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Rapid identification and assessment of animal health are critical for livestock 
productivity, especially for small ruminants like goats, which are highly susceptible 
to blood-feeding gastrointestinal nematodes, such as Haemonchus contortus. This 
study aimed at establishing proof of concept for using bioelectrical impedance 
analysis (BIA) as a non-invasive diagnostic tool to classify animals at different levels 
of Haemonchosis. A cohort of 94 intact Spanish bucks (58 healthy; 36 Unhealthy; 
naturally infected with H. contortus) was selected to evaluate the efficacy of BIA 
through the measurement of resistance (Rs) and electrical reactance (Xc). Data 
were collected from live goats using the CQR 3.0 device over multiple time points. 
The study employed several machines learning models, including Support Vector 
Machines (SVM), Backpropagation Neural Networks (BPNN), k-Nearest Neighbors 
(K-NN), XGBoost, and Keras deep learning models to classify goats based on their 
bioelectrical properties. Among the classification models, SVM demonstrated 
the highest accuracy (95%) and F1-score (96%), while K-NN showed the lowest 
accuracy (90%). For regression tasks, BPNN outperformed other models, with 
a nearly perfect R2 value of 99.9% and a minimal Mean Squared Error (MSE) of 
1.25e-04, followed by SVR with an R2 of 96.9%. The BIA data revealed significant 
differences in Rs and Xc between lightly and more heavily Unhealthy goats, 
with the latter exhibiting elevated resistance values, likely due to dehydration 
and tissue changes resulting from Haemonchosis. These findings highlight the 
potential of BIA combined with machine learning to develop a scalable, rapid, and 
non-invasive diagnostic tool for monitoring small ruminant health, particularly in 
detecting parasitic infections like H. contortus. This approach could improve herd 
management, reduce productivity losses, and enhance animal welfare.
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1 Introduction

In warm and wet regions, small ruminants such as goats and 
sheep are especially vulnerable to parasitic infections, with 
Haemonchus contortus posing one of the greatest threats (1) 
globally. Commonly referred to as the barber pole worm due to its 
distinctive red and white striped appearance, H. contortus thrives 
in warm, humid environments, infecting the abomasum (the 
fourth stomach chamber) of ruminants (2, 3) by attaching to the 
stomach mucosa and feeding on the host’s blood, while secreting 
anticoagulant into the tissues, which results in substantial blood 
loss, through seeping of blood from each bite, for considerable 
periods of time. Over time, infected animals develop anemia, 
which severely impacts their overall health, productivity, and even 
survival (2). For farmers and livestock producers, infections from 
H. contortus and other gastrointestinal nematodes represent a 
significant economic burden, causing diminished growth rates, 
lowered reproductive success, reduced milk production, and death 
in the case of unsuccessful worm management.

Anemia is a hallmark sign of H. contortus infection in animals 
and is traditionally diagnosed using Hematocrit Analysis, a method 
that measures the packed cell volume (PCV) of blood (4, 5). The PCV 
analysis provides an estimate of the level of anemia, reflecting the 
degree to which the animal is suffering from blood loss. Although 
reliable, Hematocrit Analysis is labor-intensive, requiring invasive 
blood sampling and the expertise of trained personnel. This limits its 
scalability, especially for large herds, and introduces additional stress 
to the animals (6, 7). The cost and time involved in performing 
Hematocrit Analysis make it less practical for routine monitoring in 
large or resource-limited operations.

The more traditional approach to diagnosis of parasitic infections 
in small ruminants is the fecal egg count (FEC), which constitutes 
estimation of the number of parasite eggs present in an animal’s feces 
as an indication of the parasite burden within the host (8, 9). It is 
particularly useful for monitoring gastrointestinal nematodes, such as 
H. contortus, as the number of eggs passed in the feces correlates with 
the worm burden in the animal (10, 11). It is also useful as an indicator 
in farm monitoring programs, of the need for treatment and for 
monitoring the efficacy of deworming programs (12, 13).

However, like Hematocrit Analysis, FEC is labor-intensive, 
requiring specialized equipment in diagnostic laboratories and 
expertise to collect, process, and interpret fecal samples (14, 15). 
Additionally, FEC results can vary significantly depending on the 
animal’s diet, hydration status, and the time of day when samples are 
collected. Moreover, the accuracy of FEC is the reciprocal of the worm 
egg count, thus may decrease when the parasite burden is low, leading 
to potential underestimation of the effect low levels of infection (16).

To address the limitations of traditional diagnostic methods such 
as PCV and FEC, researchers have been exploring alternative 
technologies that offer rapid, non-invasive, and scalable solutions. One 
alternative comprises bioelectrical impedance devices for analysis 
(BIA), a technique that measures the electrical properties of biological 
tissues, specifically electrical resistance (R) and electrical reactance (Xc) 
(17, 18). BIA works by passing a small, painless electrical impulse 
through the body and measuring how the tissues oppose the flow of the 
current (19, 20). Measurements taken through BIA provide insights 
into the body’s composition, including water content, fat mass, and 
cellular health (21, 22), all of which can be affected by parasitic infections.

In the case of H. contortus, the parasite’s blood-feeding behavior 
disrupts the host’s fluid balance and reduces the total volume of 
blood and numbers of red blood cells, which can alter the electrical 
properties of the host’s tissues. Thus, BIA may be a promising tool 
for detecting parasitic infections, as changes in the body’s fluid 
levels and tissue composition are directly related to the severity of 
the infection. Unlike Hematocrit Analysis or FEC, BIA can 
be performed quickly, without the need for invasive procedures or 
specialized personnel. This makes BIA particularly well-suited for 
large-scale herd management, where rapid, non-invasive 
diagnostics are crucial for maintaining animal health and 
productivity. The small BIA device (Figure 1) is held against the 
skin of the animal’s ear or tail for 1–2 s to rapidly take multiple the 
readings (5–10), with the R and Xc data automatically saved to the 
Cloud for analysis, which is completed by a commercial company. 
There is a cost for the device and the analysis (approximately $400 
US), which should be substantially reduced as more users adopt 
the technology.

Given the advantages of BIA in terms of ease, speed, and 
non-invasiveness, this study as a proof of concept explored its 
potential in combination with machine learning (ML) techniques 
to classify goats as either Unhealthy or healthy. Machine learning 
algorithms, known for their ability to recognize complex patterns 
in large datasets, were applied to the bioelectrical impedance data 
collected from live goats. By training ML models on this data, the 
study aimed to develop an efficient, scalable, and accurate 
diagnostic tool for detecting parasitic infections in small 
ruminants. The implications of this research go beyond the 
detection of H. contortus infection. For instance, it seems possible 
that the successful application of BIA and ML could allow 
diagnosis of a wide range of health conditions in livestock, from 
other parasitic infections to metabolic disorders and nutritional 
deficiencies. By providing a rapid, non-invasive, and cost-
effective diagnostic tool, this study lays the groundwork for the 
integration of advanced technologies in precision livestock 
farming, where early detection and proactive management are 
keys to maximizing productivity and animal welfare.

FIGURE 1

Bioelectrical impedance device.
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The following sections (1.1 to 1.5) provide the basic working 
principle for each of the different techniques used in the study.

1.1 Support vector machines (SVM)

Support Vector Machines (SVMs) are a category of supervised 
machine learning methods employed for classification, regression, and 
anomaly detection. The SVM technique is widely recognized in ML for 
its efficacy in handling both linear and nonlinear classification challenges. 
The fundamental concept of SVM is to identify a hyperplane in an 
N-dimensional space (where N denotes the number of features) that 
effectively segregates data points into various classes (23, 24). Winston 
(25) compares this approach to “Fitting the widest possible street,” thus 
elucidating the quadratic optimization challenge associated with 
hyperplane separation using the following Equation (1):

 + =wx b 0 (1)

where w represents the weight vector, x is the input vector, and b 
signifies the bias factor (26). In SVM, hard-margin and soft-margin 
classifiers identify the optimal separation distances between classes, 
in this way to facilitate the classification of distinct patterns or features 
from an image (27).

Whereas numerous hyperplanes can delineate the data points of 
two classes in binary classification, more than two classes are 
considered in multi-class classification. The goal is to identify the 
hyperplane that maximizes the margin, defined as the maximum 
distance between the support vectors data points nearest to the 
hyperplane, without which the hyperplane’s position would 
be changed. Consequently, SVMs, the efficacy of which resides in their 
capacity to manage nonlinear data using the kernel trick for converting 
non-linearly separable data into a linearly separable format (28–30), 
are regarded as essential elements of the dataset.

1.2 K-nearest neighbor (K-NN)

K-Nearest Neighbors (KNN) is a basic and efficient 
non-parametric, supervised machine learning classifier which utilizes 
proximity to categorize or forecast the group to which a data item is 
allocated. The method operates by retaining all existing data points 
and categorizing new instances according to their similarity, generally 
assessed by distance metrics such as Euclidean, Manhattan, 
Minkowski, or Hamming distances (31, 32). The primary objective 
of KNN is to determine the nearest neighbors to a specified query 
point and subsequently allocate a class label. These distance functions 
facilitate the evaluation of proximate points, with the ultimate 
categorization established using a majority vote mechanism among 
the nearest neighbors. Each data point is categorized according to the 
predominant category among its closest neighbors, as established by 
the selected distance metric. The selection of K substantially 
influences prediction accuracy, lower values render the model 
susceptible to noise, whereas higher values elevate processing 
requirements. In datasets comprising two classes, researchers 
frequently select an odd value for K to prevent ties. Nonetheless, a 
limitation of KNN is that its processing performance may significantly 
diminish as the dataset size increases (22, 30, 32, 33).

1.3 Back propagation neural networks 
(BPNN)

Back Propagation Neural Networks (BPNNs) are the part of 
Artificial Neural Networks (ANNs) that employ the backpropagation 
method for training purposes. They are well acknowledged for their 
efficacy in deep learning models. A BPNN comprises a minimum of 
three layers of nodes: an input layer, one or more hidden layers, and 
an output layer. Every node, known as an artificial neuron or 
perceptron, is interconnected by weighted linkages, which are 
modified throughout the training process (28, 29, 34, 35). Multilayer 
Perceptrons employ the backpropagation method, consisting of two 
phases: a forward pass, in which input data is processed through the 
network to produce an output, and a backward pass, during which the 
error (the differences between the anticipated and actual output) flows 
backward through the network to adjust the weights. This modification 
is executed utilizing optimization techniques, including gradient 
descent. Backpropagation Neural Networks are advantageous due to 
their capacity to learn and represent complicated non-linear 
relationships in biological data in between values (34, 35). Upon 
completion of training, algorithms may generate precise predictions 
when presented with novel data, rendering them exceptionally 
adaptable and versatile for real life usage. For a comprehensive 
elucidation of BPNN functionality, refer to Siddique et al. (30). These 
models demonstrate proficiency in tasks necessitating pattern 
recognition and are trained utilizing features derived from diverse 
datasets, such images, numerical data, or text (36).

1.4 Extreme gradient boosting (XGBoost)

Extreme Gradient Boosting (XGBoost) is a complex delicate ML 
technique derived from the gradient boosting framework. The 
fundamental idea is to enhance forecast performance by incrementally 
constructing an ensemble of decision trees, with each tree rectifying 
the weaknesses of its predecessors. In the training process, XGBoost 
initially establishes a rudimentary model (often a constant value) and 
subsequently computes the residuals or discrepancies between the 
predicted and actual values. In succeeding steps, a new decision tree 
is fitted to minimize these residuals using gradient descent, a method 
that modifies the model by pursuing the direction of maximal error 
reduction. New trees are incorporated into the ensemble to forecast 
the residuals, while the model adjusts the weights of misclassified 
examples to mitigate subsequent errors (37).

Extreme Gradient Boosting integrates various distinctive 
optimizations. It employs regularization approaches (L1 and L2) to 
mitigate overfitting, hence assuring the model generalizes effectively 
to novel data (38). The algorithm adeptly manages absent values and 
sparse datasets, autonomously identifying the optimal trajectory 
through the decision tree in the absence of data. The XGBoost also 
executes tree pruning, ceasing tree growth when additional splits yield 
negligible enhancements, so improving both performance and 
efficiency (36). Extreme Gradient Boosting is esteemed for its 
scalability and quickness due to its capacity for parallel data 
processing, rendering it an optimal selection for managing extensive 
datasets and intricate issues. These qualities have rendered XGBoost 
highly esteemed in both academic research and industrial applications, 
particularly in regression and classification tasks (36, 37, 80).
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1.5 Keras deep learning model

Keras, an advanced deep-learning framework, is designed to adapt 
to a wide range of problem domains, providing a streamlined 
approach to the development and training of ANNs. Built upon 
foundational libraries, like TensorFlow, it offers an intuitive interface 
for assembling, training, and deploying neural networks (38–40). A 
standard Keras model consists of several layers, including input, 
hidden, and output layers, which can be  easily stacked to create 
complex architectures such as Convolutional Neural Networks 
(CNNs), Recurrent Neural Networks (RNNs), or Multilayer 
Perceptrons (MLPs) (38, 39). Keras models are trained via 
backpropagation, where errors are computed during a forward pass 
and transmitted backward through the network to modify weights via 
optimization methods, such as gradient descent. Its adaptability in 
integrating various activation functions, loss measures, and optimizers 
makes it suitable for a wide range of problems, such as image 
classification, text production, and numerical prediction (39, 40). The 
Keras model also facilitates the addition of pre-trained models, 
transfer learning, and custom layers, reassuring developers that it can 
be applied to their specific needs (41).

Keras, in contrast to Back Propagation Neural Networks (BPNNs), 
offers a more comprehensive and versatile framework for creating 
modern deep learning architectures. The BPNNs primarily emphasize 
the backpropagation technique and are generally linked to classic 
Multilayer Perceptrons (MLPs) (28, 30). They function with static 
designs and prioritize training by backpropagation (30). In contrast, 
Keras allows users to construct and explore other architectures, 
including CNNs and RNNs, which are superior for applications like 
image recognition and sequential data analysis (38). Keras simplifies 
numerous complexities associated with model training, including 
weight initialization, optimization techniques, and parallel 
calculations, which are often manual tasks in conventional BPNNs 
(39, 40). This versatility and comprehensive approach make Keras a 
more potent and versatile instrument for tackling modern deep-
learning issues, instilling confidence in its capabilities among 
developers, data scientists, and machine-learning practitioners 
(38–40).

2 Materials and methods

2.1 Study design

Prior to the start of this study, all animal use protocols were 
approved by the Fort Valley State University (FVSU, Fort Valley, GA, 
USA) Agricultural and Laboratory Animal Care and Use Committee 
(ALACUC approval number WI-R-02-23).

A total of 94 intact Spanish goat bucks (58 healthy; 36 Unhealthy) 
(24 months old; 36–50 kg) were allowed to graze the same grass 
pasture at the FVSU Agriculture Technology Center farm from 
September through December 2023. Prior to this period (April–
August, 2023), the two sets of goats were maintained on separate 
pastures with one group (58, healthy) dewormed regularly using 
commercially available dewormers at prescribed doses (Brand Name: 
Cydectin®; active ingredient: Moxidectin 1 mg/mL (approved by 
FDA); given dose as recommended: 0.2 mg/Kg body weight), while 
the second group (36-unhealthy) was allowed to pick up a natural 

infection with blood and fecal samples collected weekly from 
individual animals and analyzed for packed cell volume (PCV) and 
fecal egg counts (FEC), respectively, to monitor parasitic infection 
levels (42–44). To confirm the morphological identity of strongyle-
type eggs, selected samples were imaged under a compound 
microscope at 100x magnification using a camera mounted on the 
eyepiece (1,600x digital zoom). The size of the eggs was estimated by 
comparing them to a calibrated reference image containing a 50 μm 
scale bar. The observed eggs measured approximately 70–90 μm in 
length, with an elliptical shape, thin shell, and multi-blastomere 
structure—characteristics consistent with trichostrongylid 
nematodes. Based on morphology, regional prevalence, and clinical 
signs (anemia), the infections were presumptively attributed to 
Haemonchus contortus Eggs consistent with trichostrongylid 
morphology were observed (Figure  2), and based on size and 
morphology, they were presumptively identified as Haemonchus 
contortus, a parasite endemic to the region and commonly associated 
with anemia in small ruminants (45, 46). Goats in the second group 
were also evaluated weekly using the FAMACHA system, and only 
animals scored as FAMACHA 4 s and 5 s were dewormed. Once both 
treatment groups were combined to graze the same pasture 
(September–December), only the healthy goats’ parasite infection 
status was monitored, with FEC and PCV on individual animals 
determined monthly.

At the end of the combined grazing period (December 5, 6, and 
11, 2023), bioelectrical impedance readings were collected on both 
healthy and unhealthy animals, and then machine learning (ML) 
models, including Support Vector Machines (SVM), Back Propagation 
Neural Networks (BPNNs), k-Nearest Neighbors (K-NN), Extreme 
Gradient Boosting (XGBoost), and Keras deep learning models were 
trained and evaluated to determine their ability to classify goats as 
healthy or unhealthy based on their bioelectrical properties, especially 
electrical resistance (Rs) and electrical reactance (Xc). A total of 1,540 
observation points were collected from the bucks, consisting of 917 
healthy goat observation points and 623 Unhealthy goat 
observation points.

2.2 Data collection and preprocessing

Each goat was subjected to multiple bioelectrical impedance 
analysis (BIA) measurements during the study period, with readings 
taken from either the ear or tail. As the study was conducted on the 
same animals over several weeks, a minimum of 10 readings per area 
(ear and tail) per animal was set to ensure measurement reliability. 
These readings were averaged for each animal to provide a consistent 
and representative value for analysis. Regarding the use of these 
measurements within the study, the dataset was divided into training 
and testing sets using a standard 80/20 split. The training set was used 
to train machine learning models, while the testing set was used to 
evaluate model performance. The nested cross-validation approach 
ensured that the models were optimized without overfitting, providing 
reliable performance metrics. Data collection was conducted using a 
BIA device and an online cloud-based server specifically designed by 
the BIA device provider (Certified Quality foods, Clinton Twp, MI, 
Figure 1). For classification and regression tasks, features were scaled 
using standard techniques, like normalization, to ensure uniformity 
across the dataset (47). The data was collected by placing the device 
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against the skin of the underside of each goat’s ear and tail, where the 
body hairs are minimum, to ensure the electrical conductance.

For instance, BIA has been successfully used in pigs (81), rabbits 
(83), and dogs (84), where similar anatomical sites were chosen to 
enhance signal reliability and measurement precision. BIA has been 
widely applied to various animal species for diverse purposes. In pigs, 
it has been used to evaluate carcass composition, including fat and 
lean mass prediction (81). In rabbits, BIA has been utilized to monitor 
body condition and hydration status (Kopp et al., 2021). For dogs, BIA 
has been employed to assess body composition in veterinary practice, 
providing a non-invasive alternative to traditional body condition 
scoring (Ward et  al., 2020). BIA has also been applied in fish to 
monitor body composition without sacrificing the animals (82). This 
versatility underscores BIA’s potential as a diagnostic tool across 
species. This step was critical, especially for ML algorithms like SVM 
and KNN, which are sensitive to feature scaling (48, 49). The target 
variable ‘y-test’ was adjusted, based, as follows, on the problem type: 
while classification models predicted categorical labels, regression 
models predicted continuous values (50). A 10-fold nested cross-
validation approach was employed to reduce overfitting and evaluate 
model performance comprehensively. The latter method included an 
inner loop for hyperparameter optimization and an outer loop for 
model evaluation, thus providing more reliable performance estimates 
(51, 52).

The statistical analyses were also conducted with PROC 
GLIMMIX in SAS (Version 9.4; SAS Institute Inc.) to evaluate the 
impact of the animal condition (healthy versus unhealthy) on Rs and 
Xc with a set significance level of P equal to 0.05. Furthermore, the 
Poisson distribution with a logarithmic link function was employed 
to describe the response variables, based on the characteristics of the 
data; least squares mean (LS Means) were computed for each 
condition; Tukey–Kramer corrections were applied to address 
multiple comparisons. Furthermore, PROC MEANS was employed to 

compute descriptive statistics, encompassing the mean, standard 
deviation, and standard error for each variable.

2.3 Model development and pipeline

The model development process comprised two primary 
components, namely, classification and regression tasks, examined by 
several ML methods.

2.3.1 Classification models pipeline
The Backpropagation Neural Networks, SVM, and KNN models 

used for classification-based analysis, were each evaluated using 
accuracy and AUC-ROC (Area Under the Receiver Operating 
Characteristic Curve) scores (53). The ‘classification_summary’ 
function executed the process of predicting the test set outcomes and 
calculated the respective performance metrics (54). The accuracy was 
computed using the ‘accuracy_score’ function from the scikit-learn 
library (54, 55), which provides a direct comparison between the 
predicted and actual labels (52). For models capable of generating 
probability estimates (e.g., SVM and BPNN), the AUC was calculated 
using the ‘roc_auc_score’ function, providing insight into how well the 
model distinguishes between different classes (56, 57). For models 
without probabilistic outputs (like KNN), the AUC score was marked 
as ‘N/A’ (50). The results for each model were compiled into a ‘Panda 
DataFrame’ to allow for the comparison of classification accuracy and 
AUC values (58).

2.3.2 Regression models pipeline
The regression pipeline incorporated modified models for 

regression-based analysis, including BPNN, SVM, KNN, XGBoost, 
and a Keras-based Neural Network (37, 59). Furthermore, the 
‘regression_summary’ function evaluated these models using two 

FIGURE 2

Composite image of gastrointestinal nematode egg types recovered from fecal samples of goats using the McMaster technique. (A) Haemonchus 
contortus; (B) Nematodirus and (C) Trichostrongylid spp. at 50 μm scale [images were referenced from Buchmann et al. (45)].
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primary performance metrics: the R2 score and Mean Squared Error 
(MSE), of which the former score measured the proportion of 
variance in the test data explained by the model (60), and MSE 
quantified the average squared differences between the predicted and 
actual values, thus highlighting the overall prediction error (61). This 
pipeline facilitated the comparison of model performance by storing 
these results in a ‘Pandas DataFrame’ and providing a clear view of 
the most effective regression algorithms for the given dataset (58). 
The integration of a Keras Neural Network is particularly useful in 
exploring the capabilities of deep learning approaches in solving 
regression tasks (62).

2.3.3 Nested cross-validation
A 10-fold nested cross-validation method was employed to 

enhance model resilience and mitigate the possibility of overfitting 
(51, 63). In the outer loop thereof, the dataset comprising 1,540 
observation points was partitioned into 10 equal folds, each of which 
was utilized once as the test group, while the remaining nine folds or 
groups were employed for training. Hyperparameter optimization for 
the inner loop was conducted using an additional 10-fold cross-
validation within the training set, in this way to ensure that the 
model’s parameters were refined without incorporating test data into 
the training phase (51). By considering both model selection and 
model evaluation, this nested technique yielded more dependable 
performance estimates (50, 51).

The layered cross-validation technique facilitated thorough 
optimization of model hyperparameters, especially for models like 
SVM and XGBoost, which necessitate meticulous parameter selection 
for peak performance (26, 37). The inner cross-validation loop 
guaranteed that, by model selection on optimal parameters derived 
from training data, the performance assessment in the outer loop (63) 
was not affected. This validation method was essential for both 
classification and regression processes to guarantee that the final 
performance measured appropriately represented the model’s 
generalization capacity (52). The performance measures from all outer 
folds were summed to yield a reliable assessment of the model’s efficacy 
throughout the complete dataset (51). This complex validation method 
produced more dependable models, especially in instances where the 
dataset used demonstrated variability (64). By also improving the 
confidence in model predictions for both classification and regression 
tasks, it was rendered a significant element of our investigation (52, 
59, 64).

3 Results and discussion

Prior to the bioelectrical impedance analysis (BIA) in this study, 
healthy goats exhibited a significantly lower fecal egg count (FEC) of 

40.83 eggs per gram (epg) compared to unhealthy (more Unhealthy) 
goats, which presented an FEC of 2917.65 epg (F = 41.07, p < 0.001). 
In addition, healthy goats had a blood packed cell volume of 23.80%, 
while the unhealthy group had an average PCV of 20.09% (F = 19.31, 
p < 0.001). As these procedures are considered the gold standard for 
determining level of parasitic infection, particularly for H. contortus, 
they were used to validate the machine learning (ML) models with the 
BIA data.

The PROC GLIMMIX method revealed a significant impact of 
condition (healthy vs. unhealthy) on electrical resistance (Rs) 
(F = 635.36, p < 0.0001). The latter goats demonstrated a significantly 
higher least squares mean electrical resistance (5.5321 ± 0.002520 SE) 
in comparison to healthy ones (5.4483 ± 0.002166 SE). The difference 
between the two categories was significantly different (Tukey-adjusted 
p < 0.0001), with the less healthy goats exhibiting an increase of 
0.08377 units in electrical resistance. The PROC MEANS approach 
yielded descriptive statistics, revealing that, while the mean Rs for 
healthy goats was 232.37 ± 5.77 SE, that of the unhealthy goats had an 
average mean Rs of 252.68 ± 7.31 SE, hence corroborating the 
enhanced electrical resistance in animals with a greater 
parasitic infection.

This study results thereof indicate that level of parasitic infection 
markedly affects the bioelectrical impedance parameters of goats, 
especially that of electrical resistance (Rs). The significant elevation in 
Rs of the more heavily Unhealthy, relative to healthy goats, may 
potentially be  attributable to blood loss, dehydration, and tissue 
changes induced by the gastrointestinal nematode parasite infection 
(65). By feeding on the host’s blood, anemia and lower fluid volume 
result, hence elevating tissue electrical resistance when electrical 
current encounters increased opposition in drier, less hydrated tissues 
(66, 67, 85).

A notable difference in electrical reactance (Xc) was also observed 
between healthy and unhealthy goats (F = 11.12, p = 0.0009), in that 
the latter had greater least squares mean electrical reactance 
(3.9628 ± 0.005524 SE) compared with the healthy animals 
(3.9388 ± 0.004608 SE), although the disparity was less pronounced 
than that observed for electrical resistance. In addition, the Tukey-
adjusted comparison indicated statistical significance (p = 0.0009), 
with a mean difference of 0.02399 units in Xc. Descriptive statistics 
using PROC MEANS indicated mean Xc values of 51.36 ± 4.26 SE for 
healthy goats and 52.60 ± 5.23 SE for unhealthy goats, the rise of 
which in Xc in goats with a greater parasitic infection was statistically 
significant, although the impact was lower compared to that of Rs 
(Table 1). Electrical reactance indicates cell membrane integrity and 
fluid distribution, and the slight rise in Xc implies that parasite 
infections exert a limited influence on the capacitive characteristics of 
tissues (67). This may result from tissue injury and cell membrane 
disruption, which influence the storage of electrical current in the 

TABLE 1 Comparison of bioelectrical impedance parameters (Electrical resistance and Electrical reactance) between healthy and unhealthy (more 
heavily Unhealthy) goats, measured using bioelectrical impedance analysis (BIA).

Parameter Condition

Healthy Unhealthy

Electrical resistance (Rs) 232.37 ± 5.07b 252.67 ± 7.32a

Electrical reactance (Xc) 51.36 ± 4.26y 52.60 ± 5.24x

Superscript on mean value for condition is significantly different (p < 0.009) for electrical resistance and electrical reactance between healthy and unhealthy (heavily unhealthy) goats.
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tissues, however the impact is less significant than electrical resistance 
(67–71).

The results of bioelectrical impedance analysis (BIA) highlight the 
influence of gastrointestinal nematodes on the health of small 
ruminants, as indicated by markedly increased fecal egg counts (FEC) 
and diminished packed cell volume (PCV) in infected goats. Although 
these characteristics are not pathognomonic, suggesting they are not 
solely indicative of gastrointestinal nematode infestations, they are 
broadly acknowledged as dependable diagnostic markers in 
parasitology. This investigation utilized FEC and PCV as the principal 
diagnostic tools to verify the presence of parasites, aligning with their 
recognized status as the gold standard for evaluating gastrointestinal 
nematode infections, especially in areas where Haemonchus contortus 
are prevalent.

The significant differences in FEC and PCV between healthy 
and unhealthy groups further validate their effectiveness in 
assessing parasite burden and associated anemia. The results 
underscore the diagnostic potential of BIA as a non-invasive, 
supplementary tool for recognizing the physiological effects of 
parasitism. This method offers a rapid and scalable alternative to 
traditional diagnostic methods.

Moreover, the integration of BIA with machine learning models 
in this study significantly enhances the diagnostic potential, enabling 
precise classification of goats based on their bioelectrical traits. This 
combination presents a robust, non-invasive approach for health 
monitoring in small ruminants, capable of swiftly identifying the 
impacts of parasite diseases on animal health.

3.1 Performance evaluation matrices

Table 2 summarizes the classification performance of the models, 
presenting the Accuracy, Precision, Recall, and F1-Score for each 
model. Among the models, the SVM exhibited superior performance, 
achieving an accuracy of 95%, a precision of 93%, and an F1-Score of 
96%, demonstrating its robust capacity to differentiate between 
healthy and Unhealthy goats. XGBoost achieved an accuracy of 94% 
and an F1-Score of 95%, indicating the efficacy of ensemble 
approaches in managing intricate datasets (37, 59). The BPNN model 
demonstrated a high level of performance, with an accuracy of 92% 
and an F1-Score of 94%, positioning it as a competitive alternative for 
classification tasks (72, 73). Keras DL attained an accuracy of 91% and 
an F1-Score of 93%, indicating that deep learning models can perform 
effectively, although they were unable to exceed SVM or XGBoost (74, 
75). Ultimately, K-NN attained the lowest accuracy of 90%, suggesting 

it underperformed relative to more advanced models such as SVM 
and XGBoost, perhaps because to its simplicity and susceptibility to 
data noise and non-linearity in data (74).

The robust efficacy of SVM and XGBoost in classification tasks 
can be  linked to several factors. Support Vector Machine (SVM) 
operates by identifying the ideal hyperplane that maximizes the 
margin between classes, rendering it particularly successful for 
linearly separable datasets (26, 50, 59, 76). Considering that 
bioelectrical impedance measurements probably demonstrate unique 
patterns between healthy and Unhealthy goats, the capability of SVM 
to establish a definitive separation in the feature space enables it to 
attain high accuracy. Furthermore, SVM excels with high-dimensional 
data, potentially demonstrating its higher efficacy compared to 
simpler models such as K-NN (33, 50).

XGBoost demonstrated excellent performance, which is 
anticipated due to its capacity to manage intricate, non-linear 
interactions via boosting. XGBoost captures complex patterns in 
the dataset by systematically rectifying errors from prior iterations 
(37, 58). This is especially advantageous in biological datasets 
because nuanced variations in characteristics can significantly 
influence classification (50, 77). The BPNN and Keras deep learning 
models exhibited marginally reduced performance compared to 
SVM and XGBoost, although they still demonstrated competitive 
outcomes (73). Neural networks probably encapsulate intricate, 
non-linear relationships within the data; yet their efficacy may 
be affected by the selection of hyperparameters or the dimensions 
of the neural network. The K-NN method, due to its reliance on 
proximity-based judgments, had difficulties managing the dataset’s 
complexity, maybe accounting for its lower accuracy relative to 
other models (60, 75, 80).

Table 3 shows the efficacy of the models in forecasting the extent 
of parasitism, as indicated by the R-squared (R2) value and Mean 
Squared Error (MSE). The BPNN model demonstrated superior 
performance, achieving a R2 value of 99.9% and a minimal MSE of 
1.25e-04, signifying its exceptional predictive accuracy about the 
health status of goats (73). SVR demonstrated strong performance, 
achieving a R2 value of 96.9% and a minimal MSE of 7.69e-03, 
indicating its high reliability as a regression model (37, 59). XGBoost 
and Keras DL attained R2 values of 89.2 and 88%, respectively, with 
moderate MSE values, suggesting that although these models 
exhibited better performance, they lacked the precision of BPNN or 
SVR. K-NN regression exhibited the poorest performance, with a R2 
value of 83% and a higher MSE of 3.30e-02, indicating its worse ability 
to describe the intricate correlations between bioelectrical data and 
goat health problems relative to the other models (33).

TABLE 2 Comparison of different classification performance matrices for classification of goat health condition (healthy vs Unhealthy).

Models Accuracy (%) Precision (%) Recall (%) F1-Score (%)

SVM 95 93 94 96

BPNN 92 91 92 94

K-NN 90 88 89 92

XGBoost 94 92 93 95

Keras DL 91 90 91 93

Table presents the results for the different model performance matrices for classifying goat health to detect Unhealthy vs healthy goats. Accuracy, Precision, Recall, and F1 Score are 
performance metrics represented in percentage that assess the model’s classification efficiency. The F1 score is the harmonic mean of Precision and Recall, providing a balanced measure of the 
model’s ability to classify data correctly.
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The BPNN regression model was the most successful model in 
regression tasks, obtaining a nearly perfect R2 value of 99.9%. This 
suggests that the neural network model was able to accurately 
anticipate the degree of parasitism by capturing nearly all the variance 
in the dataset (73, 75). The success of BPNN in regression can 
be attributed to its capacity to learn complex, non-linear patterns, 
which is particularly advantageous in biological data that involve 
interactions between various physiological parameters. BPNN 
outperformed other models in regression tasks because neural 
networks are well-suited for encoding these intricate relationships (78).

Additionally, SVR demonstrated better performance, attaining a 
R2 value of 96.9%. SVR operates similarly to SVM, but it is designed 
to identify a function that deviates from the true data points by a small 
margin for continuous data (78). The efficacy of SVR in predicting 
parasitism severity may have been influenced by its capacity to 
manage outliers and noisy data. XGBoost and Keras DL also 
demonstrated strong predictive potential; however, they were unable 
to achieve the same level of precision as BPNN or SVR. This could 
be  attributed to the hyperparameter tuning limitations or the 
complexity of the data (37, 60). However, K-NN regression 
encountered difficulty with this task, most likely due to its dependence 
on local averaging, which may not adequately capture the global 
trends apparent in the dataset, as opposed to more advanced models 
such as BPNN and SVR (31, 74).

4 Conclusion

Bio-electrical impedance analysis (BIA) offers a promising 
approach to transforming parasitism detection and livestock 
management by providing a rapid, scalable, and non-invasive 
diagnostic technology. While traditional methods such as fecal egg 
count (FEC) and hematocrit analysis are recognized as gold-standard 
techniques, they require substantial time, expertise, and laboratory 
facilities, making them less practical for large-scale or resource-
limited settings. BIA, when combined with machine learning, provides 
real-time diagnostic insights that enhance decision-making. However, 
it is important to emphasize that BIA is most effective when used 
alongside conventional diagnostic methods, such as FEC, which 
remain essential for accurate etiological identification of parasite 
species. This integrated approach enables farmers and veterinarians to 
monitor herd health more efficiently, promptly identify and treat 
parasitic infections, minimize production losses, and improve 
animal welfare.

This work highlights the diagnostic capability of BIA in detecting 
goat parasitism through identification of notable physiological 

alterations linked to parasite infections. Machine learning algorithms 
accurately categorized goats as healthy or Unhealthy using bioelectrical 
impedance metrics, with Support Vector Machines (SVM) and 
Backpropagation Neural Networks (BPNN) demonstrating the highest 
level of precision. The BPNN attained nearly flawless diagnostic 
accuracy, with an R2 value of 99.9%, illustrating its capacity to model the 
intricate, non-linear relationships between bioelectrical characteristics 
and parasitism. These findings underscore BIA’s efficacy as a dependable 
diagnostic instrument for evaluating the physiological effects 
of parasitism.

Parasitic infections modify the electrical properties of tissues, as 
demonstrated by notable disparities in electrical resistance (Rs) and 
reactance (Xc) between healthy and Unhealthy goats. The elevated Rs 
in Unhealthy goats indicate dehydration and blood loss due to infection 
with gastrointestinal nematodes such as Haemonchus contortus, leading 
to anemia and diminished fluid retention in tissues. The capability of 
BIA to identify these alterations renders it an effective instrument for 
non-invasive, field-ready diagnostics, especially when integrated with 
advanced machine learning algorithms such as SVM and XGBoost, 
which are proficient in analyzing high-dimensional datasets and 
discerning subtle variations in bioelectrical measurements (79).

This study highlights the effectiveness of BIA in diagnosing 
parasitism through changes in tissue electrical properties. However, it 
is important to acknowledge that hydration levels in goats can 
be  influenced by factors beyond parasitism, such as ambient 
temperature, nutritional intake, lactation status, or preexisting health 
conditions. These factors may introduce variability in BIA 
measurements, which must be addressed when interpreting results. The 
urgency and significance of addressing this variability in BIA 
measurements is clear, and future studies are needed to develop 
corrective models or standardized methods to enhance the reliability of 
BIA as a diagnostic tool.

Use of BIA should potentially provide various practical benefits to 
livestock producers, especially for extensive herd management. Its 
non-invasive characteristics obviate the necessity for blood sampling or 
fecal collection, hence diminishing animal stress and the likelihood of 
handling-related accidents. The expedited data collection procedure 
renders BIA scalable and efficient for health monitoring in extensive 
herds. Integration with machine learning guarantees elevated precision 
and impartiality in diagnosis, reducing variability linked to manual 
diagnostic methods. Moreover, BIA diminishes reliance on skilled 
workers and laboratory facilities, rendering it particularly appropriate 
for resource-constrained environments. Although BIA demonstrates 
considerable potential, it is not without restrictions. It offers an indirect 
evaluation of parasitism, indicating physiological alterations instead of 
pinpointing specific parasites. Complementary diagnostic procedures 

TABLE 3 Comparison of different regression model performance matrices for classification of goat health condition (Healthy vs Unhealthy).

Models R square value MSE

SVR 96.9 7.69e-03

BPNN 99.9 1.25e-04

KNN 83.0 3.30e-02

XGBoost 89.2 0.025

Keras DL 88 0.027

The table presents a comparison of various models used for regression analysis, with their corresponding R-squared values and Mean Squared Error (MSE). These results provide insights into 
the performance of different algorithms, highlighting the superior accuracy of the BPNN model in this specific context.
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such as fecal egg count (FEC) or pathogen-specific assays may still 
be  necessary for accurate etiological identification. Environmental 
influences, such as fluctuations in hydration levels, may affect BIA 
measurements and must be  considered in practical applications. 
Moreover, although BIA devices necessitate an initial expenditure, the 
long-term financial benefits derived from decreased labor and enhanced 
herd health can counterbalance this expense.

Despite these challenges, BIA is viable for agricultural use owing 
to its mobility, user-friendliness, and integration with contemporary 
farm management systems. The method’s scalability ensures its 
sustainability for prolonged application in herds of diverse sizes. It 
facilitates early diagnosis of parasitism in individual animals, 
diminishing the necessity for routine blanket treatments, promoting 
sustainable parasite management methods, and supporting worldwide 
initiatives to mitigate anthelmintic resistance of gastrointestinal 
nematodes. This work highlights the diagnostic capability of BIA as a 
swift, non-invasive, and scalable instrument for detecting parasitism 
in goats. Its incorporation of machine learning improves precision and 
dependability, rendering it an effective solution for contemporary 
livestock management. Future endeavors will enhance the technology, 
mitigate limits, and investigate its wider applicability to additional 
species and health situations, thereby reinforcing its significance in 
sustainable and precision livestock production.

5 Future research

Future research can build on this study in multiple ways. First, 
bioelectrical impedance analysis (BIA) can be used to diagnose more 
animal health issues. BIA can detect tissue changes caused by 
metabolic abnormalities, dietary deficits, and chronic illnesses. 
Studying BIA in these circumstances could yield useful insights and 
non-invasive ways for early diagnosis of livestock (including 
ruminants and small ruminants) health concerns. Further research 
into deep learning models may improve livestock examinations 
machine learning prediction. Test more advanced neural networks 
like CNNs or RNNs to determine whether they improve the present 
models. When paired with larger datasets or time-series data from 
repeated BIA tests, these models may better capture temporal trends 
and long-term dependencies. Researchers could construct algorithms 
that detect and forecast parasitism by tracking goats and collecting 
BIA data at different phases of infection. Early intervention and 
improved herd health and productivity may result from more effective 
treatment regimens. These methods could also be applied to sheep, 
and cattle to test the generalizability of BIA and machine learning 
models across farming systems. Understanding how parasitism or 
other health issues affect each species’ bioelectrical characteristics can 
help build species-specific diagnostic tools. Finally, future research 
should also examine the economic benefits of BIA and machine 
learning for health issues identification. Early infection prevention can 
save treatment costs, productivity losses, and animal welfare, 
improving farm profitability and sustainability.
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