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Introduction: Species distribution models can predict the spatial distribution 
of vector-borne diseases by forming associations between known vector 
distribution and environmental variables. In response to a changing climate 
and increasing rates of vector-borne diseases in Europe, model predictions for 
vector distribution can be used to improve surveillance. However, the field lacks 
standardisation with little consensus as to what sample size produces reliable 
models.

Objective: Determine the optimum sample size for models developed with the 
machine learning algorithm, Random Forest, and different sample ratios.

Materials and methods: To overcome limitations with real vector data, a 
simulated vector with a fully known distribution in 10 test sites across Europe 
was used to randomly generate different samples sizes. The test sites accounted 
for varying habitat suitability and the vector’s relative occurrence area. 9,000 
Random Forest models were developed with 24 different sample sizes (between 
10–5,000) and three sample ratios with varying proportions of presence and 
absence data (50:50, 20:80, and 40:60, respectively). Model performance 
was evaluated using five metrics: percentage correctly classified, sensitivity, 
specificity, Cohen’s Kappa, and Area Under the Curve. The metrics were 
grouped by sample size and ratio. The optimum sample size was determined 
when the 25th percentile met thresholds for excellent performance, defined as: 
0.605–0.804 for Cohen’s Kappa and 0.795–0.894 for the remaining metrics (to 
three decimal places).

Results: For balanced sample ratios, the optimum sample size for reliable 
models fell within the range of 750–1,000. Estimates increased to 1,100–1,300 
for unbalanced samples with a 40:60 ratio of presence and absence data, 
respectively. Comparatively, unbalanced samples with a 20:80 ratio of presence 
and absence data did not produce reliable models with any of the sample sizes 
considered.

Conclusion: To our knowledge, this is the first study to use a simulated vector 
to identify the optimum sample size for Random Forest models at this resolution 
(≤1  km2) and extent (≥10,000  km2). These results may improve the reliability 
of model predictions, optimise field sampling, and enhance vector surveillance 
in response to changing climates. Further research may seek to refine these 
estimates and confirm transferability to real vectors.
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1 Introduction

Emerging infectious diseases have significantly increased, with 
vector-borne diseases (VBDs) accounting for 28.8% of emerging 
infectious events globally between 1990–2000 (1). VBDs have a 
detrimental impact on mortality, disability-adjusted life years, and 
economies (2–4). The World Health Organization (WHO) estimates 
that 80% of the world’s population are at risk of at least one VBD due 
to climate change, rapid urbanisation and globalisation (5). Across 
Europe, the incidence of endemic and (re-)emerging VBDs is 
changing. The warming of temperate regions has facilitated the 
latitudinal and altitudinal expansion of mosquitoes and ticks (6, 7). 
Cases of tick-borne encephalitis have increased, with six European 
countries considered highly endemic in 2020 (8); multiple regions 
reported West Nile virus for the first time in 2024 (9); and the invasive 
mosquito, Aedes albopictus, is firmly established in 14 European 
countries (10). Due to invasive mosquitoes, there have been 20 
autochthonous dengue outbreaks, six autochthonous chikungunya 
outbreaks, and one autochthonous Zika outbreak in Europe since 
2007 (11–13). Furthermore, it is projected that the invasive 
mosquitoes, A. albopictus and Aedes aegypti, will continue to expand 
into climatically suitable urban environments by 2050 (14).

To reduce the global incidence of VBDs by 60% from 2016 to 2030, 
the WHO recommends targeting the primary vectors (5). The WHO 
has provided a framework for effective vector control which builds on 
two foundational components: (1) enhanced capacity for surveillance, 
monitoring and evaluation and (2) increased research for vector 
control and innovation (5). The former was identified as a priority 
action for vector control in Europe (15). Field sampling monitors the 
distribution and abundance of vectors and is essential for surveillance, 
but is labour intensive and expensive (16). Species distribution models 
(SDMs) predict a region’s suitability for a species’ distribution under 
current or future eco-climatic conditions (17). This can optimise 
surveillance and reduce costs by identifying strategic locations for field 
sampling. As illustrated in Figure 1, correlative SDMs form associations 
between vector distribution and environmental variables to predict the 
probability of vector presence where sampling has not occurred (18). 
They achieve this by detecting patterns without explicitly defining 
biological processes, thus remaining independent of these assumptions 
for modelling (17). Within Europe, SDMs have successfully modelled 
the distribution of several arthropod vectors such as mosquitoes, 
sandflies and ticks (19–22).

SDMs are based on three main principles of spatial epidemiology: 
diseases tend to be limited geographically; the physical and biological 
conditions for vectors, hosts and pathogens influence the spatial 

heterogeneity of disease; and the current and future risks of disease are 
predictable if the abiotic and biotic factors can be delineated into maps 
(23). While it is possible to predict host and pathogen distributions, the 
drivers of pathogen transmission are complex, multifaceted and nonlinear 
(24). Furthermore, Hendrickx (25) used eco-climatic covariates to predict 
disease distribution in hosts and found that model accuracy decreased 
due to the increasing influence of other drivers, when compared to 
vectors. Therefore, modelling vector distributions as a proxy of VBD risk 
may be more appropriate. While vector presence does not necessarily 
infer a risk of disease, this approach aligns with the WHO and European 
Centre for Disease Prevention and Control (ECDC) recommendations 
for preparedness through vector surveillance (5, 26).

Ideally, SDMs are trained with presence and absence data since 
presence infers the locations which are environmentally suitable for 
a vector while absence infers the locations which are not (27). 
Vector distribution can be conceptualised as a gradient between 
potential distribution, which is where a species could live, and the 
realised distribution, which is where a species actually lives at a 
particular moment in time (28). Absence data is required to 
estimate the realised distribution, since distribution can 
be influenced by both abiotic and biotic factors (28). However, there 
is an inherent degree of uncertainty if an absence is a true absence 
since a species might be  rare, in an inactive state, in a different 
habitat, or simply not captured by the trapping device (16). While 
absence data provides essential information, these limitations make 
field sampling more challenging, costly and labour-intensive to 
ensure their reliability (16). This has led to alternative techniques 
such as presence-only modelling and the generation of background 
samples or pseudo-absences. Background samples are generated 
computationally by randomly selecting points across a range of 
environmental conditions while pseudo-absences are manipulated 
to better represent a true absence (29). Several methods exist for 
generating pseudo-absences, such as excluding locations within a 
specific distance of a known presence point or comparing true 
absences for similar species (29). While pseudo-absences produce 
more accurate predictions than background samples, all three 
approaches have limitations: presence-only modelling fails to 
account for vector absence and the generation of absences makes 
significant assumptions which result in less accurate predictions 
compared to presence-absence models (29, 30). A simulated vector 
overcomes these limitations by generating high-quality presence 
and absences across different environmental gradients.

Various factors can influence model performance, including 
modelling algorithms, species characteristics, scale and sample size. 
Correlative SDMs can be  developed with statistical or machine 
learning algorithms, but there is not a single best approach since each 
algorithm performs differently (31). The supervised machine learning 
algorithm, Random Forest (RF), can handle presence-absence data 
and thus model the vector’s realised distributions. Species range can 
impact model predictions since performance generally diminishes for 
species with broad geographic ranges and environmental tolerances 
compared to those with smaller ranges and specific tolerances (32). 
Scale can be divided into extent and resolution. Larger extents can 

Abbreviations: AUC, Area Under the (Receiver Operating Characteristic) Curve; 

ECDC, European Centre for Disease Prevention and Control; LST, Land surface 

temperature; MODIS, MODerate-resolution Imaging Spectroradiometer; NDVI, 

Normalised difference vegetation index; PCC, Percentage correctly classified; RF, 

Random forest; ROA, Relative occurrence area; SDM, Species distribution model; 

VBD, Vector-borne disease; WHO, World Health Organization.
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improve model discrimination (28), but smaller extents can also 
enhance performance by reducing environmental variability (33). 
Resolutions larger than the species’ niche breadth typically decrease 
model accuracy (34). While sample size is also known to influence 
model predictions, SDMs have been developed with sample sizes 
ranging from 10 to over 1,000 (35). There is a lack of consensus 
between studies which evaluate the effect of sample size, but little 
distinction has been made between the use of different algorithms (32, 
36–41), resolutions (33, 42, 43), ensembles (44) and species (45).

As part of a wider body of work, similar studies were identified 
which evaluated the effect of sample size [Supplementary material 
(1.2)]. Comparable studies were defined as RF models which predict 
the distribution of terrestrial species at similar resolutions (≤1 km2) 
and extents (≥10,000  km2). Two studies met this criteria and 
quantified the effect of sample size on RF models: Liu et  al. (46) 
predicted the habitat suitability of the snail, Oncomelania hupensis¸ 
which is an intermediate host for Schistosoma spp. and Hendrickx 
et al. (18) predicted the distribution of the trematode, Dicrocoelium 
dendriticum, in ruminant hosts. Both used real datasets and neither 
considered sample sizes for vector distributions. Two studies used 
virtual species to analyse the effect of sample size at a similar scale, but 
they did not identify an optimum sample size and reported general 
trends instead (29, 47).

Despite increasing interest in SDMs, the conceptual and 
methodological uncertainties of these models are often overlooked 
(27). With a lack of standardisation, an increasing amount of freely 
accessible species distribution data and modelling software, Jiménez-
Valverde et al. (28) argue that it is essential these uncertainties are 
addressed through the development of a solid methodological 
framework. A virtual vector facilitates the systematic evaluation of 
different methodological designs on model performance and, with a 
lack of consensus for the optimum sample size, there is a need to 
quantify the effect of sample size on model performance. Therefore, 
this empirical study aims to use a virtual vector to identify the 
optimum sample size for reliable large extent (≥10,000 km2) and fine 
resolution (≤1 km2) RF models.

2 Materials and methods

To evaluate the effect of sample size, two confounding factors were 
accounted for in this study: relative occurrence area (ROA) and 
prevalence. Jiménez-Valverde et al. (28) argue that the effect of species 

range on model performance is actually a reflection of the ROA which 
refers to the proportion of the test site occupied by the vector. If a 
species occupies a small area, then there are a greater number of 
absences located further away from vector presence which improves 
model discrimination (28). Therefore, this effect is scale dependent 
and independent of the species’ actual range size, since model 
performance can improve by using a larger extent which reduces the 
ROA (28). While the ROA is a function of extent, prevalence refers to 
the proportion of presence samples within the dataset and reflects the 
characteristics of the data (28). When compared to sample size and 
modelling technique, ROA and prevalence had the largest influence 
on model performance (44). Due to differing terminology between 
prevalence (28, 44), sample prevalence (38, 43) and presence 
prevalence (29), this study defined the proportion of presence and 
absence points as sample ratio. Sample size refers to the total number 
of presence and absence points in a sample. Both sample ratio and size 
refer to the dataset before partitioning, so that the results can guide 
the number of samples required during field sampling.

To account for ROA, the virtual vector was modelled in multiple 
test sites across Europe. Figure 2 illustrates a workflow whereby the 
effect of sample size was evaluated separately for three different sample 
ratios. Initially, 10 sample sizes were randomly generated. To account 
for variability in model performance, particularly at smaller sample 
sizes, sampling was replicated to generate 10 random samples, per 
sample size, in each test site. Model predictions were evaluated and 
performance grouped across the test sites. The methods were repeated 
twice more to refine estimates. Supplementary Figure 1 contains a flow 
chart detailing each step. The methodology was reported according to 
ODMAP, a standardised reporting protocol for SDMs (48) in 
Supplementary Table  1. The methods were executed in R Studio 
2023.06.1 using R version 4.3.1 and the packages listed in 
Supplementary Table 2. QGIS 3.22.7 was used for figure generation 
and data quality checks.

2.1 Materials

For a species distribution model, datasets should describe the test 
site’s extent, the sampling location of each presence or absence record 
and the environmental conditions at each point. The vector 
distribution and covariate datasets need to have the same resolution 
(49). Therefore, all datasets were projected in the geographic 
coordinate reference system, EPSG:4326 – WGS 84 with matching 

FIGURE 1

Overview of species distribution models. Random samples for vector distribution are linked to the environmental variables at each location and the 
model forms associations to generate a risk map based on the probability of vector presence across a region where sampling did not occur. Reprinted 
with permission (18).
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spatial grids of 0.0083° × 0.0083°, which equates to approximately 
1 km2 at the equator (0.918 km × 0.918 km to three decimal points).

2.1.1 Virtual vector
SDMs should be developed with high quality, fine resolution datasets 

for vector presence and absence with georeferenced locations that are 
spatially and environmentally unbiased, but this is difficult to attain (37). 
With a known distribution and presence-absence data, the virtual vector 
enables the prediction of realised distributions, overcoming challenges 
associated with historical and field datasets for real vectors. The virtual 
vector was generated using the probability approach from the 
SDMvspecies package in R (50). This method is preferable to the threshold 
approach since it mimics vector occupancy patterns across space and time 
by generating species distributions across environmental gradients and 
takes species prevalence into consideration (37). The virtual vector was 
modelled to resemble a flying insect and has a fully known spatial 
distribution across Europe (Figure 3A). For direct comparison between 
the predicted and known distribution, the virtual vector was classified into 
binary values; a threshold of 0.5 was applied, and cells with a probability 
of presence greater than 0.5 were assigned a value of 1 for presence, while 
cells with a probability of presence equal to or less than 0.5 were assigned 
a value of 0 for absence (Figure 3B).

Random sampling and modelling were conducted within 10 test sites 
across mainland Europe (Figure 3B). Modelling is often tailored to the 
research objective. To estimate the optimum sample size and provide 
generalised guidance for field sampling and subsequent modelling, test 
sites with differing characteristics were selected. Each reflects varying 
geographic distributions of the virtual vector; thus, grouping model 
performance by sample size across the test sites accounts for differing 
habitat suitability and ROA. The test sites have an extent comparable to 

some European countries with an area of 11.111°2, which equates to 
approximately 136,900 km2 at the equator (370 km × 370 km). The virtual 
vector dataset was cropped to the extent of each test site to create 10 
distinct datasets for sampling and modelling.

2.1.2 Covariates
Environmental variables typically represent the key aspects of a 

species’ ecology which impact its survival in a particular environment 
(51). Vectors are ectothermic and while the degree of impact is species 
specific, temperature is one of the main environmental factors which 
can affect their reproduction, survival, distribution and ability to 
transmit pathogens (52). Environmental variables like vegetation 
parameters can also impact vector presence (6, 52). Remotely sensed 
covariates from satellites may be preferable to climatic covariates due 
to their high spatial and temporal resolution globally (53). Therefore, 
time series data for 27 covariates which describe normalised difference 
vegetation index (NDVI) and land surface temperature (LST) from 
2001 to 2021 were obtained from MODerate-resolution Imaging 
Spectroradiometer (MODIS) satellite imagery (Table 1). Following 
methods by Scharlemann et al. (54), the covariates were temporal 
Fourier processed, thereby reducing data dimensionality and 
removing correlations to create independent covariates. The covariate 
dataset was then cropped to the extent of each test site.

2.2 Methods

2.2.1 Sampling
First, 10 different sample sizes (10, 30, 50, 80, 100, 250, 500, 

1,000, 2,500 and 5,000) were randomly sampled from the virtual 

FIGURE 2

Methodology summary. In (A), the virtual vector and covariate datasets were cropped to the extent of each test site. In (B), 10 different sample sizes 
were randomly sampled from the virtual vector in each test site. Each sample size was replicated 10 times to produce 1,000 samples. This was 
repeated for three sample ratios. The coloured lines represent each sample ratio: purple for balanced samples with a 50:50 ratio; blue for samples with 
an unbalanced 20:80 ratio; and orange for samples with an unbalanced 40:60 ratio of presence and absence data, respectively. In (C), 3,000 models 
were developed which predict the vector’s distribution in each test site. In (D), the performance of 3,000 models was evaluated with five metrics. The 
results were grouped by sample size and sample ratio to identify a narrower range of sample sizes. In (E), the methods from (B–D) were repeated twice 
more within increasingly narrower ranges to refine the estimate for the optimum sample size.
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vector’s distribution in each of the 10 test sites. Random sampling 
reduces the likelihood of oversampling a particular area. 
Geographically clustered samples can decrease predictive accuracy 
and may have a larger influence than sample size (18). To minimise 
spurious results, each sample size was replicated 10 times in each test 
site, generating 1,000 unique samples. Since the proportion of 
presence observations in a sample has an important influence on 
model performance (43, 44), the methods were repeated for three 
sample ratios with different proportions of presence and absence 
observations. These included a balanced 50:50 ratio and two 
unbalanced ratios of presence and absence points (40:60 and 20:80, 
respectively). Given the increased probability of sampling absences 
compared to presences in the field, the unbalanced sample ratios 
contained a greater proportion of absence points. This approach was 
intended to represent field conditions for vector sampling. For each 
of the 3,000 samples, the presence and absence points were linked to 
the covariates describing the environmental conditions at each 
location (Figure 4).

2.2.2 Modelling
RF has recently gained popularity due to its ease of use and ability 

to model non-linear relationships and complex interactions between 
covariates (29). RF can use classification or regression trees for binary 
data. However, regression RF has been shown to predict the 
probabilities of species distribution with greater accuracy (55). 
Therefore, each sample trained a regression RF model which predicted 
the virtual vector’s distribution in its respective test site. To do so, the 
sample was randomly split into a test and training subset using a 30:70 
ratio, respectively (Figure 5). This is a cross-validation method which 
uses a subset of data to train the model before comparing the 
predictions with the vector’s known distribution from the test subset. 
Since RF creates robust models with the default parameters (56), the 
only specified parameters were the hyperparameter mtry (optimum) 
and the number of trees (500). A higher number of trees is 
recommended to improve the accuracy of model predictions, but this 

needs to be balanced against computational cost (56). Once 3,000 
models formed associations between vector distribution and 
covariates from each training subset, the models used the covariates 
to make predictions for vector distribution across their respective test 
site. For evaluation, the predictions were dichotomised into binary 
values for presence (1) and absence (0) using the same threshold of 
0.5. Each presence and absence point in the independent test subsets 
were then linked to their corresponding model predictions.

2.2.3 Evaluation
Model performance was assessed using five metrics: Percentage 

Correctly Classified (PCC), sensitivity, specificity, Cohen’s Kappa and 
Area Under the Curve (AUC). PCC, sensitivity, specificity and Cohen’s 
Kappa are threshold-dependent metrics, calculated from confusion 
matrices comparing the binary model predictions for vector presence 
and absence against the virtual vector’s known distribution (Table 2). 
PCC measures the proportion of correctly predicted presence and 
absence observations; sensitivity measures the proportion of correctly 
predicted presence observations; and specificity measures the 
proportion of correctly predicted absence observations in the test 
subset (57). The values for all three metrics range from 0 to 1, with a 
higher value indicating better model performance. Unlike the previous 
metrics which solely calculate the proportion of agreement between 
model predictions and known observations, Cohen’s Kappa also 
accounts for chance agreement when calculating inter-rater reliability 
(58, 59). The values for Cohen’s Kappa range from −1 to 1, whereby 1 
indicates perfect agreement between known and predicted 
observations while values equal to or less than 0 suggest the model’s 
performance is no better than chance (58). Each of these metrics were 
cross-referenced against R functions: pcc from the PresenceAbsence 
package, sensitivity and specificity from the caret package, and the 
unweighted value for Kappa from the vcd package (60–62).

AUC, a threshold-independent metric, is derived from the 
receiver operating curve which analyses how different thresholds 
influence the classification of presence and absence by plotting 

FIGURE 3

Distribution of the virtual vector across Europe. The virtual vector has a defined distribution within the extent of 13.0°W – 43.0°E, 29.0°N – 72.0°N (A), 
which was classified into binary values for presence and absence using a threshold of 0.5 (B). In (A), a gradient from light to dark represents increasing 
probabilities of presence per raster cell, categorised into five classes using equal intervals. In (B), sampling and modelling was conducted in 10 test sites 
across Europe. The Relative Occurrence Area (ROA) of the vector was defined as the percentage of cells with a presence value of 1, divided by the total 
number of cells within each test site (to two decimal points). GADM Level 0 country boundaries were utilised (79).
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sensitivity on the y-axis against (1 – specificity) on the x-axis (63). As 
such, AUC provides a summary of classification accuracy with values 
ranging from 0–1, whereby 1 indicates perfect accuracy and 0.5 
suggests the model predictions are equivalent to random chance (63). 
AUC was calculated using the R functions, roc and auc from the 
pROC package (64). All five metrics are commonly used to evaluate 
SDMs and, as recommended by Konowalik and Nosol (65), the use of 
multiple metrics overcomes the limitations associated with relying on 
a single metric.

2.2.4 Optimum sample size
For each of the five evaluation metrics, the 3,000 models were 

grouped by sample size and ratio across the 10 test sites and presented 
in boxplots. Model performance was assessed against predefined 
thresholds, which determine excellent model performance for each 
evaluation metric (Table 3). The thresholds for Cohen’s Kappa and 
AUC were based on those presented by Landis and Koch (66) and 

Hosmer et al. (67), respectively. Expert advice informed the thresholds 
for PCC, sensitivity and specificity. The thresholds for excellent 
performance were defined as: 0.795–0.894 for PCC, sensitivity, 
specificity, and AUC; and 0.605–0.804 for Cohen’s Kappa (to three 
decimal places). To identify the optimum sample size, the boxplots 
were examined to identify at what sample size the 25th percentile (first 
quartile of each boxplot) met these thresholds.

To refine estimates for the optimum sample size, these methods 
were repeated twice more within increasingly narrower ranges of 
sample sizes, generating 9,000 models. For simplification, all 9,000 
models were then grouped by sample size and ratio and presented in 
heatmaps. The 25th percentile for each sample size and ratio was 
calculated, and the same thresholds for excellent performance 
applied to identify the optimum sample size. Moderate performance 
was also taken into consideration, defined as: 0.695–0.794 for PCC, 
sensitivity, specificity, and AUC; and 0.405–0.604 for Cohen’s Kappa 
(to three decimal places).

TABLE 1 Covariates used for modelling.

Covariate Description

dLSTa1 Daytime Land Surface Temperature annual amplitude (K)

dLSTa2 Daytime Land Surface Temperature bi-annual amplitude (K)

dLSTa3 Daytime Land Surface Temperature tri-annual amplitude (K)

dLSTavg Mean daytime Land Surface Temperature (K)

dLSTmax Maximum daytime Land Surface Temperature (K)

dLSTmin Minimum daytime Land Surface Temperature (K)

dLSTp1 Daytime Land Surface Temperature phase of annual cycle (months)

dLSTp2 Daytime Land Surface Temperature phase of bi-annual cycle (months)

dLSTp3 Daytime Land Surface Temperature phase of tri-annual cycle (months)

NDVIa1 Normalised Difference Vegetation Index annual amplitude (no units*)

NDVIa2 Normalised Difference Vegetation Index bi-annual amplitude (no units*)

NDVIa3 Normalised Difference Vegetation Index tri-annual amplitude (no units*)

NDVIavg Mean Normalised Difference Vegetation Index (no units*)

NDVImax Maximum Normalised Difference Vegetation Index (no units*)

NDVImin Minimum Normalised Difference Vegetation Index (no units*)

NDVIp1 Normalised Difference Vegetation Index phase of annual cycle (months)

NDVIp2 Normalised Difference Vegetation Index phase of bi-annual cycle (months)

NDVIp3 Normalised Difference Vegetation Index phase of tri-annual cycle (months)

nLSTa1 Night-time Land Surface Temperature annual amplitude (K)

nLSTa2 Night-time Land Surface Temperature bi-annual amplitude (K)

nLSTa3 Night-time Land Surface Temperature tri-annual amplitude (K)

nLSTavg Mean night-time Land Surface Temperature (K)

nLSTmax Maximum night-time Land Surface Temperature (K)

nLSTmin Minimum night-time Land Surface Temperature (K)

nLSTp1 Night-time Land Surface Temperature phase of annual cycle (months)

nLSTp2 Night-time Land Surface Temperature phase of bi-annual cycle (months)

nLSTp3 Night-time Land Surface Temperature phase of tri-annual cycle (months)

All files were created by transforming MODIS historical climate data, from 2001–2021, for daytime Land Surface Temperature (dLST), night-time Land Surface Temperature (nLST) and 
Normalised Difference Vegetation Index (NDVI) via temporal Fourier analysis. As described by Scharlemann et al. (54), the NDVI covariates denoted by the symbol * do not have units 
because they are dimensionless ratios and therefore, categorical. The international base unit for temperature, Kelvin, is denoted by K.
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3 Results

The first round of modelling evaluated the effect of sample sizes 
10, 30, 50, 80, 100, 250, 500, 1,000, 2,500, and 5,000 on model 

performance. Boxplots for each evaluation metric were compared 
against the thresholds for excellent model performance, which 
indicated that the optimum sample size fell within the range of 
250–2,500 (Supplementary Figure 2). To include a margin of error, the 

FIGURE 4

Random sampling and linkage of datasets. In (A) random sampling of the binary virtual vector in test site 1 generated a balanced sample size of 50. In 
(B) each presence and absence point was linked to the covariates at that location. GADM Level 0 country boundaries were utilised (79).

FIGURE 5

Training models and predicting vector distribution. In (A) a balanced sample size of 50 was randomly partitioned into (B) a training subset (70% of the 
sample) and (C) a test subset (30% of the sample). In (D) the model was developed using the training subset before the covariates for test site 1 were 
applied to (E) predict vector distribution across the remainder of the test site. The model predictions represent increasing probabilities of vector 
presence per raster cell, categorised into five classes using equal intervals. In (F), the predictions were dichotomised into binary values for presence and 
absence using a threshold of 0.5. The test subset validated the model predictions, revealing two locations, circled in purple, where the model predicted 
presence, but the vector was actually absent. GADM Level 0 country boundaries were utilised (79).
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range was adjusted to 150–3,000, from which 10 sample sizes were 
selected. The methods were repeated with the sample sizes 150, 250, 
350, 500, 750, 1,000, 1,500, 2,000, 2,500, and 3,000, identifying a 
narrower range between 400–1,300 (Supplementary Figure 3). The 
results for the final round, which evaluated the effect of sample sizes 
400, 500, 600, 700, 800, 900, 1,000, 1,100, 1,200, and 1,300 on model 
performance, are presented below.

3.1 Model performance

Increasing sample size improved model performance across all 
sample ratios and evaluation metrics (Figure 6). The sample size which 

first reached the thresholds for excellent model performance varied 
between sample ratios and metrics. For balanced ratios, the first sample 
size to reach the thresholds was 500, when evaluated by sensitivity (first 
quartile = 0.811, mean = 0.842), compared to a sample size of 1,000, 
when evaluated by specificity (first quartile = 0.795, mean = 0.818). 
The smallest sample size to reach the thresholds for unbalanced 40:60 
ratios was 400, when evaluated by specificity (first quartile = 0.809, 
mean = 0.851), and the largest was 1,100, when evaluated by Cohen’s 
Kappa (first quartile = 0.608, mean = 0.649). Comparatively, for 
unbalanced 20:80 ratios, no sample size met the thresholds for 
sensitivity, Cohen’s Kappa or AUC, while all reached or exceeded the 
PCC and specificity threshold. For three out of five metrics (sensitivity, 
Cohen’s Kappa and AUC), models developed with balanced sample 
ratios were more reliable than those developed with unbalanced ratios.

3.2 Model performance across all sample 
sizes

A total of 8,999 models were developed with 24 different sample 
sizes, some of which were evaluated multiple times (250 and 500 
twice; 500 and 1,000 three times). Models were grouped by sample size 
and ratio and presented as heatmaps for each metric (Figure 7). A blue 
and orange gradient from light to dark indicates how far the first 
quartile lies within the thresholds for moderate and excellent 
performance, respectively.

TABLE 2 Calculations for four threshold-dependent evaluation metrics.

Confusion matrix

Actual presence Actual absence

Predicted presence A B

Predicted absence C D

Evaluation metrics

Sum ( )= + + +n A B C D

PCC +A D
n

Sensitivity

( )+
A

A C

Specificity

( )+
D

B D

Cohen’s Kappa

−
=′

−1
P P

Cohen sKappa
P

o e
e

, whereby:

( ) = ∑   Proportion of observed agreements P Po ii , equates to: 
( )+

=
A D

P
no

( ) = ∑ + +   Proportion of chance agreement P P Pe i i, equates to:

   + + + +       = × + ×          
          

A B A C C D B D
P

n n n ne

Each of the threshold-dependent evaluation metrics were based on a 2×2 contingency table for model performance which compared the binary model predictions to the actual presence and 
absence points in the test subset. The counts describe when the model (A) correctly predicts presence (true positives), (B) incorrectly predicts presence at a location where absence was actually 
recorded (false positives), (C) incorrectly predicts absence at a location where presence was actually recorded (false negatives), and (D) correctly predicts absence (true negatives).

TABLE 3 Thresholds for excellent model performance for each evaluation 
metric.

PCC, 
Sensitivity and 

Specificity

Cohen’s 
Kappa

AUC Rating

N/A < 0.00 ≤ 0.50 Chance

0.00–0.49 0.00–0.20 0.51–0.69 Poor

0.50–0.69 0.21–0.40 N/A Fair

0.70–0.79 0.41–0.60 0.70–0.79 Moderate

0.80–0.89 0.61–0.80 0.80–0.89 Excellent

0.90–1.00 0.81–1.00 0.90–1.00 Outstanding
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FIGURE 6

Performance of 3,000 models when evaluated by five metrics. Each boxplot represents the means, medians and quartiles of 100 models which are 
grouped by the 10 sample sizes (400, 500, 600, 700, 800, 900, 1,000, 1,100, 1,200, and 1,300) and three sample ratios of presence and absence data 
(50:50, 20:80 and 40:60, respectively). The threshold bar represents the defined thresholds for excellent models (to three decimal points): 0.795–0.894 
for (A–C,E) which present the PCC, sensitivity, specificity and AUC metrics, respectively, and 0.605–0.804 in (D) which presents Cohen’s Kappa.
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Model performance notably deteriorated for sample sizes below 
100 across all metrics, with few reaching the thresholds for moderate 
performance (Figure 7). One model developed with a sample size of 
10 and a 20:80 ratio failed, and 93 models with the smallest sample 
sizes (10 and 30) had at least one incalculable metric due to a lack of 
presence or absence points in the test and/or training subsets. Of the 
93 models with missing metrics, 60% were developed with a 20:80 
ratio (56/93), 21% with a 50:50 ratio (20/93), and 19% with a 40:60 
ratio (18/93). Therefore, RF models may produce unreliable 
predictions for vector distribution when developed with a sample size 
of 10 and 30, particularly with an unbalanced 20:80 ratio. Model 
performance for this ratio also varied substantially across the metrics 
at other sample sizes, indicating that model predictions with a 20:80 
ratio were the least reliable.

The first sample sizes to reach each metric’s thresholds varied 
between 400–1,100 for unbalanced 40:60 ratios and between 
500–1,000 for balanced 50:50 ratios in Figure  6. However, these 
findings do not account for all sample sizes considered or varying 
model performance for the same sample sizes evaluated in multiple 
rounds. For balanced ratios, a sample size of 1,000 first reached the 
specificity threshold in the third round (first quartile = 0.795, 
mean = 0.818), but the same sample size did not meet the threshold 
in the first round (first quartile = 0.793, mean = 0.818) or the second 
round of methods (first quartile = 0.781, mean = 0.813). Figure  7 
suggests the first sample size to reach each metric’s thresholds varied 
between 150–5,000 for unbalanced 40:60 ratios and between 
500–1,500 for balanced 50:50 ratios.

Important trends may be overlooked when solely focusing on the 
first sample size to reach thresholds for excellent model performance. 
For an unbalanced 40:60 sample ratio, the first quartile reached the 
PCC threshold for excellent model performance from a sample size of 
600. There were minor fluctuations of 0.01 decimal places around the 
threshold boundary until a sample size of 1,100, after which 
performance consistently improved with increasing sample size 
(Figure  7A). For sensitivity, the first quartile only reached the 
threshold for excellent performance at a sample size of 5,000. Since the 
models were trained with a greater proportion of absence data, it may 
be reasonable to consider that the mean reached the threshold for 
excellent performance at a sample size of 1,500 (mean = 0.799) and 
the first quartile for a sample size of 1,100 reached the upper estimate 
(above 0.75) for moderate performance (Figure 7B). For specificity, 
the first quartile reached the threshold for excellent performance from 
a sample size of 150. Due to minor fluctuations at the boundary, 
performance was more reliably above the threshold from a sample size 
of 500 (Figure 7C). When evaluated by Cohen’s Kappa, a sample size 
of 1,100 met the threshold for excellent performance, but dipped 
below at 1,200, suggesting models may be more reliable from 1,300 
(Figure 7D). Finally, a sample size of 900 reached the AUC threshold 
for excellent models with fluctuations around the boundary until a 
sample size of 1,300 (Figure 7E).

For balanced ratios, the first quartile reached the PCC and AUC 
threshold for excellent performance at a sample size of 600 but 
remained near the boundary until a sample size of 1,000 
(Figures 7A,E). For sensitivity, a sample size of 500 first reached the 
threshold but models were more comfortably above the threshold 
from a sample size of 600. However, there was a slight dip at a sample 
size of 900 and 1,000, albeit by 0.01 decimal places, after which 
performance continuously improved with increasing sample size 

(Figure 7B). For specificity, the first quartile reached the thresholds for 
excellent models from a sample size of 1,500, but performance was 
only 0.01 decimal places below the threshold from a sample size of 
1,000 (Figure 7C). For Cohen’s Kappa, the first quartile reached the 
threshold for excellent performance at a sample size of 750 but dipped 
below at a sample size of 900, suggesting models may be more reliable 
from a sample size of 1,000 (Figure 7D).

3.3 Estimates for the optimum sample size

The optimum sample size was estimated separately for the three 
sample ratios. To determine the optimum sample size, more emphasis 
was placed on sensitivity, Cohen’s Kappa and AUC. While PCC is a 
widely used metric, it is a poor reflection of model performance since 
it is influenced by the ROA: if the vector occupies 5% of the test site, 
a 95% success rate could be achieved if the model predicted absence 
across the entire test site (68). Since specificity measures the 
percentage of absence observations correctly predicted, this should 
theoretically increase when models are trained on a greater proportion 
of absence points which explains why the 20:80 sample ratio 
performed best when evaluated by specificity. RF models also tend to 
overfit resulting in higher sensitivity and lower specificity values (44). 
However, it may be preferable to maximise sensitivity over specificity 
when the aim is to inform new vector surveys, since higher sensitivity 
minimises the number of true presences predicted as absences (69).

The optimum sample size was best expressed as a range since there 
were fluctuations around the threshold boundaries for excellent model 
performance between sample sizes and for the same sample size across 
multiple rounds. Most metrics indicated that the optimum sample size 
fell between the range of 750–1,000 for balanced ratios. This increased 
to 1,100–1,300 for an unbalanced 40:60 sample ratio of presence and 
absence data, respectively. Due to poor model performance, it was not 
possible to estimate an optimum sample size for a 20:80 ratio. Model 
predictions for vector distribution, developed with the lower estimate 
for the optimum sample size, are displayed across all 10 test sites 
(Figure 8). This illustrates one model’s predictions with the optimum 
sample size, however stacked predictions should be considered due to 
the variation between replicate models at the same sample size 
(Figure 6). Additional figures which spatially present predicted vector 
distributions by models with different sample sizes are available in 
Supplementary Figures 4–9.

4 Discussion

To the best of our knowledge, this is the first study to use a virtual 
vector to identify the optimum sample size for RF models with 
presence-absence data at this extent (≥10,000 km2) and resolution 
(≤1 km2). This study produced three main findings; the optimum 
sample size for reliable SDMs fell within the range of 750–1,000 for 
balanced samples and 1,100–1,300 for samples with an unbalanced 
40:60 ratio of presence and absence points, respectively. Secondly, 
model performance was poor for sample sizes below 100 and for 
samples with an unbalanced 20:80 ratio. Thirdly, as the proportion of 
presence points increased between sample ratios, model performance 
improved for all metrics except PCC and specificity.
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FIGURE 7

Heatmaps for five metrics evaluating the performance of 8,999 models. Each tile shows the value of the first quartile for each sample size and ratio. 
Note: One model (out of 9,000) failed for a sample size of 10 with a 20:80 ratio. Therefore, some tiles may represent more than 100 models if the 
same sample size was evaluated in multiple rounds, or fewer if a metric could not be calculated. The colour gradients from light to dark represent 
increasing performance within the thresholds for moderate (blue) and excellent models (orange). For (A–C,E) moderate performance was defined as 
0.695–0.794 to three decimal points and excellent performance at 0.795–0.894 for PCC, sensitivity, specificity, and AUC, respectively. For Cohen’s 
Kappa in (D) moderate performance was defined as 0.405–0.604 and excellent performance as 0.605–0.804. Performance below the moderate 
thresholds was coloured white and above the excellent thresholds, purple.
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4.1 Sample size for Random Forest models

An optimum sample size facilitates robust predictions for vector 
distributions while minimising the cost of excessive field sampling and 
computational processing. Many studies have demonstrated 
improvements in RF model performance with increasing sample size 
(18, 29, 33, 42–47). However, it is important to consider that these 
studies used different definitions for sample size when comparing 
results. Sample size was defined as either the number of presences in 

the training subset (18, 29, 33, 42, 43, 47) or the number of presences 
and absences in the training subset (44–46). To ensure our findings 
could inform field sampling, we defined sample size as the number of 
presences and absences in the dataset, prior to partitioning.

Our estimates for the optimum sample size were lower than two 
studies which quantified the effect of sample size on RF models at a 
similar scale (18, 46). Liu et al. (46) used field data for an intermediate 
host and reported an optimum sample size of 2,400 presence and 
absence points in the training subset, with an optimum sample ratio 
of 1:2 (equivalent to 33:66). Since they used an 80:20 ratio to partition 

FIGURE 8

Model predictions developed with the optimum sample size compared to the virtual vector’s known distribution. In (A) the actual distribution of the 
virtual vector in 10 test sites across Europe is displayed against one model’s predictions which were developed with (B) a balanced 50:50 sample ratio 
and a sample size of 750 and (C) an unbalanced 40:60 sample ratio and a sample size of 1,100. Each map displays increasing probabilities of presence 
per raster cell, categorised into five classes using equal intervals. GADM Level 0 country boundaries were utilised (79).
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their samples into training and test subsets respectively, their estimate 
equates to 3,000 presence and absence points overall. Their sample 
ratio is closest to the 40:60 ratio considered in this study, but their 
estimates are nearly three times greater than our optimum sample size 
of 1,100–1,300. However, their models also performed better at 
smaller sample sizes. A sample size of 100 with their optimum ratio 
(first quartile = 0.894, median = 0.917) far exceeded our AUC 
thresholds for excellent performance (46), which differs from our 
findings. Since virtual vectors are a simplification of reality, estimates 
for the optimum sample size are expected to increase since real host 
and vector distributions have more complex responses to covariates 
(38). However, differing methodology is the most likely reason for the 
different estimates for the optimum sample size. Liu et  al. (46) 
determined the optimum sample size by identifying a point at which 
there was a significantly small increase in AUC and sensitivity began 
to decrease.

On the other hand, improvements in model performance at small 
sample sizes likely reflect different environmental preferences. 
Compared to generalised species, a sample is more likely to capture 
the environmental conditions associated with a specialised vector 
occupying a smaller environmental domain, even at smaller sample 
sizes. This would improve predictive accuracy (32, 44). The clustered 
distribution of a vector due to specific environmental preferences 
should not to be confused with geographical clusters resulting from 
oversampling an area (18). Furthermore, Liu et  al. (46) used a 
resolution of 100 m and model performance can also improve due to 
increased spatial accuracy, precise locations and greater delineation of 
habitats compared to our 1 km resolution (34, 36, 70).

Hendrickx et al. (18) used historical data for parasitic eggs in a 
host, as a proxy for VBD risk. They reported a minimum sample size 
of 1,516 (758 presence and absences each in the training subset), 
below which model performance rapidly deteriorated (18). The 
objectives to identify a minimum sample size differ from this study 
and thus, estimates for an optimum sample size would likely increase 
from 1,516, given that our findings suggested there was notable 
deterioration in model performance at a sample size of 100. Since their 
historical dataset was susceptible to geographical clustering and bias 
towards symptomatic cases (18), higher estimates are to be expected 
when predicting disease distribution in a host compared to the 
distribution of the virtual vector.

Considering the wider literature for RF models, our findings are 
more aligned with the estimates of 400–900 by Shiroyama et al. (45) 
and 592 by Tessarolo et al. (44). Both consider the number of presence 
and absences in the training subset. For balanced ratios, our estimates 
equate to 525–700 presence and absences in the training subset. 
However, both studies have differing methodologies. Tessarolo et al. 
(44) used historical datasets for 34 endemic terrestrial species and the 
estimates were reported for an ensemble of algorithms, which can 
perform better than a single algorithm (47, 71). Since Shiroyama et al. 
(45) predicted the distribution of a freshwater fish, the covariates and 
sampling methods are too disparate for reliable comparisons. 
Hanberry et al. (33) also reported an optimum sample size of 500 
presences in the training subset but these estimates were obtained 
with a 4:1 ratio of presences and pseudo-absences (equivalent to 
80:20), which was not considered in this study. Due to the scarcity of 
similar studies evaluating the effect of sample size on SDMs developed 
with RF, it was challenging to contextualise these findings with 
confidence due to differing model designs, data characteristics and 

species (Supplementary Tables 3, 4). While an extent of 10,000 km2 
was a somewhat arbitrary cut-off, future research could consider 
accounting for these methodological differences in a meta-analysis. 
However, this may be  a challenge without detailed, transparent 
methods reported in standardised protocols, such as ODMAP (48).

4.2 Poor model performance

Our findings indicate that sample sizes below 100 produced 
inaccurate models. Hanberry et al. (33) reported poor performance 
for models trained on fewer than 200 presence points, while 
Shiroyama et al. (45) noted a significant decrease in AUC below 100 
presence and absence points in the training subset. At these sample 
sizes, training subsets are unlikely to be representative of the vector’s 
actual distribution. Broad geographic coverage and a representative 
range of environmental conditions in which the vector is present are 
key factors for accurate SDMs (44). The partition ratio may be  a 
contributing factor since this determines the size of the training subset 
(which influences model accuracy) and the size of the test subset 
(which influences the risk of evaluation error). At partitioning, 70% 
of the dataset was assigned to the training subset and 30% to the test 
subset. This approach was taken to ensure there was sufficient data in 
the test subset to evaluate model performance at smaller sample sizes, 
reducing the risk of spurious results. This partitioning ratio has also 
been applied in other SDMs (72, 73). However, alternate approaches 
like k-fold partitioning may be more appropriate since this averages 
the results from several partitions and is less dependent on a single 
partition (68).

4.3 Performance by sample ratio

Between sample ratios, performance improved as the proportion 
of presence points increased. Other studies have reported similar 
findings (43), with balanced sample ratios producing the most 
accurate RF models (29, 47, 69). Poor model performance at small 
sample sizes was exacerbated for samples with a 20:80 ratio, as 
demonstrated by the large interquartile ranges which reflect varying 
performance between replicates (Supplementary Figure 2). RF can 
model complex, non-linear interactions between vector distribution 
and covariates, but becomes more susceptible to noise with less 
agreement between replicates at small sample sizes, particularly when 
the proportion of presence points decreases (29). Sample ratios with 
a greater proportion of absence points also performed better when 
evaluated by specificity, but this reflects bias towards the more 
prevalent class (presence or absence) on which the model was 
trained. Poor performance with unbalanced sample ratios is not 
restricted to RF, this is a well-known behaviour within machine 
learning, whereby models are sensitive to the majority class (presence 
or absence) (55).

Given the poor performance below a sample size of 100, 
particularly for unbalanced sample ratios, RF may not be suitable for 
modelling rare vectors. Maximum Entropy (MaxEnt) may be more 
appropriate since studies have reported reliable performance with this 
presence-background algorithm from sample sizes as low as three to 
300 (32, 36–38, 40, 42). Conversely, several studies have also 
considered corrective methods for RF, such as down-sampling, to 
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mitigate the effects of unbalanced sample ratios and improve model 
performance (55, 73). It is worth noting that the spatial presentation 
of model predictions (Figure 8; Supplementary Figures 4–9) showed 
indications of model overfitting with poor discrimination towards the 
southeast of the test site. While complex algorithms such as RF are 
prone to overfitting (44, 74), further research is warranted to 
determine if model accuracy at these smaller sample sizes and 
unbalanced ratios could be first improved by optimising model design.

4.4 Limitations

No model will ever be 100% accurate since SDMs are sensitive to 
data quality, assumptions and model design. SDMs are built on the 
principle that a vector has a specific environmental tolerance and 
therefore assumes that the abiotic covariates sufficiently describe its 
distribution in order to make predictions (27). During quality checks, 
an unexpected trend was observed: test sites 2, 5 and 9 frequently 
produced the least accurate models per sample size, while test sites 3, 
6 and 7 produced the most accurate models per sample size. There was 
no apparent correlation with the ROA or geographical clustering of 
the vector’s actual or sampled distribution. To be  ecologically 
appropriate, correlative SDMs depend on both the appropriate 
selection of covariates and samples which reflect the range of 
environmental conditions that the vector occupies (17, 44). For the 
former, if the selected covariates do not account for a species response 
to environmental gradients, model performance may deteriorate. The 
varied performance between test sites may be explained by different 
responses (abrupt versus smooth). Humidity and precipitation are two 
key climatic factors which can influence vector distribution (52), while 
land use is a key environmental variable (6, 52). These covariates were 
not included, which may merit further investigation to determine if 
their inclusion improves performance, but this was beyond the scope 
of this study. Our aim was to provide a general rule of thumb for the 
optimum sample size by grouping models across various test sites with 
differing habitat suitability and ROA. This approach ensures that any 
limitations in covariate selection were consistent across all 
sample sizes.

Climatic bias can reduce predictive accuracy if samples have 
restricted environmental variation and do not reflect the range of 
conditions that the vector inhabits. As such, Tessarolo et al. (44) argue 
that environmental coverage is more important than geographical 
coverage. Random sampling was among the least climatically biased 
designs when comparing seven sampling strategies (44). Although 
model performance varied little across the sampling strategie, biased 
sampling is expected to reduce accuracy to a greater extent for 
widespread, generalised species since these approaches are less likely 
to capture the range of environmental conditions that a vector 
inhabits, particularly at smaller sample sizes (44). While random 
sampling from a simulated vector with a fully known distribution 
should minimise this risk, future research should consider stratified 
random sampling along different environmental gradients. Random 
sampling minimises the risk of geographically clustered samples, but 
this is an idealised condition. For real vectors, not all locations are 
appropriate or accessible, and random sampling across large areas can 
be resource intensive. With a virtual vector, it is anticipated that our 
results would not differ significantly between stratified random 
sampling and random sampling. The influence of sampling strategy 
on model performance does constitute a separate research objective, 

but ensuring samples are both environmentally and geographically 
representative is an important consideration when applying our 
findings to real-world scenarios.

The optimum sample size was determined by thresholds for excellent 
model performance. While the five metrics are commonly used to 
evaluate SDMs, their thresholds can be subjective. Similar thresholds for 
PCC, sensitivity and specificity have been used in other studies (75, 76). 
However, Jiménez-Valverde et  al. (28) caution that values of 0.6 can 
be obtained for Cohen’s Kappa by under- or overpredicting by 40% for a 
species with an ROA of 50%. Our thresholds for Cohen’s Kappa were 
based on those proposed by Landis and Koch (66), but McHugh (59) 
advocates for a more stringent criteria, suggesting that values between 
0.60–0.79 actually represent moderate model performance, while values 
between 0.80–0.90 reflect strong model performance. This threshold for 
Cohen’s Kappa would impact our estimates since no model reached values 
between 0.80–0.90 for any sample size or ratio (Figure 7D). An alternative 
approach would involve calculating quartile deviations and determining 
the statistical significance of the differences between sample sizes (46). 
This approach would have also verified whether the point of diminishing 
returns observed between 1,500–2,000 and the model deterioration below 
a sample size of 100 truly reflected statistically marginal improvements in 
performance and a minimum sample size, respectively.

While emphasis was placed on thresholds for excellent model 
performance, reliable models may be developed with smaller sample 
sizes which meet the thresholds for moderate performance. Ultimately, 
the value of a model depends on the research objective and smaller 
sample sizes may still provide useful information if the intention is to 
explore areas with limited information on vector distribution or to 
prioritise field sampling of rare species (36, 42). To confirm the value 
of models at smaller sample sizes, future research should consider 
comparing the spatial distribution of incorrect predictions for vector 
distribution at smaller sample sizes to predictions developed with the 
optimum sample size. If inaccurate predictions are spread equally 
across the test site, rather than concentrated areas, models at smaller 
sample sizes would still provide useful information.

4.5 Potential impact

Model predictions act as a static risk map which can theoretically 
guide field sampling to locations with the highest probability of vector 
presence. In line with ECDC recommendations for SDMs, estimates 
for an optimum sample size provide a framework for strategic 
sampling, optimising the use of limited resources to both validate 
model predictions and improve the surveillance of vectors and their 
diseases (26). Our results can help researchers determine how many 
samples are needed for reliable models. Since abiotic variables are used 
to predict vector distribution, these results are most applicable to 
vectors that have strong associations with climatic and environmental 
factors. This may include established populations of both native and 
invasive vectors of significance to human health, animal health and 
food security, provided there are at least 375 presence and absence 
records each (for balanced ratios) in a test site.

Table 4 illustrates how the optimum sample size can guide field 
sampling, based on the expected probability of vector presence in a test 
site. However, caution is advised since confidence intervals have not been 
calculated for Table 4 which account for uncertainty and the sensitivity of 
sampling methods. The transferability of these findings to real vectors also 
warrants further investigation. Vector datasets are often collected without 
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standardised sampling protocols and reliably sampling absence data in the 
field is challenging (16). If less sensitive sampling methods are employed, 
it may be necessary to collect a greater number of field samples to achieve 
the optimum number of presence and absences required for modelling. 
Our results offer general guidance for vector sampling programmes, but 
additional factors such as funding, resource availability, and time 
constraints must also be considered. Since historical datasets may contain 
only presence records, and are susceptible to opportunistic sampling 
targeting areas with reported disease or easily accessible locations, such as 
roads (36, 77), our optimum sample size estimates will likely increase for 
real vectors. While RF is fairly robust to convenience samples, Kessler 
et  al. (78) caution against their use since model predictions for tick 
distributions were not sufficiently accurate for detailed decision making.

SDMs ultimately depend on high-quality data and as outlined in 
the introduction, field sampling is costly and labour-intensive, 
particularly when collecting reliable absence data (16). While 
sufficient and comprehensive records on vector distribution are 
essential, model predictions can subsequently reduce costs by 
identifying strategic locations for future vector sampling programmes. 
As proposed by Lippi et al. (51), SDMs can be considered within a 
cyclical and iterative workflow. The increasing availability of vector 
presence and absence samples helps validate existing models, improves 
their predictive accuracy, and generates new risk maps for vector 
distribution. This, in turn, facilitates informed action by decision-
makers and guides strategic sampling for new surveillance data.

5 Conclusion

We sought to evaluate the effect of sample size on model 
performance and to determine the optimum sample size for reliable 
Random Forest models which predict arthropod vector distribution. 
To the best of our knowledge, this is the first study which used a virtual 
vector and presence-absence data at this scale. A virtual vector 
overcomes limitations in data quality and confounding factors 
compared to field and historical datasets, facilitating evaluation with 
greater certainty. The optimum sample size estimates ranged from 
750–1,000 for balanced samples and increased to 1,100–1,300 for 
samples with a 40:60 ratio of presence and absence points. Samples 

with a 20:80 ratio consistently produced unreliable models. 
Considering that the ROA and proportion of presence points in a 
sample have a large influence on model performance (44), accounting 
for these factors across 10 different test sites and three sample ratios 
was beneficial. Failure to consider the combined effects of factors may 
result in misleading conclusions. Since machine learning models vary 
slightly each time they are run (49), researchers should consider 
replicating models for stacked predictions, particularly when working 
with smaller sample sizes. While the optimum sample size may vary 
with different models, species and data characteristics, further research 
may first seek to refine or lower these estimates through optimised 
model design before determining how the optimum sample size differs 
for real vectors. Due to difficulties reliably sampling absence data in the 
field, it may be worthwhile investigating the effect of sample size on 
ratios with a greater proportion of presence points.
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