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Bu�alo occupies a leading position as a major livestock commodity and is

the primary milk-producing animal in many countries like Italy, China, India,

Pakistan, Bangladesh, and Nepal. Bu�alo farming emphasizes the significance

of e�ective reproductive strategies. Among e�ective reproductive strategy,

artificial insemination has a significant influence on herd’s genetic progress.

Nonetheless, bu�aloes exhibit unique reproductive behavior, which complicates

the insemination process. These animals demonstrate inconsistent periods

(ranging from 6–48 h) of mounting acceptance. Therefore, timed artificial

insemination (TAI) has surfaced as a useful technique for advancing bu�alo

breeding initiatives and omits the need for heat detection. TAI enhances

reproductive management and genetic progress in bu�aloes by synchronizing

estrus and optimizing insemination timing. This review focuses on examining

bu�alo reproductive physiology, particularly emphasizing estrus synchronization

protocols, ovulation, and TAI. We also provide a brief description of the

factors influencing TAI success, such as hormonal treatments and environmental

conditions. This review underscores TAI’s importance identifies areas for

further research and development and reinforces its central role in sustainable

bu�alo farming.
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1 Introduction

Buffaloes are crucial dairy animals commonly found in warm regions. Over the past
37 years, their global population has notably grown, surpassing 205 million by 2025, 98%
of which are found in Asia, 0.7%−0.8% in Africa remarkably in Egypt, 1% and in South
America, and Europe 0.2% (1, 2). This short-day seasonal breeder animal shows increased
activity as the day length decreases (3). A noticeable factor controlled by melatonin
release, in addition to heat stress, is the impact of seasonal breeding patterns on buffalo
reproductive activity. However, among female buffaloes, younger animals, such heifers,
have a more uniform reproductive function, whereas older animals are more sensitive
to such photoperiodic alternance in reproductive efficiency (4). Any disruptions in the
reproductive organs that occur at the end of the good reproductive season, between the
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end of summer and the end of the following winter, and
until spring at latitudes above the equator, will actually cause
anaetrus in older animals (5). Although melatonin is released
all year long, the photoperiod determines how long it lasts,
which influences gonadotropin and steroidogenesis, which is a
seasonal breeding phenomena in buffaloes (6, 7). By activating
its receptors (MTNR1A and MTNR1B) and binding sites in
the HPG hypothalamic–pituitarygonadal (HPG) axis, melatonin
contributes to sexual development and the restoration of ovarian
functions. Melatonin enhances calcium ion influx to GnRH-
expressing neurons in GnRH secretion and controls the HPG axis
by varying the expression of the gonadotropin gene according to
the season (8). This indicates the origin of Buffalo domestication
in the Indus Valley (Moen-Jo-Daro) Civilization where calving was
synchronized with favorable climatic conditions and abundant food
resources marking the early stages of buffalo domestication (9–
11). Additionally, while being polyestrous, buffaloes’ reproductive
effectiveness varies greatly during the year. Buffaloes that give birth
during an unfavorable season might not continue ovarian activity
until the next advantageous season since buffalo cows show a clear
seasonal variation in showing estrus, conception rate, and calving
rate (12). When AI is applied outside of the breeding season, the
pregnancy rate is impacted by this seasonal reproductive rhythm.
The application of AI in buffaloes may increase if hormonal
therapies can mitigate some of the challenges associated with
seasonality and estrus detection (13). These animals have a unique
role in rural livestock farming, particularly in Asia, where their
productivity greatly affects the local economy (2, 14), necessitating
improvements in reproductive strategies to augment food security,
boost farmer income, and foster sustainable rural development
(15). Buffaloes add around 13% of the world’s milk production
(16), with a yearly growth rate exceeding 3.5%, outpacing cow milk
production, which has grown by 2.1% (17). India, Pakistan, China,
Nepal, and Egypt are the countries with the largest numbers of
dairy buffaloes. There are more dairy buffaloes than dairy cows in
Nepal and Pakistan (1). Despite buffaloes ability to consume lower-
quality food, withstand harsh environments, and resist certain
diseases, enhancing the reproductive efficiency of buffalo remains
a challenge (18). Silent heat is one of the challenging problems in
buffaloes which affects calving intervals due to the failure of the
heat detection (19). The efficiency artificial insemination programs
in buffalo are highly influenced by heat detection (17).

Artificial insemination is a widely practiced reproductive
technique that plays a crucial role in modern livestock breeding
programs (20, 21). By enabling the controlled breeding of animals,
this technology offers several benefits over natural mating, such
as genetic improvement, disease control, and efficient utilization
of superior sires (22, 23). In the 1930s, the introduction of AI in
cattle raised questions about the optimal timing of insemination
(24). Pioneering experiments focused on the ovulation window
and insemination timings in dairy cattle demonstrated that the
optimal artificial insemination timing is ∼12–15 h after the
onset of standing heat (25, 26). This groundbreaking discovery
established the basis for the AM-PM rule, proposing that a cow
detected in standing heat in the morning should undergo artificial
insemination in the late afternoon or evening, and conversely,
if detected in the evening, insemination should be performed in
the morning (27, 28). The AM-PM rule allows adequate time

for sperm capacitation and reaching the proper fertilization site
in the oviduct (29–31). Given the anatomical and physiological
similarities between cattle and water buffalo, AI methods adopted
from cattle protocols were applied to water buffalo without proper
consideration of ovulation timing (32, 33). The decline in the
pregnancy rate due to these practices has decreased the faith of
farmers in artificial insemination andmodern assisted reproductive
technologies (34). Paradoxically, it remains unclear whether the
AM-PM rule applies to water buffalo, as this aspect has not yet
been systematically investigated (35). Therefore, various protocols
to facilitate fixed time artificial insemination (FTAI) have been
established to synchronize follicular waves and ovulation within a
predetermined timeframe (7, 36).

Extensive research and development concerning estrus and
ovulation synchronization in cattle and buffaloes has been
conducted, leveraging applications of FTAI (37–39). While
extensively applied in cattle breeding its application in buffalo
remains limited, particularly in Asia. Factors impacting its
efficiency encompass heat stress, heat detection, semen quality,
technician expertise, and timing of insemination (34, 40). Brazil’s
extensive studies on ovulation synchronization regarding FTAI
in buffaloes reflect attempts to address estrus detection challenge
(41). FTAI presents advantages by simplifying the management
and synchronizing estrus cycles, promoting TAI for precise
insemination timing, enhancing conception rates, and overall
reproductive efficiency (41–43). Recent advancements allowing
precise control of ovulation timing mark a substantial leap in
improving buffalo reproductive efficiency (12). AI techniques
adapted to each species will be necessary to maximize the
reproductive physiology of buffalo and ensure their continued
agricultural growth in the future (44). Thus, this review study
aims to expand our understanding of the reproductive physiology
of buffaloes, discuss the various synchronization protocols and
explore the factors influencing FTAI success in buffaloes.

2 Reproductive physiology of
bu�aloes

Artificial Insemination (AI) has been made feasible due
to advancements in our understanding of the reproductive
physiology specific to buffaloes (45). Understanding the
reproductive physiology of buffaloes is crucial for implementing
effective breeding strategies, including FTAI (46, 47). Water
buffaloes, scientifically known as Bubalus bubalis, have distinctive
reproductive characteristics that play a significant role in their
unique reproductive physiology as outlined in Table 1 (48). The
fertility performance and reproductive efficiency of buffaloes in
tropical conditions are distinctly influenced by the time of year
(49). Buffalo reproduction is affected by several inherent challenges,
as illustrated in Table 2 (50). Buffaloes show same advantages of the
FTAI and ovulation synchronization already investigated in cattle
(51). However, the buffaloes exhibit unique reproductive behavior,
the insemination process (39). These animals do not display any
homosexual behavior during heat, ensuring the necessity of teaser
bull use (45, 52). Likewise, these animals demonstrate inconsistent
periods (ranging from 6–48 h) of mounting acceptance (53).
Since, AI technology in buffalo is applied at the end of estrus
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TABLE 1 Overview of bu�alo reproductive characteristics.

Aspect Description References

Estrus cycle length 21–23 days (254)

Estrous duration 10–27 h (39)

Estrus signs Less noticeable compared to cattle;
signs include increased restlessness,
mucous discharge, and mounting
behavior

(81)

Ovulation Occurs 24–48 h after the end of estrus (254)

Gestation period 300 days (49)

Age at first calving 46–47 months in different breeds (63)

Puberty 10–30 months among all breeds (48, 103)

Breeding period Seasonal polyestrous (255)

Reproductive
longevity

15 years higher than cattle (256)

TABLE 2 Inherent challenges a�ecting bu�alo reproduction.

Challenges
in bu�alo
reproduction

Description References

Delayed maturity Buffaloes exhibit a slower rate of
reaching sexual maturity compared to
some other livestock species

(54)

Silent estrus Particularly prominent during
summer months, buffaloes do not
exhibit clear behavioral signs of estrus,
making it challenging to detect their
fertile period

(257)

Extended
postpartum period

Buffaloes have a prolonged interval
between calving and returning to
estrus, impacting the calving interval
and reproductive efficiency

(258)

Ovarian
quiescence

Periods of reduced ovarian activity,
leading to irregular estrous cycles and
decreased fertility

(259)

High incidence of
dystocia

Buffaloes commonly experience
difficult or prolonged labor, which can
negatively impact both the dam and
calf

(260)

Lower conception
rates

Buffaloes often exhibit lower rates of
successful conception compared to
some other domesticated animals

(259)

this makes its handling and utilization more challenging (41).
The implementation of assisted reproductive technologies has
necessitated significant developmental efforts due to the inherent
peculiarities in the reproductive physiology of buffaloes (54).
These techniques, which have already been established in other
species, require adaptation and standardization to suit the unique
reproductive characteristics of buffaloes (55, 56).

2.1 Estrous cycle

The estrous cycle encompasses the time between the end of
one estrus and the onset of the next estrus (57). Water buffaloes

are categorized as short-day seasonal polyestrous animals (58–
60), although, under some circumstances, they can conceive all
year long (61). As in the equator zone, these animals may exhibit
estrous cycles throughout the year if the food supply is sufficient
to sustain reproductive function (62). No significant difference has
been investigated in estrous cycle length among Nilli, Murrah,
local, and Crossbreeds (63). The same estrous cycle length of 21.25
± 2.36 days was observed in Marathwada breed of buffalo (64).
Estrous duration of 17–29 h. in local Nili Ravi andMurrah was seen
significantly higher than the others (63). Notably, buffaloes become
more seasonally polyestrous as they move farther from the equator
(65, 66). The estrous cycle of buffaloes consists of two phases: the
progesterone phase, also called the luteal phase, and the estrogenic
phase, also called the follicular phase. There are two distinct stages
in the progesterone dominant (luteal phase) i.e., metestrus and
diestrus, and proestrus and estrus stages in the follicular phase as
illustrated in Figure 1 (67, 68). The estrous cycle typically spans
16–33 days, with the maximum concentration occurring around
days 21–24 (69), with estrus duration lasting around 12–18 h
(70). Ovulation typically occurs almost 30 h after the onset of
estrus, with variations ranging from 18 to 44 h (51). In contrast
to cows, water buffaloes can experience heat for 8–32 h, with
fewer heat symptoms (32). Buffalo follicular development follows
a wave-like pattern, encompassing stages such as wave emergence
(recruitment), growth, selection, dominance, and atresia in each
cycle (28). The essential aspects of follicular development align
with those observed in cattle (55, 71). Buffalo experience more
follicular atresia compared to cattle (72). Preceding an ovulatory
wave, it is common to observe 1 or 2 nonovulatory follicular waves
(73, 74). Buffalo cows usually experience two to three follicular
waves, with buffalo heifers commonly undergoing two-wave cycles
(75, 76). Research from India (77), Brazil (78), and Pakistan (79)
have indicated that greater populations of buffalo experience two
follicular wave activity during the estrous cycle. The two follicular
wave cycles are slightly shorter, around 21 days, compared to
three-wave cycles which last about 24 days (39). In the 2nd wave
dominant follicle’s average size is comparable to that in the first
wave i.e., 15 mm (80).

2.2 Estrous detection

Silent heat/estrus stands out as the primary reason contributing
significantly to the diminished reproductive efficiency observed
in buffaloes (81, 82). A rise in gonadotropins shortly before
and during the pre-ovulatory surge of estradiol is what causes
buffalo’s silent heat (83). This happens because progesterone and
estradiol concentrations drop during the estrus cycle. Progesterone
concentrations therefore lower the peak levels of estradiol around
estrus (84). Precise estrus detection is essential for efficient
reproductive management, particularly during hand-mating with
selected sires (85). Nocturnal behavior is one factor linked to the
reduced appearance of estrus signals (86). Uncommon homosexual
behavior, varying estrus duration (5–27 h), and unpredictable
ovulation timing in buffaloes (24–48 h) following the heat onset
are also factors affecting accurate heat detection in buffaloes
(61). Traditional estrus indicators in cattle, such as swelling and
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FIGURE 1

Sequential stages of the estrous cycle.

redness of the vulval mucosa, vaginal mucus secretions, and
repeated urination, are unreliable for water buffalo (69, 87).
Behavioral manifestations of estrus, such as tail raising, bellowing,
and restlessness, are observed in only a limited proportion of
buffaloes and are commonly displayed during the night. Identifying
precise methods for estrus detection is essential for successful
re-insemination of animals that have returned to estrus (88,
89). A few techniques designed for FTAI have been developed
to enhance water buffalo reproduction and eliminate the need
for heat detection (90). These hormone therapies enable the
regulation of luteal and follicular dynamics, estrous and ovulation
(synchronization), most critically avoidance of the challenging
estrus detection in this species (91–93).

2.3 Ovulation

The ovulation process in mammals, including buffaloes, is
regulated via a complex interplay of hormones (28, 94). Compared
to dairy cattle, the pre-ovulatory size of follicles in buffaloes tends
to be smaller (78, 95). This is owing to lower estradiol although
there may changes in the metabolism of estradiol from circulation
between both the buffaloes and cattle (52). The dominant follicle’s
granulosa cells secrete inhibin, which suppresses the synthesis of
follicle-stimulating hormone (FSH). Through inhibin release, the
maturation of the dominant follicle and the consequent generation
of estrogen are essential for controlling surges in luteinizing
hormone (LH). An LH surge required for ovulation is caused by
the dominant follicle’s growing production of estradiol, which has a
positive feedback effect on the pituitary and hypothalamus (96, 97).
Investigations into the ovulatory responses of buffaloes after GnRH
treatment in FTAI protocol have yielded valuable insights into their
reproductive dynamics. It was investigated that the ovulation rate
after the first GnRH shot was 60.6%. Animals ovulating after the
first GnRH and ovulation treatment displayed larger dominant
follicles (0.94 ± 0.17 vs. 0.67 ± 0.24 cm; P < 0.01) at the time of
treatment compared to non-ovulating animals. Progesterone (P4)

level during the initial GnRH administration did not influence
ovulation rate (P > 0.05) (41, 98).

2.4 Puberty

Puberty is the stage during which reproductive organs become
functionally developed, and animals gain the ability to release
gametes (99, 100). For females, puberty is characterized by the
age at which they experience their initial estrus, subsequently
leading to ovulation (101). Buffaloes typically at 55%−60% of
adult body weight (250–400 kg) attain puberty (102, 103). The
age of puberty onset varies significantly, spanning from 18 to
46 months (18, 104). At favorable conditions, the riverine type
attains puberty at the age of 15–18, and swamp buffalo at 21–24
months (103, 105). Nutrition, genotype, management, and climate
contribute to this variation (106). Animals born in spring attain
puberty at 380 kg body weight and 14 months of age (107). In
a study of 2020 on 20 animals, it was found that there was a
difference in the biochemical profile of delayed puberty animals
than normal pubertal heifers (108). During an investigation on
the effect of season on age at puberty, it was observed that
combined climate factors like temperature and rainfall affected
reproductive activity significantly but individual factor effect was
not significant (109). Buffalo of India attains puberty at the age
of 16 and 40 months but the average time for puberty is 2.5
years according to a report of the Central Institute for Research
on Buffalo (110). All breeds exhibit variations in puberty from 10
to 36 months when nutrition and management factors are taken
into account (48). Attaining puberty is more closely associated
with body weight rather than age (101). Delayed puberty not
only defers conception but also diminishes reproductive efficiency,
extended calving intervals, and diminished manifestation of estrus
consequently extending the unproductive phase (111). Bovine
gonadotropin releasing factor significantly affected the buffalo’s
puberty onset, plasma progesterone concentration, and body
weight (112).
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2.5 Sexed semen’s impact on bu�alo
reproductive dynamics

The use of sexed semen in buffaloes has significant implications
for reproductive dynamics, particularly in enhancing calf sex ratios
and improving genetic quality. Compared to cattle bulls, buffalo
bulls have only been examined and chosen in the last few decades
to furnish semen for artificial insemination. As a matter of fact,
the latter have been the first to be the focus of intense selection,
with the best bulls being chosen for genetic enhancement and then
chosen for their semen quality and freezability. There is still a lot
of variation in semen quality, even with the efforts made in recent
decades to choose superior buffalo bulls in order to improve the
annual genetic merit. If inferior quality semen has been found
and shown to be unsuitable for freezing/thawing processing and
AI, this variability may significantly impact the use of the best
bulls. For instance, buffalo bulls’ semen may be more vulnerable
to oxidative stress because of increased lipid peroxidation, which
is most likely caused by decreased antioxidant enzyme activity
(6, 113). In order to ascertain whether pregnanciesmay be impacted
in terms of early embryonic death and whether a season effect was
anticipated between the transitional and high breeding seasons,
the combined use of sexed semen and AI in pluriparous buffaloes
was also investigated (114). Once more, it was determined in that
follow-up study that the pregnancy rate is comparable for both
unsorted and sorted semen. Furthermore, as compared to the
opposite unsexed semen, the use of sexed semen did not change
progesterone production or increase embryonic mortality.

The use of sexed semen for conception varied from 35 to
60%, depending on the dam’s age and management, according
to a review by Thakur and fellows (115). According to certain
evaluations, the degree of conception varies between 30 and 80
percent among buffaloes with synchronized estrus and AI from
many places and with varying ages (116). According to another
study showed that employing sexed semen for buffaloes had an
average conception rate of 42.7%, demonstrating its efficacy across
breeds and parities (117). Praharani et al. after using sexed semen
reported a mean conception rate of 50.7% and a calving rate
of 46.2%, with variations based on agroecosystems (118). For
genetic modification, sexed semen is essential because it enables the
targeted production of female calves, which are frequently more
profitable in the dairy industry (119). In addition to increasing
buffalo productivity, the use of sexed semen safeguards native
breeds against extinction due to shifting climates (120). Despite the
benefits of sexed semen for genetic enhancement and reproductive
management, issues including reduced blastocyst and cleavage rates
in comparison to unsexed semen continue to be a worry (119). This
emphasizes how further research is required to maximize its use in
buffalo breeding efforts.

2.6 Role of hormones in FTAI

Hormones are biochemical substances produced by the
endocrine glands that stimulate other organs of the body to produce
chemical secretions (121, 122). These are essential regulators of
buffalo reproductive functions (49). Hormonal treatments have

been developed to manage luteal and follicular processes, creating
opportunities for synchronizing follicle growth and ovulation,
a vital aspect for timed artificial insemination during breeding
and nonbreeding seasons (78, 123). Here we discuss the key
hormones involved.

2.6.1 Gonadotropin-releasing-hormone (GnRH)
GnRH is synthesized in the hypothalamus of the brain and

induces the secretion of follicle-stimulating hormone (FSH) and
luteinizing hormone (LH) from the anterior pituitary gland (124).
It acts as a master regulator of reproductive hormones (125,
126). Injecting GnRH during follicular phase of the estrous cycle
causes an LH surge, resulting in the ovulation of follicles larger
than 9.0mm (127) or promoting nonviable follicle luteinization,
a few days later followed by the emergence of a new wave
of follicle growth (128, 129). The simultaneous presence of a
mature dominant follicle and corpus luteum at the time of GnRH
injection in bovines has been associated with improved ovulation,
synchronization, and conception rates (110, 130). Therefore, this
hormone improves the conception rate as well as pregnancy rate
when used in timed artificial insemination (110, 131).

2.6.2 Follicle stimulating hormone (FSH)
FSH contributes to the growth and development of ovarian

follicles (132, 133). This hormone acts as a green line for the follicles
to recruit and selection (134, 135). FSH stimulates multiple follicles,
typically only one becomes dominant (39). Most of the recruited
follicles undergo atresia (136). Follicles that do not undergo atresia
get selected and become dominant (137, 138). Peak FSH coincides
with LH, averaging around 25 ng/ml (139). Following simultaneous
pre-ovulatory surges in the gonadotropins, LH levels experience
a sharp decline, while FSH level drops gradually (71). Recent
studies have confirmed that in buffaloes, a transient peak of follicle-
stimulating hormone in the blood initiates at every follicular wave
(52). Weather can also influence peripheral FSH concentrations,
with higher FSH/LH ratios during peak breeding seasons (140,
141). During the peak breeding season, the FSH/LH ratio was
elevated compared to that in the intermediate and low breeding
months (142). Nonetheless, the highest concentration of FSH on
the day of estrus remained consistent across both hotter and cooler
months (143, 144).

2.6.3 Luteinizing hormone (LH)
LH plays a pivotal role in triggering ovulation in buffaloes (52).

After the recruitment of follicles, this hormone is responsible for
keeping follicles growing (145). LH surge leads to the release of the
oocyte from the dominant follicle. Preovulatory surges in LH have
been detected to be similar to those in cattle (146). Peripheral LH
levels remain at basal levels throughout the reproductive cycle until
the day of estrus, at which point a pre-ovulatory LH surge takes
place (71). The period between LH surge and estrus onset is ∼8–
12 h (45, 147–149). Both of these hormones i.e., FSH and LH are
under the control of GnRH which is synthesized and released by
the hypothalamus (150).
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2.6.4 Progesterone
Following ovulation, the corpus luteum forms on the ovary

and acts as an endocrine gland to secrete progesterone (12,
151). Progesterone prepares the uterus for pregnancy, creating
an environment conducive to embryonic development (152).
Suboptimal nutrition and high environmental temperatures
can lead to extended periods of non-breeding (anestrus) in
buffaloes (145). Monitoring progesterone metabolites in feces has
been shown to effectively reflect corpus luteum functionality,
correlating well with blood progesterone levels (153). Additionally,
progesterone aids in transporting oocytes in the oviduct and
supports early pregnancy, working in harmony with estrogens to
stimulate mammary gland tissue growth (154).

2.6.5 Estradiol 17β (E2)
Estrogens, including estradiol 17β (E2), influence the

reproductive behavior of females (155). Estrogen is produced
by the ovarian follicles and affects the central nervous system,
leading to estrus behavior (156). Buffalo plasma E2 profiles
resemble those of cattle cows with the highest concentrations
before and during preovulatory gonadotropin surges followed by
declining levels around the next days of the reproductive cycle
(157). In buffalo, the E2 peak precedes the LH peak by a day
(158, 159). Weather can influence plasma E2 concentrations, with
lower concentrations in hot months compared to cooler months
(142, 160). Decreased peak E2 values around estrus, along with
lowered P4 concentrations, contribute to a higher occurrence of
silent estrus in summer (129, 161). These hormones collaboratively
regulate buffalo ovarian follicular growth, ovulation, fertilization,
and pregnancy timing.

2.6.6 Prostaglandin F2 alpha (PGF2-alpha)
The large and small luteal cells, two steroidogenic cell types

that originate from ruptured follicular granulosa and thecal
cell, respectively, make up the mature corpus luteum (162).
Prostaglandin F2α (PGF2α) receptors on these large and tiny luteal
cells can cause luteal regression when PGF2α binds to them. The
luteal tissue undergoes structural alterations after the about 12-h
functional period of luteolysis in buffalo, which is reflected in the
blood’s decreasing progesterone levels (163). In the presence of a
responsive CL, which occurs between days 5 and 7 of the estrous
cycle in heifers and days 7 to 17 in buffalo cows, prostaglandin
F2 alpha and its synthetic analogs efficiently trigger luteolysis
(164). Because cows with developed follicles enter estrus earlier
than those with immature follicles at the time of treatment, the
duration until estrus induction depends on the state of follicle
development at the time of PGF2α administration. Procedures
for two-dose PGF2α were created to guarantee the presence of
responding CL (28). Additionally, PGF2α can shorten the voluntary
waiting period, increasing total reproductive efficiency. Fallopian
tube function is significantly mediated locally by prostaglandins.
They participate in ovulation, fertilization, and the transportation
of oocytes and embryos (165). It has been demonstrated earlier
that PGF2α at 10µg/mlmarkedly increased Caspase 3 expression at
72 h of culture in comparison to other dosages at 24 and 48 h (166).

3 Estrus synchronization

Estrous synchronization is the process of bringing a group
of female animals into heat at the same time (167, 168). Estrous
synchronization is crucial for coordinating the reproductive
processes of multiple buffaloes within a herd (39). This can be
achieved by shortening or extending the luteal (progesterone
dominant) phase of the reproductive cycle (67, 169). This
is accomplished by regulating the luteal phase through
the use of progesterone analogs or prostaglandins (170) or
managing follicular ovulation and development utilizing diverse
combinations of progesterone, prostaglandins, hCG, eCG, GnRH,
and estradiol (171). Numerous modern synchronization programs
for buffalo have emerged, drawing from research primarily
conducted in cattle (35). ES protocols in Buffalo have achieved
partial success (172). However, a significant distinction between
the buffalo and cattle is that buffaloes experience a pronounced
reduction in breeding activity around the hot months of the
year, resulting in reduced cyclic ovarian activity (101). This
synchronization ensures that a significant number of females
are in the desired reproductive stage simultaneously, allowing
for efficient insemination procedures and increasing the chances
of calving rate and conception rate (173). Instead of relying on
visual estrus detection, which can be a significant challenge in
buffalo cows, synchronization allows for planned and timely AI,
minimizing missed opportunities for conception (174). Hormonal
treatments enable the regulation of follicle dynamics and luteal
cell functions, estrus, ovulation synchronization, and notably,
alleviate the challenging task of estrus detection in this species
(33, 35, 45, 170).

4 Fixed time artificial insemination

Fixed time Artificial Insemination is characterized as the
process of performing AI at a programmed time following
the synchronization of ovulation (175). It’s a technology that
facilitates AI without detection of heat (33). Understanding the
ovarian follicular dynamics, as investigated by ultrasonography,
advancements in understanding the hormonal profiles and
endocrine control during the reproductive cycle have facilitated
the commercial application of FTAI in buffalo population (41,
176). Typically, batches of animals are treated simultaneously
with the FTAI according to a prearranged plan or schedule.
It essentially means that you can easily determine how many
animals to inseminate and when (season, month, and day) is the
best time to do it (33). By following ovulation synchronization
hormonal protocols, FTAI is made possible (177). This method
eliminates the need for detecting estrus and enables breeders to
enhance reproductive management through accurate insemination
timing (178). FTAI involves several essential components and
steps, including estrus synchronization, hormonal treatments, and
meticulous insemination timing. Diverse protocols have been
devised and applied in buffalo breeding to boost the success (35,
92). These protocols typically employ hormones like progesterone,
GnRH, and prostaglandin to manipulate the estrous cycle and
prompt ovulation at predetermined times (179–183). The critical
interval between standing estrus and ovulation, which is crucial
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FIGURE 2

Single-shot treatment with PGF2α in the presence of an intact corpus luteum.

for artificial insemination, was found to be ∼30 h in buffaloes
(51, 184). The well-knownAM-PM rule of insemination under field
conditions, formerly developed for cattle has been widely applied to
buffaloes (25). According to this, buffaloes have to be inseminated
12–15 h after detecting standing estrus (184, 185). However, there
is a commonmisconception that the onset of heat signs is mistaken
for the start of standing estrus, leading to early insemination. This
premature insemination might reduce fertility because there’s an 8
to 10-h gap between heat signs and actual standing estrus (186).
To optimize fertility, buffalo cows should go through insemination
12 h after identifying standing estrus (usually done by observing
teaser/bull behavior) otherwise 18–24 h after the heat signs (187).
The presence of mucus during artificial insemination serves as an
indicator for fertility and the intensity of natural estrus (188, 189).
FTAI effectiveness can be enhanced by using ovsynch protocol in
cyclic buffaloes during their breeding season and for off breeding
season progesterone device with eCG+ GnRH/hCG can be used to
enhance FTAI efficacy (41).

4.1 Fixed-TAI protocols

Numerous protocols based on the use of hormones that can act
at different points in the hypothalamic-pituitary-ovarian axis have
been developed in buffalo to control the estrous cycle and, in some
cases, the timing of ovulation (45). The protocols can be classified as
heat detection artificial insemination protocols (HDAI) are only PG
based and P4 based protocols GnRH based protocols if combined
with those protocols are categorized as FTAI protocols.

4.1.1 Prostaglandin-based protocols
This protocol shortens the luteal phase (190, 191).

Prostaglandin (PGF2α) is administered to induce luteolysis
(regression of the corpus luteum) in non-pregnant buffaloes
(192, 193). In buffalo cows, the PGF2alpha effect is comparable
to that studied in cattle (192, 194). Much like the approaches

applied in cattle, buffaloes have been subjected to prostaglandin
administration, either through a single injection (referred to
the one-shot method also known as single shot) or through
two injections apart by 11–14 days (195, 196). According to the
single-shot method (Figure 2), only animals with a functional
CL (5–17 days) of the estrous cycle can receive prostaglandin
treatment (67). Research in cattle demonstrated that a single
shot PGF2α, administered during an active corpus luteum led to
estrus return in 2–3 days (39). In buffaloes, a single injection of
PGF2α yielded a response alike to that observed in cattle (164).
In the two-shot method, two doses of PGF2α are administered
11 days apart (Figure 3) allowing for estrus synchronization in
buffaloes regardless of their specific ovarian status (195). The first
injection initiates luteolysis, and the second injection ensures
complete regression of the corpus luteum (197). Following the
second PGF2α injection, AI is usually performed 48 to 72 h later, as
ovulation is expected to occur during this timeframe (82).

4.1.2 Progesterone-based protocols
This protocol lengthens the luteal phase (198). Progesterone-

based treatment is used to synchronize and control the estrous
cycle in buffaloes (Figure 4). One common protocol involves
inserting an intravaginal progesterone-releasing device (CIDR)
into the reproductive tract for a specific duration (e.g., 10–12
days) (199). It acts as an artificial corpus luteum and mimics
the progesterone secretion. When it is removed after 10–12 days,
the animal comes into heat (199). If at the time when CIDR is
removed, an injection of PGF2α is also administered the animal
comes into heat more quickly due to induced luteolysis, followed
by AI within a specific timeframe, considering the expected timing
of ovulation (143).

4.1.3 Select synch and co synch GnRH-based
protocol

The initial shot of gonadotrophin-releasing hormone
(GnRH) prompts ovulation in cyclic females (110),
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FIGURE 3

Double shot treatment of PGF2α.

FIGURE 4

Controlled internal drug release (CIDR) progesterone-based synchronization.

while the following injection of PGF2a facilitates the
regression of the corpus luteum, leading to decreased
progesterone levels (200). The second shot of GnRH
injection facilitates the ovulation process from dominant
follicle, which was primed by the initial GnRH treatment
(67). This is illustrated in Figure 5 as well. The Co
synch protocol is similar to this Ovsynch protocol except
that the AI is performed at the 2nd GnRH injection
(146, 201).

4.1.4 Ovsynch protocols
This protocol aims to synchronize ovulation in buffaloes

employing GnRH and PGF2α combination (Figure 6). For the

FTAI in water buffaloes, this approach has been adopted and
is now the most widely used protocol, with multiple published
studies supporting its use (33, 182, 202). Firstly, GnRH is
administered to induce ovulation of selected dominant follicles.
Then PGF2α is injected 7 days later to luteolysis and synchronize
follicular wave emergence. A subsequent GnRH injection 48 h
after PGF2α administration synchronized ovulation of the newly
emerged dominant follicle. AI is performed at a specific time
following the second GnRH injection when ovulation is expected
(89, 203, 204). Table 3 presents the efficiency of this protocol
in the implementation of AI without heat detection in different
breeds of buffalo either riverine or swamp in various countries
(205–207). The effectiveness of the treatment in buffaloes is
predominantly influenced by the breeding period (38). Baruselli
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FIGURE 5

GnRH based protocol (select synch).

FIGURE 6

GnRH based treatment (ovsynch).

(65), employing the Ovsynch protocol, demonstrated a conception
rate of 48.8% in buffalo cows around the breeding season and
6.9% in those inseminated during the non-breeding period. More
reports utilizing the Ovsynch breeding protocol reported varying
conception rates at artificial insemination varying from 56.5%
during the breeding season (208) to 36.0%−42.5% during the
seasonal anestrus to transition period (209, 210). The variation
may be due to a greater proportion of non-cyclic animals
stemming from the suboptimal activity of the hypothalamic-
pituitary-gonadal axis occurring in buffalo during spring-summer
(211). Indeed, studies indicate a better conception rate in
cyclic compared to non-cyclic animals (212–214). According
to the Ovsynch-FTAI protocol, 78%−90% of buffaloes exhibit
synchronized ovulation, and 33%−60% of them get pregnant
(65, 205, 209). Because of the substantial embryonic mortality

(20%−40%) (215, 216) and anestrus (217) during the non-breeding
season, using Ovsynch-FTAI in buffalo during these transitional
periods results in a much lower pregnancy rate. When comparing
pluriparous buffalo to primiparous buffalo, a greater pregnancy
rate is often attained (65). Because of the low ovulatory
response to first GnRH and unsynchronized development of
new follicular wave Ovsynch-FTAI is not recommended in
heifers (45).

4.1.5 Double-Ovsynch protocols
Double-Ovsynch protocols involve two rounds of the Ovsynch

protocol to improve synchronization and conception rates (89,
218). The FTAI is performed at a precisely scheduled time
following the second GnRH of the second Ovsynch sequence
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TABLE 3 Ovsynch protocol for applying FTAI in bu�aloes across di�erent

countries.

Country Season/
reproductive
status

Conception
rate (%)

References

Bulgaria Low breeding season 38.8 (261)

Brazil Breeding period 48.7 (65)

Non-breeding period 6.9

Brazil Breeding period/season 56.5 (208)

Romania Breeding period/season 35–56 (183)

Nepal Breeding period/season 64 (262)

Venezuela Breeding period/season 35.0 (263)

Italy Low breeding season 36.0–57.0 (209)

Nepal Breeding period/season 46 (264)

Italy Low breeding season 43.3 (210)

Italy Cyclic 35.7 (212)

Non-cyclic 4.7

Bangladesh Cyclic 28.0–44.4 (204)

Bulgaria Breeding season 35.0 (265)

Egypt Cyclic 18.0 (214)

Non-cyclic 0.0

Egypt Cyclic 60.0 (213)

Non-cyclic 35.7

India Cyclic 33.3 (205)

India Low breeding season 58.1 (266)

India Acyclic 23.1 (202)

Pakistan Breeding season 36.3 (206)

Pakistan Breeding season 47.0 (267)

Thailand Breeding season 51.4 (207)

Egypt Cyclic 59.6- 62.5 (268)

as illustrated in Figure 7 (204, 219). Incorporating GnRH into
a pre-synchronization strategy, as implemented in protocols
like Ovsynch1, enhances conception rates by targeting the
anovular state often observed in cows prior to starting the
main Ovsynch protocol (220). The Double Ovsynch protocol
resulted in a notably higher conception rate among primiparous
cows, achieving 44%, compared to 31% in multiparous cows.
This demonstrates the effectiveness of the protocol, particularly
in younger, first-time calving cows (221). This protocol has
proven effective as a resynchronization protocol, achieving
higher conception rates compared to the standard Ovsynch
(39% vs. 30%) in cattle. In acyclic heifers and buffaloes
a higher conception rate of 83.33% was investigated after
using double Ovsynch protocol in Indian Gujrat (222). This
effectiveness hinges on having sufficient time to complete the
entire protocol without excessively increasing the number of days
open (223).

4.2 Factors a�ecting FTAI in bu�aloes

Timed Artificial Insemination in buffaloes relies on a complex
interplay of factors to determine FTAI success. This reproductive
technique involves synchronization of estrus, precise insemination,
and favorable environmental and health conditions for the
buffalo. The efficacy of FTAI is influenced by several key factors
that encompass hormonal synchronization protocols, the skill
of the inseminator, the reproductive health of the buffalo, and
environmental elements such as nutrition and stress levels. A
thorough understanding and management of these factors are
critical in optimizing the success rates of FTAI in buffalo breeding
programs. There are several key factors that can influence its
success in buffaloes.

4.2.1 Estrous synchronization protocols
Proper timing and administration of hormonal

protocols/interventions to synchronize estrus and ovulation
increase the likelihood of inseminating buffaloes during their
fertile period (224). Estrous synchronization is pivotal in timed
artificial insemination, aligning the reproductive cycle of buffaloes
for optimal conception (225, 226). Hormonal protocols regulate
estrus, ensuring the female buffaloes are at a prime stage for
successful insemination. Proper timing and administration of
hormones are crucial for synchronization, enhancing the chances
of successful breeding (39). How the estrous synchronization
protocol is a major influencing factor in FTAI and has yielded
varying conception rates is summarized in Table 4.

4.2.2 Reproductive management
Good reproductive management practices, including proper

nutrition, health management, and regular monitoring of estrus
behavior, are essential for FTAI success (227, 228). Body condition
score (BCS) has an association with productive pregnancy
especially during the poor breeding season (229). Farmers need to
be aware about such buffaloes exhibiting a low BCSmay not exhibit
positive responses to various protocols (230). Some authors believe
that body condition influence the ovarian cycle of bovine family
directly and found an upsurge in the reproductive ovarian cycle of
bovine, corresponding to an improvement in the body condition
(41, 231). It is advisable to promote efforts aimed at enhancing the
nutritional status of the animals ensuring optimal body condition
and addressing any reproductive disorders or health issues that can
improve the chances of successful AI (173, 232).

4.2.3 Semen quality, AI technique, and genetic
factors

The quality of the semen used for FTAI significantly impacts
the conception rates (233, 234). Using high-quality semen from
genetically superior bulls with good fertility is crucial for
maximizing the chances of successful AI in buffaloes (34, 235). An
increase in the conception rate up to (63%) using FTAI protocol in
Romanian buffaloes was observed by using sexed semen containing
2 million X-chromosome bearing sperm (183). The proficiency and
skill of the inseminator in performing AI techniques are crucial for
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FIGURE 7

GnRH based treatment (Double Ovsynch).

TABLE 4 Comparison of conception rates across di�erent synchronization protocols in female bu�aloes.

Protocol Season Breed Conception rate % References

1. Double synch: Day treatment start i.e., 0: PGF2α injected, Day-2: GnRH, Day 9:
PGF2alpha, Day-11: GnRH (TAI after 16 and 24 h after GnRH)

Breeding Murrah 60 (269)

2. Estradiol+ CIDR: Day 0: E2+CIDR for 4 days, Day 9: CIDR was removed and
PGF2alpha was injected. Day 11: GnRH (AI after 12 h), Day-12: 2nd time AI

Breeding Murrah 48 (270)

3. Modified Co-synch: Day treatment start 0: GnRH, Day 3: PMSG, Day7: PGF2 α,
Day-9: hCG/TAI

Non-breeding Murrah 53.8 (271)

4. Modified Co-synch: Day protocol start- 0: GnRH+ CIDR, Day-3: PMSG, Day-7:
PGF2alpha, Day-9: hCG/TAI

Non-breeding Murrah 33.8 (271)

5. GPGMH (modified Ovsynch): Day-0: GnRH, Day 7: PGF2alpha, Day-9: 2nd time
GnRH+mifepristone, Day-10: AI and on Day 15: hCG

Breeding Crossbreed 47.1 (7)

6. Estradiol benzoate+ CIDR: Day 0: Estradiol benzoate, Day 9: P4 removal and
PGF2α+ eCG administered IM. Day 11: GnRH and Day 12: TAI

Breeding Crossbreed 60–68 (92)

7. Insulin modified ovsynch: Day start 0: GnRH, Day- 7: PGF2α, Day- 9: GnRH (same
time long-acting biphasic Insulin subcut), Day 10: Insulin, Day 11: Insulin (TAI
12–14 h after GnRH), Day-11: TAI

Breeding Murrah 73.33 (180)

8. CIDR Cosynch: Day 0–7: CIDR, Day 7: CIDR removed and PGF2α injected, Day
10: GnRH (After 84 h TAI)

Breeding Nili-Ravi 65 (201)

9. G6G Ovsynch: Blind PGF2α injection, followed by GnRH after a 2-day interval. 06
days later started the OV-synch protocol

Breeding Egyptian 61 (89)

10. Modified fixed time AI (Ovsynch): Day start protocol 0: GnRH, Day-7: PGF2 α,
Day-9: Ultrasound+ GnRH, Day-10: US+ unicornual FTAI only in buffaloes with
dominant follicle

Breeding Romanian 63.6 (183)

FTAI success (236). Different buffalo breeds may exhibit variations
in reproductive characteristics and responses to FTAI protocols.
Additionally, genetic factors, including the genetic potential for
fertility and reproductive traits, can influence the success of
FTAI (229).

4.2.4 Season and stress levels
Buffaloes become sexually activated in response to decreased

day length and temperature (237). Seasonality in water buffalo

extends postpartum anestrus intervals, adversely impacting the
reproductive performance (33). The efficiency of ovulation
synchronization protocols for FTAI can be affected by the
reproductive seasonality observed in buffaloes (91). During the
seasonal anestrus period, buffaloes experience a lack of behavioral
estrous, ovulation, and decreased progesterone secretion (238).
Consequently, there is an occurrence of ovarian follicular turnover
during this time (239). Hormonal treatment can be employed to
persuade estrus or ovulation in anestrous cows (41). However,
certain buffaloes never respond to the treatment due to low
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breeding season (111). Various factors may contribute to this
phenomenon, but one of the most probable reasons is the follicular
status of the animal at the initiation of FTAI protocol (51). The
ideal time for treatment can be determined via ovarian activity with
ultrasound (240). Reproductive efficacy depends on the breeding
season and high conception rate (129, 241). Buffaloes exhibit a
seasonal breeding pattern and typically develop sexual activity in
response to a decreasing day length, which occurs during later
summer to early autumn (9, 242). The breeding season influences
the conception rate (50). Buffalo cows treated throughout the
breeding season (autumn and winter) shown a higher conception
rate compared to those treated throughout the off-breeding season,
with rates of 48.8% (472/967) and 6.9% (6/86) respectively (41, 147).

High stress levels, caused by factors such as transportation,
handling, or changes in the environment (229), can negatively
impact reproductive performance in buffaloes. Heat stress
adversely influences the reproductive performance as well as
production of Buffalo (243). Buffalo is more vulnerable to heat
stress than cattle due to fewer sweat glands and black hair resulting
in fertility loss (244). When buffaloes experience heat stress, their
consumption and efficiency in utilizing feed are reduced, leading to
alterations in the balance of proteins, water, energy, and minerals.
Additionally, changes in enzymatic activities and hormone levels
negatively impact buffalo reproduction (245). The temperate zone
is regarded as the most conducive for enhanced productivity in
dairy animals (246). Minimizing stressors and providing a calm
and conducive environment can improve FTAI success (247).

4.2.5 Timing in FTAI
Timing is critical in FTAI, as it determines the optimal

moment for insemination (26). Insemination is typically performed
48–72 h after the withdrawal of progesterone supplementation
or prostaglandin administration when ovulation is expected to
occur (52, 248). This allows for the delivery of sperm to the
reproductive tract during the fertile window, maximizing the
chances of successful fertilization (249). The implementation of
FTAI in buffalo breeding programs offers several advantages. It
eliminates the need for estrus detection, which can be challenging
in buffaloes due to the absence of clear behavioral signs (250).
FTAI also allows for the efficient utilization of superior sires by
precisely timing insemination (39) and improving the genetic
potential of the offspring (251). Additionally, it can enhance
reproductive management by enabling breeders to optimize
breeding programs, synchronize calving intervals, and increase
overall herd productivity (252). These factors can affect the
response to hormonal treatments, the synchronization of estrus,
and the overall fertility rates. Understanding and managing these
factors are crucial for improving timed artificial insemination
outcomes in buffalo breeding programs (253).

5 Concluding remarks and
suggestions

Fixed-time artificial insemination (FTAI) holds immense
potential for optimizing buffalo reproduction, yet its efficacy
remains uneven across breeds and seasons. We have discussed
various possibilities to initiate and maintain FTAI program under

different circumstances according to the specific reproductive
physiology of the buffalo and the factors affecting TAI efficiency. As
summarized in our review paper’s Table 4, slight modifications in
ovsynch protocol with FTAI resulted in high conception rate during
breeding season but in the protocol no. 5 conception rate was not so
high possibly due to cross breed and climate factor or due to genetic
differences in follicular dynamics. Insulin modified protocol could
be a better choice for crossbreed buffaloes. For cost effective TAI
protocol CIDR can be replaced with biodegradable progesterone
implants. However, to reduce human error and to refine ovulation
window integrated ultrasound-guided FTAI and 5 days later FTAI
single hCG shot will be a best possible choice for FTAI. Notably,
still there is not any single magical tool or protocol. Therefore,
certain adjustments and possible factors affecting FTAI efficiency
like season, nutritional, health status, breed of animal and cost of
the protocol should be considered. Finally, better understanding of
buffalo’s reproductive physiology and considering the elements that
impact on the effectiveness of FTAI can reinforce the likelihood to
achieve better outcomes or provide clearer insight when the results
differ from our expectations.
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