, indicating inactive early detection. The 2021–2022 
season had a slight, non-significant decrease compared to 2019–2020 
(IRR: 0.80, p > 0.05), and also 2020–2021 showed no active testing 
intensity (IRR: 0.70, p > 0.05). Despite intensified testing, outbreak 
detection timeliness has not advanced. More frequent, strategically 
timed tests and real-time data integration are needed for 
better surveillance.

3.7 Spatial analysis of HPAI outbreaks and 
testing frequencies

Figure  2 illustrates the spatial distribution of HPAI outbreaks 
from 2019 to 2022. Variations in testing patterns were identified across 
different regions based on the geographic distribution of outbreaks 
and testing frequencies. Figure 3 provides a detailed spatial analysis: 
(A) depicts the number of outbreak cases at the county level and (B) 

TABLE 4 Multivariable negative binomial regression results for antigen test frequency evaluation during epidemic and non-epidemic seasons in high-
risk and low-risk periods against HPAI outbreaks.

Variables Coefficient Std. Error z-value p-value IRR 95% CI 
Lower

95% CI 
Upper

Season ‘Epidemic’ −0.05 0.04 −1.11 0.26 0.95 −0.13 0.03

Ref: Season ‘Non-epidemic’ 1 - - - - -

Period ‘High-risk’ 0.56 0.04 12.80 < 0.001 1.75 0.47 0.64

Ref: Period ‘Low-risk’ 1 - - - - -

Season ‘Epidemic’,

Period ‘High-risk’ −0.03 0.05 −0.57 0.57

0.97

−0.13 0.07

Ref: Season ‘Non-epidemic’, 

Period ‘Low-risk’ 1

- - - - -

Ref, Reference category for categorical variables; IRR, Incident Rate Ratio. This table presents the results of a regression model evaluating the relationship between antigen testing frequency 
and key factors: season (epidemic vs. non-epidemic) and risk period (high-risk vs. low-risk). Interaction terms between seasons and risk periods showed no significant effect, indicating that 
testing strategies remained consistent across seasons.

TABLE 5 Multivariable negative binomial regression results for antibody test frequency evaluation during epidemic and non-epidemic seasons in high-
risk and low-risk periods against HPAI outbreaks.

Variables Coefficient Std. error z-value p-value IRR 95% CI 
lower

95% CI 
upper

Season ‘Epidemic’ −0.34 0.17 −1.96 ≤ 0.05 0.71 −0.67 −0.00

Ref: Season ‘Non-epidemic’ 1 - - - - -

Period ‘High-risk’ 1.47 0.15 9.90 < 0.001 4.35 1.18 1.77

Ref: Period ‘Low-risk’ 1 - - - - -

Season ‘Epidemic’,

Period ‘High-risk’ 0.35 0.18 1.89 ≥ 0.05

1.42

−0.01 0.71

Ref: Season ‘Non-epidemic’, 

Period ‘Low-risk’ 1 - - - - -

Ref, Reference category for categorical variables; IRR, Incident Rate Ratio. The table shows significantly higher antibody testing frequencies during high-risk periods, whereas seasonal effects 
had a limited impact.
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presents the spatial clustering of outbreaks using Getis-Ord Gi* 
analysis, categorizing counties into hot spots, cold spots, and 
non-significant risk areas. Moreover, panels (C) and (D) display the 
spatial distributions of antigen and antibody testing frequencies across 
counties, respectively.

Table 9 lists descriptive statistics indicating that antigen testing 
was substantially higher in cold spots (mean: 4.2) than in hot spots 
(mean: 2.6), whereas antibody test frequencies were slightly higher in 
non-significant risk areas (mean: 1.8). Testing frequencies remained 
moderate in non-significant zones. The Kruskal-Wallis test confirmed 
significant differences in antigen test frequencies among hot-spot 
categories (p < 0.001), whereas no significant differences were detected 
for antibody test frequencies (p > 0.05). Dunn’s post hoc test revealed 
substantial differences in antigen test frequencies between cold spots 
and other zones; antibody test frequencies in hot spots, cold spots, and 
non-significant areas did not significantly differ.

Table  10 presents the spatial distribution and statistical 
variations in antigen testing across surveillance regions. The 
Dunn’s post hoc test builds on this categorization and 

demonstrates that antigen testing frequencies were significantly 
higher in cold spots than in both hot spots and non-significant 
zones. This grouping adds value by highlighting a potential 
misalignment between surveillance intensity and outbreak risk, 
as higher testing occurred in cold spots (areas with historically 
low outbreak clustering). This finding suggests a possible 
misallocation of surveillance resources and reinforces the 
importance of spatially risk-adjusted surveillance strategies.

3.8 Statistical test for south Korean’s HPAI 
epidemic trends compared to global HPAI 
outbreaks trends

Figure  4 represents the South Korean epidemic curve in red, 
allowing for an assessment of the degree of severity of highly 
pathogenic avian influenza (HPAI) outbreaks before and after 2020 to 
the corresponding global epidemics, shown by a blue curve. The 
Global epidemic data was obtained from “MAFRA,” the Ministry of 

TABLE 6 Multivariable zero-inflated negative binomial regression for evaluating time intervals between consecutive antigen tests during epidemic and 
non-epidemic seasons in high-risk and low-risk periods against HPAI outbreaks.

Variables Coefficient Std. 
error

z-value p-value IRR 95% CI 
lower

95% CI 
upper

inflate_const −3.32 0.13 −26.18 0 0.04 −3.57 −3.07

inflate_Epidemic- Jan-May 1.04 0.14 7.66 0 2.83 0.77 1.3

inflate_Epidemic- Jun-Sep 0.79 0.15 5.38 0 2.2 0.5 1.08

inflate_Epidemic- Oct-Dec 0.66 0.15 4.44 0 1.93 0.37 0.96

inflate_Non-Epidemic- Jun to Sep 0.3 0.19 1.57 0.12 1.35 −0.07 0.67

inflate_Non-Epidemic- Oct to Dec 0.71 0.16 4.29 0 2.03 0.38 1.03

const 3.4 0.02 197.02 0 29.96 3.37 3.43

(Season ‘Epidemic’- Period ‘High-risk’)

(Jan-May) −0.02 0.02 −0.94 0.35 0.98 −0.06 0.02

(Ref: Season ‘Non-Epidemic’- Period 

‘High-risk’) (Jan-May) 1 - - - - - -

(Season ‘Epidemic- Period ‘Low-risk’)

(Jun-Sep) 0.44 0.02 18.95 < 0.001 1.55 0.4 0.49

(Ref: Season ‘Non-Epidemic’- Period) 

‘High-risk’ (Jan-May) 1 - - - - - -

Season ‘Epidemic’- Period ‘High-risk’

(Oct-Dec) −0.45 0.02 −19.75 < 0.001 0.64 −0.5 −0.41

(Ref: Season ‘Non-Epidemic’- Period 

‘High-risk’) (Jan-May) 1 - - - - - -

Season ‘Non-Epidemic’- Period ‘Low-risk’

(Jun-Sep) 0.35 0.03 12.06 < 0.001 1.42 0.29 0.41

(Ref: Season ‘Non-Epidemic’- Period 

‘High-risk’) (Jan-May) 1 - - - - - -

Season ‘Non-Epidemic’- Period ‘High-risk’

(Oct-Dec) −0.31 0.03 −11.5 < 0.001 0.73 −0.36 −0.26

(Ref: Season ‘Non-Epidemic’- Period 

‘High-risk’) (Jan-May) 1 - - - - - -

alpha 0.63 0.01 79.28 < 0.001 1.88 0.61 0.64

Ref, Reference category for categorical variables; IRR, Incident Rate Ratio. The table presents strategic testing intervals, emphasizing shorter intervals during high-risk period “Oct-Dec” during 
epidemic season.
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Agriculture, Food and Rural Affairs of South Korea, and “FAO,” the 
Food and Agriculture Organization of the United Nations (5).

Table 11 presents Mann Kendall trends tests analysis which 
confirmed a worsening global trend in HPAI outbreaks, showing 
a declining trend before 2020 (p < 0.05, Tau = −0.07) but a rapid 
rise after 2020 (p < 0.001, Tau = 0.31, slope = 0.49 outbreaks 
per week).

The epidemic trend in South Korea, on the other hand, grew 
slightly but remained stable. Both before and after 2020, there was a 
substantial rising trend (p < 0.001, Tau = 0.06 and p < 0.05, 
Tau = 0.14), but the slope was zero, suggesting that the frequency of 
outbreaks remained consistent over time.

4 Discussion

Significant variations in testing frequencies during epidemic and 
non-epidemic seasons, as well as high-risk and low-risk periods, were 
evident based on descriptive statistics of HPAI surveillance testing. In 

both epidemic and non-epidemic seasons, antigen testing 
demonstrated higher mean frequencies and greater variability than 
antibody testing. There were only a few farms where antigen and 
antibody tests were used in combination, resource allocation along 
with logistical challenges may have hindered the simultaneous use of 
both tests. These combined antigen and antibody tests were not used 
in further analysis. To assess the effects of seasonality and risk periods 
on testing activity, we  performed multivariable negative binomial 
regression analyses, interpreting results using incident rate ratios 
(IRRs) for both antigen and antibody test frequencies. For antigen 
testing, the frequency was significantly higher during high-risk 
periods, with an IRR of 1.75 (p < 0.001), indicating more frequent 
testing during October to May when avian influenza transmission risk 
is elevated. However, the difference between epidemic and 
non-epidemic seasons was not statistically significant (IRR: 0.95, 
p > 0.05), suggesting testing efforts remained relatively consistent 
regardless of whether a large-scale outbreak was underway. The 
interaction between season and risk period was also non-significant 
(IRR: 0.97, p > 0.05), reinforcing the interpretation that risk-period 

TABLE 7 Multivariable zero-inflated negative binomial regression for evaluating time intervals between consecutive antibody tests during epidemic and 
non-epidemic seasons in high-risk and low-risk periods.

Variables Coefficient Std. 
error

z-value IRR p-value 95% CI 
lower

95% CI 
upper

inflate_const −2.15 0.55 −3.9 0.12 0 −3.23 −1.07

inflate_Epidemic- Jan-May 1.14 0.58 1.97 3.13 0.05 0 2.27

inflate_Epidemic- Jun-Sep 1.56 0.73 2.14 4.76 0.03 0.14 2.99

inflate_Epidemic- Oct-Dec 1.76 0.58 3.05 5.81 0 0.63 2.89

inflate_Non-Epidemic- Jun to Sep −9.41 132.47 −0.07 0 0.94 −269.04 250.22

inflate_Non-Epidemic- Oct to Dec 1.42 0.87 1.63 4.14 0.1 −0.29 3.13

const 3.73 0.17 22.45 41.68 0 3.41 4.06

(Season ‘Epidemic’- Period ‘High-risk’)

(Jan-May) −0.35 0.2 −1.79 0.7 0.07 −0.74 0.03

(Ref: Season ‘Non-Epidemic’- Period ‘High-

risk’) (Jan-May) 1 - - 2.72 - - -

(Season ‘Epidemic- Period ‘Low-risk’)

(Jun-Sep) −0.05 0.35 −0.15 0.95 0.88 −0.73 0.63

(Ref: Season ‘Non-Epidemic’- Period ‘High-

risk’) (Jan-May) 1 - - 2.72 - - -

Season ‘Epidemic’- Period ‘High-risk’

(Oct-Dec) −1 0.21 −4.75 0.37 < 0.001 −1.41 −0.59

(Ref: Season ‘Non-Epidemic’- Period ‘High-

risk’) (Jan-May) 1 - - 2.72 - - -

Season ‘Non-Epidemic’- Period ‘Low-risk’

(Jun-Sep) 0.14 0.48 0.3 1.15 0.76 −0.8 1.08

(Ref: Season ‘Non-Epidemic’- Period ‘High-

risk’) (Jan-May) 1 - - 2.72 - - -

Season ‘Non-Epidemic’- Period ‘High-risk’

(Oct-Dec) −1.09 0.43 −2.53 0.34 0.01 −1.92 −0.25

(Ref: Season ‘Non-Epidemic’- Period ‘High-

risk’) (Jan-May) 1 - - 2.72 - - -

alpha 1.19 0.14 8.27 3.29 0 0.91 1.48

Ref, Reference category for categorical variables; IRR, Incident Rate Ratio. The table presents antibody test intervals for epidemic and non-epidemic seasons, highlighting shorter intervals 
during high-risk periods in epidemic and non-epidemic years, particularly from October to December.
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timing, rather than epidemic status, guided test frequency decisions. 
While antibody testing frequency was significantly higher during 
high-risk periods overall (IRR = 4.35, p < 0.001), the interaction 
between season and risk period was not statistically significant 
(IRR = 1.42, p ≥ 0.05). This suggests that the increase in antibody 
testing was likely driven by the risk period itself rather than being 
specifically amplified during epidemic seasons. Although the point 
estimate indicates a potential increase in antibody testing during high-
risk epidemic phases, the lack of statistical significance limits strong 
inferences. These findings highlight a possible gap in the targeted 
intensification of antibody surveillance during epidemic periods. 
Future strategies should aim to integrate dynamic risk indicators—
such as outbreak proximity, species-specific vulnerability, and 
historical infection status—to ensure antibody testing is more 
precisely aligned with real-time epidemic risk, particularly in high-
density farming regions (21).

The present findings demonstrate how surveillance initiatives can 
be tailored to various risk levels, illustrating the system’s capacity for 

real-time adaptation to evolving epidemiological conditions. When a 
risk-responsive monitoring approach is utilized, testing frequencies, 
resource allocations, and intervention strategies are proportionately 
adjusted based on regions and seasons with increased epidemic 
likelihood. The prioritization of high-risk areas and maintenance of 
baseline monitoring in lower-risk areas enhances early detection 
capabilities, limits disease spread, and optimizes surveillance 
efficiency. During the management of avian influenza, where risk 
factors such as migratory bird patterns, farm density, and 
environmental conditions continuously fluctuate, a data-driven and 
adaptive framework is particularly important. This approach 
strengthens disease control efforts and supports a more proactive and 
cost-effective strategy for preventing potential outbreaks by aligning 
surveillance intensity with epidemiological risk.

Failure to detect the virus before it spreads, particularly during 
high-risk periods, permits transmission by duck species that exhibit 
no clinical signs, allowing the virus to spread to nearby poultry farms 
and wild bird populations (22). Studies of avian influenza outbreaks 

TABLE 8 Zero-inflated negative binomial regression for time intervals between last test completion date and the onset of avian influenza outbreaks.

Variables Coefficient Std. Error z-value P-value IRR 95% CI 
Lower

95% CI 
Upper

inflate_Intercept −2.15 0.57 −3.79 0 0.12 −3.26 −1.04

inflate_ Season-‘2020–2021’ 0.4 0.72 0.56 0.58 1.49 −1.01 1.81

inflate_ Season-‘2021–2022’ 1.62 0.63 2.58 0.01 5.05 0.39 2.85

Intercept 3.54 0.15 24.28 0 34.47 3.26 3.83

Season-‘2020–2021’ −0.35 0.2 −1.77 0.08 0.7 −0.75 0.04

Ref: Season-‘2019–2020’ 1 - - - - - -

Season-‘2021–2022’ −0.22 0.2 −1.13 0.26 0.8 −0.61 0.16

Ref: Season-‘2019–2020’ 1 - - - - - -

alpha 0.65 0.1 6.47 < 0.001 1.92 0.45 0.85

Ref, Reference category for categorical variables; IRR, Incident Rate Ratio. This table presents zero-inflated negative binomial regression findings for time intervals that did not significantly 
decrease across epidemic seasons. The analysis compares the duration between last test completion and the onset of avian influenza outbreaks in the 2020–2021 and 2021–2022 seasons, 
relative to 2019–2020.

FIGURE 2

Distribution and progression of HPAI outbreak cases across epidemic seasons (2019–2022). This epidemic curve illustrates the distribution and 
progression of HPAI outbreak cases spanning epidemic seasons from 2019 to 2022. The figure provides insights into outbreak dynamics and trends 
during high-risk and low-risk periods.
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have shown that even asymptomatic domestic ducks can continuously 
shed the virus from the cloaca and oral cavity, contaminating the 
environment and posing a risk to other poultry and potentially to 
humans (23, 24). These studies underscore the need for robust active 
surveillance strategies with optimal testing that extend beyond the 
detection of visible symptoms. A comprehensive avian influenza 
surveillance system should integrate both antigen and antibody testing 
to enhance monitoring and disease control. Based on our findings, 
antigen tests should be  increased in epidemic or high-risk season 
which may detect the presence of viral proteins, enabling identification 
of active infections before the virus dissemination while maintaining 
routine antibody testing year-round to examine seroconversion 
trends. Antibody tests detect prior exposure or infection by 
characterizing the host’s immune response to the virus. This 
information is particularly valuable for efforts to understand the 

virus’s epidemiology, assess its spread within a population, and 
evaluate the effectiveness of vaccination campaigns. By incorporating 
both antigen and antibody testing, surveillance systems can achieve 
increasingly accurate and timely understanding of avian influenza 
dynamics, facilitating more effective disease management strategies 
(25). Furthermore, incorporating farm-specific risk assessments and 
adjusting testing intervals based on epidemiological patterns may 
boost resource allocation and early preventive efforts.

Analyses of time intervals between consecutive antigen and 
consecutive antibody tests provide insights into temporal surveillance 
strategies during epidemic and non-epidemic seasons. For antigen 
tests, significantly shorter intervals were observed during epidemic 
high-risk months (October–December) compared to the reference 
non-epidemic high-risk period (IRR: 0.64, p < 0.001), indicating 
intensified surveillance efforts during peak risk periods. In contrast, 

FIGURE 3

Spatial analysis of HPAI outbreak cases and testing frequencies. “Note: Test frequencies are presented as absolute counts per county and are not 
adjusted for poultry population size or farm density, which may vary regionally and affect interpretation”. (A) The total number of HPAI epidemic cases 
by county (2003–2022) is represented as a choropleth map. Counties with more severe outbreaks are shaded darker to emphasize higher case 
concentrations. (B) Getis-Ord Gi* hot spot analysis identified spatial clusters of HPAI outbreaks. Cold spots (pink) indicate significant clustering of low 
outbreak cases at 95 and 99% confidence levels, non-significant areas (green) show no clustering, and hot spots (red) indicate areas with substantial 
clustering of high epidemic cases at 95 and 99% confidence levels. (C) Antigen test distribution by county. Counties with higher antigen test 
frequencies are shaded in darker blue, indicating priority areas for active surveillance. (D) Antibody test distribution by county. Counties with higher 
antibody test frequencies are shaded in darker green, usually indicating where post-outbreak surveillance is emphasized.
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low-risk months showed longer intervals, aligning with lower 
perceived risk. For antibody tests, the shortest intervals were also 
recorded during epidemic high-risk months (IRR: 0.37, p < 0.001), 
supporting the hypothesis of enhanced serological monitoring when 
outbreak risk is elevated. However, other comparisons, such as 
epidemic low-risk periods, did not yield statistically significant 
changes (IRR: 0.95, p > 0.05), suggesting no notable adjustment in 
testing strategy during these months. These results, derived from zero-
inflated negative binomial regression, support the strategic 
deployment of testing resources in response to seasonal and 
epidemiological risk, and highlight the adaptability of surveillance 
systems to dynamic outbreak threats. A more comprehensive 
assessment of HPAI monitoring strategies could be  achieved by 
incorporating findings from a study that evaluated multiple detection 
methods among vaccinated duck flocks in France using mathematical 
models. In that study, enhanced passive surveillance—specifically, the 
weekly inspection of dead birds—was regarded as the most effective 
strategy for outbreak detection. Conversely, monthly testing of live 
birds was considered less effective. These studies underscore the 
importance of an integrated monitoring approach that incorporates 
both antigen and antibody testing, extending beyond routine live bird 
testing to include systematic surveillance of dead birds (11). A 
comprehensive approach to HPAI detection and control is supported 
by the integration of findings regarding active surveillance testing 
frequencies with enhanced passive surveillance techniques, as 
indicated in previous studies. This combined strategy can strengthen 
early detection capacity and facilitate more effective responses to 
potential outbreaks.

Analyses of time intervals between the last test completion date 
and the onset of avian influenza outbreaks offer important insight 
into the timeliness of current surveillance strategies. Zero-inflated 
negative binomial regression revealed that these intervals did not 

significantly decrease over the study period, suggesting limited 
improvement in early detection capacity. Specifically, while the 2021–
2022 season had a slightly lower interval than 2019–2020 (IRR: 0.80, 
p > 0.05), this difference was not statistically significant. Similarly, the 
2020–2021 season also showed no meaningful reduction (IRR: 0.70, 
p > 0.05). These findings indicate that, despite intensified testing 
efforts during outbreak years, the timeliness of outbreak detection has 
not demonstrably improved across seasons. The results underscore a 
need for enhancing surveillance responsiveness through more 
targeted and timely testing protocols, ideally supported by real-time 
risk indicators and adaptive scheduling. Factors such as flock 
transitions and the associated downtime between production cycles 
may partially explain the observed prolongation of the interval 
between last test completion and the onset of avian influenza 
outbreaks. This transitional phase, commonly referred to as the 
“down period,” may contribute to decreased testing frequency, 
potentially delaying outbreak detection. Such lapses in surveillance 
systems highlight the importance of strategic testing protocols that 
consider farm management practices to ensure continuous 
monitoring and early identification of infections. Early detection is 
essential to limit the spread of avian influenza within poultry 
populations and prevent potential zoonotic transmission. There is 
evidence that improved monitoring techniques, including increased 
sampling frequency, enhance the early detection of low pathogenic 
avian influenza. However, the sustainability of excessively frequent 
sampling remains a concern; there is a need for balanced strategies 
that increase surveillance during high-risk periods or after initial 
detection of an outbreak in duck populations (26, 27).

Examination of the spatial distributions of antigen and antibody 
test frequencies across various hotspot categories revealed distinct 
patterns in testing intensity and outbreak clustering. Hot spots 
exhibited considerably lower antigen test frequencies (mean = 2.63, 
max = 18), whereas cold spot regions had the highest antigen 
screening rates (mean = 4.20, max = 123). The Kruskal-Wallis test 
confirmed significant differences in antigen test frequencies among 
hotspot categories (p < 0.001). This finding was supported by Dunn’s 
post hoc test, which indicated that antigen testing rates were 
significantly higher in cold spot areas than in hot spot or 
non-significant areas. Conversely, no significant differences were 
observed in antibody test rates between hotspot categories (p > 0.05), 
suggesting that antibody testing was uniformly distributed regardless 
of outbreak severity. The enhancement of surveillance system 
strategies through implementation of risk-based, robust testing both 
spatially and temporally could improve early detection of avian 
influenza and help to prevent future outbreaks (28).

TABLE 10 Dunn’s test for significant differences between hotspot Gi 
categories based on antigen tests.

Cold 
spot

Hot 
spot

Non-
significant

Group

Cold spot 1 <0.001 <0.001 A

Hot spot <0.001 1 1 B

Non-significant <0.001 1 1 B

This table presents statistically significant differences between Group A and Group B based 
on the correlation between Gi* categories. Gi* categories from distinct groups exhibit 
statistically significant differences in antigen testing, whereas Gi* categories within the same 
group show no significant variation in antigen tests.

TABLE 9 Descriptive statistics for antigen and antibody tests in hotspot categories.

Tests Hotspot_type Count Mean Std Min 25% 50% 75% Max

Antigen Cold 1161 4.20 6.02 1 1 2 5 123

Hot 2049 2.64 2.23 1 1 2 3 18

Non-significant 6772 2.88 3.25 1 1 2 3 68

Antibody Cold 149 1.54 1.20 1 1 1 2 11

Hot 139 1.78 1.94 1 1 1 2 15

Non-significant 518 1.82 2.39 1 1 1 2 29

Std, Standard deviation; Min, Minimum value of antigen or antibody tests; 25, 50, 75%: First quartile, median (second quartile), and third quartile values of antigen or antibody tests; Max, 
Maximum value of antigen or antibody tests. This table provides descriptive statistics for antigen and antibody tests across different hotspot categories (hot spots, cold spots, and non-
significant areas). It summarizes the distribution of test counts, mean values, and variability within each category.
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These spatial findings highlight that current surveillance resources 
may be disproportionately allocated to areas with historically lower 
outbreak intensity (cold spots), while high-risk hot spot areas received 
relatively fewer antigen tests. This emphasizes the need for spatial 
targeting in future surveillance frameworks to ensure testing is aligned 
with actual outbreak clustering.

Evaluating the surveillance system in South Korea in the 
broader sense, HPAI outbreak trends showed distinctive variations 
between the global and South Korean epidemic curves. Globally, 
the Mann-Kendall trend test showed a substantial shift from a 
dropping trend before to 2020 (Tau = −0.07, p < 0.05) to a rapid 
increase post-2020 (Tau = 0.31, p < 0.001, slope = 0.49 outbreaks/
week), as seen in Figure 4. This implied a significant increase in 
HPAI severity globally beyond 2020, most likely due to ecological 
or anthropogenic reasons. In contrast, South Korea showed a 
constant, if slightly rising, trend across both time periods 
(Tau = 0.06, p < 0.001 before 2020; Tau = 0.14, p < 0.05 after 2020). 
The slope was zero, showing no significant change in outbreak 
frequency. The results showed that while South Korea remained 
relatively stable, HPAI outbreaks showed sharp global rising pattern 
demonstrating the crucial role of surveillance and control initiatives 
in managing outbreaks.

The use of the Mann-Kendall test strengthened this interpretation 
by offering formal statistical evidence that complements visual 
observations (Figure  4). It helped distinguish between apparent 
fluctuations and true directional trends, thereby supporting the 

urgency for more robust surveillance and early-warning mechanisms 
globally and nationally.

The South Korean avian influenza surveillance system in 
operation between 2014 and 2018 primarily relied on environmental 
sampling of fecal matter from migratory bird stopover sites to detect 
circulating influenza A viruses and assess their genetic diversity (9). 
This approach provided insights into the presence of low-pathogenic 
avian influenza viruses and their role in the transmission cycle. 
However, it had several limitations, particularly in terms of targeted 
procedures for high-risk poultry farming zones and real-time 
outbreak monitoring. In contrast, the current surveillance system 
evaluation incorporates both antigen and antibody testing in duck 
farms, rather than predominantly relying on environmental sampling 
of wild birds. This antigen/antibody testing strategy enables 
identification of both recent viral exposure (through antibody testing) 
and active infections (through antigen testing).

The assessment explored in this study is particularly important 
because previous evaluations of surveillance systems primarily 
focused on characterizing virus prevalence in wild birds, limiting their 
ability to track and assess ongoing outbreaks at the farm level. In 
summary, the integration of spatial risk-based testing, quantitative 
surveillance interval assessments, and active farm-level monitoring 
represents a major advancement in avian influenza surveillance 
strategies. By incorporating both spatial and temporal risk evaluations, 
this improved system enables a more proactive and data-driven 
response compared with earlier surveillance methods, which largely 

FIGURE 4

Comparison of Global and South Korean Weekly HPAI Outbreak Trends (2003–2022). The figure depicts overlayed weekly epidemiological curves 
(2003–2022) of global avian influenza outbreaks (blue) and South Korean outbreaks (red), along with the 2020–2022 timeframe indicated in green.

TABLE 11 Mann-Kendall trend test for HPAI epidemics in South Korea and global.

HPAI
Outbreak 
Trends

Period Trend p-value Z-score Kendall’s 
Tau

S-statistic Variance 
(Var S)

Slope Intercept

Global weekly 

Epidemic Curve

Before 2020 Decreasing 0.0031 −2.96 −0.07 −23949 65472989.67 −0.008 22.98

After 2020 Increasing < 0.001 5.73 0.31 3813 442202.33 0.49 10.31

South Korea 

weekly 

Epidemic Curve

Before 2020 Increasing < 0.001 4.00 0.06 20985 27466465.67 0 0

After 2020 Increasing 0.002 3.08 0.14 1748 322464 0 0

This table confirms patterns of HPAI epidemics before and after 2020, with statistical measures for global and South Korean weekly epidemic curves. HPAI outbreaks before and after 2020.
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relied on passive monitoring and wild bird sampling. These 
improvements optimize resource allocation and enhance early 
detection capabilities by systematically addressing key deficiencies in 
previous monitoring approaches, such as inadequate outbreak 
tracking at the farm level, irregular testing frequencies, and limited 
spatial coverage. Consequently, this enhanced surveillance system 
strengthens South Korea’s preparedness for avian influenza and 
facilitates a more efficient and evidence-based response to 
potential outbreaks.

Despite substantial advancements in the understanding and 
management of avian influenza outbreaks, multiple challenges remain. 
Continued research, sustained monitoring, and the application of 
modern technologies such as artificial intelligence and machine 
learning are essential to improve knowledge of the virus’s evolutionary 
potential, transmission dynamics, and host–pathogen interactions. 
Integrating AI-driven risk assessment models, digital diagnostic 
devices, and real-time genome sequencing in surveillance system may 
assist with early detection and outbreak prevention. Integrating spatial 
analysis with AI and genome sequencing may ensure that outbreaks 
can be  detected and promptly addressed through optimal testing 
strategies in high risk predicted areas and at-risk species (29–32). 
Furthermore, collaborative research and ongoing monitoring remain 
critical for advancing the understanding of host–pathogen 
interactions, ecological risk factors, and viral transmission patterns. 
Future surveillance frameworks can achieve greater efficacy, accuracy, 
and adaptability by integrating these innovations, thus ensuring timely 
interventions that mitigate the impacts of avian influenza on public 
health and the poultry industry.

4.1 Study limitations

Although this study identified substantial advancements in 
evaluating the HPAI serological surveillance system across South 
Korean duck farms, some limitations must be acknowledged. First, as 
part of control measures, poultry farms within a 3-km radius of an 
outbreak site are either depopulated or culled during epidemic periods 
(33). This practice affects the surveillance system by reducing the 
number of farms available for ongoing testing, which decreases overall 
test frequency and may lead to underestimation of testing intensity in 
high-risk areas. The exclusion of these farms from active surveillance 
during culling periods may also hinder the detection of residual viral 
transmission in neighboring farms, resulting in less precise 
assessments of test frequency. While we acknowledged the impact of 
this on surveillance coverage, we did not adjust test intervals during 
periods when farms were non-operational due to depopulation. As a 
result, test frequency estimates may not fully reflect surveillance gaps 
caused by farm unavailability. This was primarily due to the lack of 
consistently available metadata specifying exact periods of farm 
inactivity or reactivation. Future studies should consider incorporating 
time-varying exposure indicators to account for periods when farms 
are inactive or removed from the surveillance pool, thereby improving 
the accuracy of surveillance intensity assessments and 
interval modeling.

Second, the reallocation of new duck flocks may contribute 
to underestimation of the efficacy of early detection measures, 
particularly regarding analyses of time intervals between last test 
completion and the onset of infection. When new flocks are 

introduced during farm operation down periods, a temporal gap 
in testing occurs, potentially leading to miscalculation of testing 
efficiency. Recently introduced flocks may not undergo 
immediate and comprehensive testing, which increases the risk 
of undetected viral infections and may prolong 
HPAI transmission.

The interpretation of antigen and antibody test frequencies across 
counties was based on absolute test counts without normalization for 
poultry population size or the number of duck farms. Due to the 
unavailability of county-level data on bird populations or farm counts 
during the study period. As a result, regions with higher test counts 
may reflect larger duck farming activity rather than more intensive or 
targeted surveillance efforts.

Furthermore, the reliance on official monitoring data may 
introduce biases because certain facilities may not strictly adhere 
to testing schedules; alternatively, they might delay the 
submission of test results. Inconsistencies in data collection and 
reporting could affect statistical analysis reliability. Additionally, 
although this study incorporated both antigen and antibody 
testing methodologies, environmental sampling was not 
performed. The inclusion of environmental sampling—such as 
detection of viral RNA in nearby water sources or wild bird 
populations—could provide further insights concerning virus 
circulation and environmental persistence.

4.2 Conclusion

This study assessed the HPAI serological surveillance system 
across South Korean duck farms, with a focus on the relationships 
of antigen and antibody test frequencies with epidemic events. The 
findings indicated that antigen testing serves as a robust predictor 
of epidemic outbreaks, particularly during high-risk periods, 
whereas antibody testing provides a Supplementary material tool 
for tracking long-term exposure. Spatial analysis identified outbreak 
clusters corresponding to testing intensity, and negative binomial 
regression confirmed significantly higher test frequencies during 
high-risk periods. Although test-to-onset intervals have gradually 
decreased, reflecting improvements in surveillance effectiveness, 
inconsistencies persist due to factors such as farm depopulation and 
flock reallocation. Efforts to enhance early outbreak detection and 
HPAI containment will require refinement of targeted testing 
protocols and optimization of spatial risk-based 
surveillance strategies.

Additionally, disparities in testing intensity across regions, 
particularly in hot-spot areas, highlight the need for further 
improvements in monitoring strategies. Although antigen testing 
has been prioritized for detecting active infections, variations in 
testing frequency across geographical categories suggest that some 
high-risk areas may experience suboptimal surveillance coverage. 
Future research should explore the integration of machine learning 
and real-time monitoring techniques to enhance the predictive 
capabilities of surveillance systems and optimize testing schedules.

To mitigate the economic and public health impacts of HPAI, 
future surveillance strategies must incorporate automated detection 
systems, real-time diagnostic tools, and improved farm-level 
inspection procedures. By facilitating timely interventions and 
strengthening South Korea’s preparedness for future outbreaks, the 
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findings of this study support ongoing efforts to enhance avian 
influenza surveillance systems.
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