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This study aimed to partition the genomic variance of carcass weight (CW),

marbling score (MS), rib-eye area (REA), and back fat thickness (BFT) traits

in Angus beef cattle into components associated with minor allele frequency

(MAF) bins, functional annotation classes, and chromosomes. The dataset

included 6,511,978 (6.5 million) imputed whole-genome sequence (WGS) SNPs

from 13,241 Angus beef cattle. Genomic partitioning was performed using a

multi-component mixed linear model analysis, modeling random e�ects with

multiple genomic relationship matrices (GRMs), either simultaneously (joint

analysis) or separately (separate analysis). The estimated heritability (h2) for CW,

MS, REA, and BFT, obtained by fitting all 6.5million SNPs at once, was 0.22± 0.01,

0.25 ± 0.01, 0.35 ± 0.01, and 0.15 ± 0.01, respectively. The aggregate genetic

variance components estimated from the separate analysis were substantially

larger than the corresponding heritability estimates, while the results of joint

analysis for all partitioning factor were very close to h2 estimates for all traits. A

weak relationship was observed between chromosome length and its heritability

(R2 < 0.35). Although intergenic and intronic variants significantly contributed to

the genetic variation of the traits, the variance captured per SNPwas considerably

lower for these variants compared to genic variants, particularly exon variants.

KEYWORDS

variance partitioning, genomic relationships, genetic architecture, carcass traits, Angus

beef cattle

1 Introduction

Carcass weight and meat quality are economically important quantitative traits in

the global beef industry. These traits are influenced by both environmental factors and

the genetic effects of numerous loci distributed across the genome (1). The advent of

advanced genotyping technologies has provided new opportunities to explore the genetic

basis of these traits more comprehensively and accelerate breeding programs. In genomic

evaluation programs, all available genetic marker genotypes, regardless of the magnitude

or statistical significance of their effects, are used simultaneously to predict an individual’s

genetic merit and estimate variance components (2, 3). For instance, Jensen et al. (4)

and Román-Ponce et al. (5) reported that a substantial proportion of the additive genetic

variance for production and fitness-related traits in dairy cattle can be captured using

genomic information from medium-density SNP panels (e.g., the Bovine 50K SNP array).

While genomic information has improved the prediction accuracy of selection candidates,

it is often applied as a “black-box” prediction due to limited understanding of the genetic

architecture of traits (6). Daetwyler et al. (7) demonstrated that the accuracy of genetic
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and genomic predictions for complex traits is strongly influenced

by their underlying genetic architecture. Therefore, gaining a

deeper understanding of this architecture has the potential

to further enhance the accuracy of predictions in livestock

breeding programs.

The ENCODE project revealed that only 1.22% of the human

genome encodes defined products, while ∼80% is involved in

biochemical activities (8), highlighting the functional importance

of nearly the entire genome. However, the contribution of

different functional annotations to the additive genetic variance

of complex traits remains controversial. Published studies suggest

that a larger proportion of genetic variance in humans (9,

10), dairy and beef cattle (2), and broiler chickens (11) can

be attributed to genic regions. In contrast, other studies have

reported that intergenic and intronic regions explain a higher

proportion of genetic variation in beef cattle (12). Similarly, Do

et al. (13) found that genic and non-genic regions contribute

approximately equally to the variation in feed efficiency traits in

pigs. Additionally, Morota et al. (14) observed that the contribution

of different genomic regions to genetic variation varies across

traits. These findings highlight the importance of dissecting

genomic variance to improve the predictive performance of genetic

evaluation models.

The allele frequencies of various genomic regions change

dynamically over generations due to factors such as artificial

selection in livestock species. In genomic studies, markers with

low minor allele frequencies (MAF; e.g., < 0.01 or < 0.05) are

often discarded during quality control (QC) steps. However, these

markers may contribute to complex traits (15). Discarding these

SNPs could result in significant information loss and hinder the

detection of rare disease-associated markers (16). Interestingly,

SNPs with low MAF (< 0.1) have been shown to be more

effective in detecting quantitative trait loci (QTL) with low MAF

compared to SNPs with higher MAF (> 0.4) (11). Several studies

(1, 3, 17) have reported substantial variation among MAF bins in

their contribution to the variance of complex traits in beef and

dairy cattle breeds. Furthermore, estimating the genetic variance

explained by individual chromosomes can provide insights into

the genetic architecture of traits. A strong correlation between

chromosome heritability and physical length is expected if a trait

is influenced by many loci evenly distributed across the genome

(11, 18). However, a weak relationship has been reported for meat

quantity and quality traits in Hanwoo cattle, suggesting that major

genes are not evenly distributed across the genome of this breed (1).

Partitioning the genetic variance of complex traits across

different subject categories, such as functional annotations, can

enhance our understanding of the genetic architecture and

inheritance mechanisms underlying these traits. Although SNP

chip arrays offer several advantages, they capture only a portion

of genetic variation due to incomplete linkage disequilibrium (LD)

with causal variants (19–21). For instance, while the cattle genome

is reported to contain ∼26.7 million variants (22), SNP arrays

typically cover only a small subset of these variants. Koufariotis

et al. (2) have advocated for the use of whole-genome sequence

(WGS) data to address this limitation, since it offers more

comprehensive genomic coverage than SNP arrays.

Genotype imputation is a promising approach for increasing

the marker density and enhancing LD between SNPs and causal

variants. It also improves the representation of rare variants and

the availability of causal variants themselves (3, 21, 23). To the best

of our knowledge, the genomic partitioning of carcass weight and

meat quality traits has not yet been studied in Angus beef cattle.

Therefore, this study aimed to utilize imputed SNP data at the

whole genome sequence level to investigate the genetic variance of

carcass weight, marbling score, back fat thickness, and rib-eye area

in Angus beef cattle.

2 Materials and methods

2.1 Population and herd management

The data were collected from 50 Angus beef cattle farms,

with the number of samples per farm ranging from 57 to

1,706 and an average of 264 samples per farm. The farms are

geographically close, experience comparable climate conditions,

and are genetically connected. All farms operated under the same

management system. Newborn calves were kept with their mothers

till weaning (4–6 months) and then were transferred to pastures,

where they were fed until reaching 12 to 15 months of age and

∼350 kg in weight. The calves were then moved to feedlots, where

they were raised for about 7 months.

2.2 Phenotypes

The studied traits included carcass weight (CW, kg), marbling

score (MS, score), rib-eye area (REA, in2), and back fat thickness

(BFT, mm). Phenotypic records were collected from 13,241 steers

born between 2017 and 2019. These animals were slaughtered

at an average age of ∼700 days. Marbling score was measured

between the 12th and 13th ribs using a special automatic scanner

that grades meat on a scale of 1 to 12. The rib-eye area was recorded

as the total area of the loin (longissimus dorsi muscle). Back fat

thickness represented the external fat on the carcass, measured

between the 12th and 13th ribs. All four traits were measured in all

individuals. Descriptive statistics of the studied traits are presented

in Table 1. Least squares analysis of variance was performed to

identify significant environmental effects on the traits. The effects

included birth year, birthmonth, birth farm, feedlot, recording year,

recording month, and recording age. All environmental factors

were found to be significant and were included as fixed effects in

the final model.

2.3 Genotypes and imputation

The animals (n = 13,241) were genotyped using the Illumina

Bovine 50K SNP panel. All samples had a call rate >0.90

and were thus retained for analysis. Duplicate markers, indels,

deletions, multiallelic sites, unmapped SNPs, and those located on

mitochondrial or sex chromosomes were removed from the dataset.

Additionally, SNPs with MAF< 0.05 and SNP call rate< 0.95 were

discarded. Following these quality control steps, 39,580 autosomal

SNPs were retained for downstream analysis. The quality control

process was performed using PLINK v1.07 software (24).
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TABLE 1 Descriptive statistics and estimated heritability of the traits.

Trait No. records Min Max Mean SD CV h2

CW (kg) 13,241 288.8 721.1 404.06 37.76 9.35 0.22± 0.01

MS (score) 13,241 2.68 10.24 7.26 1.35 18.60 0.25± 0.01

REA (in2) 13,241 6.91 16.65 11.87 1.33 11.20 0.35± 0.01

BFT (mm) 13,241 0.064 1.976 0.731 0.26 35.57 0.15± 0.01

CW, carcass weight; REA, rib-eye area; MS, marbling score; BFT, back fat thickness.

The whole genome sequences (WGS) of purebred Angus cattle

were downloaded from the “1,000 Bull Genomes Project” (22).

After filtering the sequences for bi-allelic loci, 13,123,690 SNPs

were retained. To determine optimum values for quality control

metrics of reference sequences and calibrate the input parameters

of the genotype imputation program, we performed a pilot study

using 5,000 randomly selected SNPs from the target population.

The values yielding the highest percentage of correctly imputed

genotypes were selected for subsequent genotype imputation.

Therefore, the reference dataset was filtered for variants with MAF

> 0.02, sequence depth > 3, sequence quality > 30, and a missing

rate < 20%. Finally, a total of 9,268,297 SNPs of 128 Angus

samples were retained and used as the reference population for

the genotype imputation. Genotype imputation was performed

using the population-based imputation algorithm implemented

in Beagle v4.1 (25). The imputed genotypes were filtered based

on dosage R-squared (R2) > 0.8 and MAF > 0.01. After quality

control, 6,511,978 SNPs remained for downstream analysis. More

details about the genotype imputation process were reported in our

previous work (26).

2.4 Variant annotation

The functional annotation of the imputed WGS variants

was performed using the Variant Effect Predictor (VEP) online

web interface (27) of the Ensembl server (release 106), and

the annotations were mapped to the bovine genome assembly

ARS-UCD1.2. The functional annotations described in the

Ensembl had been classified into 16 categories, with considerable

variation in the number of SNPs, ranging from 16 SNPs for

stop-retained variants to 3,840,411 SNPs for intergenic region

variants (Supplementary Table S1). Therefore, the function

annotations were classified into four groups: intergenic region,

intron, regulatory region (including downstream and upstream),

and exon variants (missense, synonymous, 3′ UTR, 5′ UTR,

and other regulatory variants). The distribution of variants

across these groups is presented in Supplementary Table S1.

The “other regulatory variants” category encompassed

splice_acceptor, splice_donor, splice_region, start_lost, stop_lost,

and stop_retained variants.

2.5 Genomic variance partitioning

The total genetic variance captured by the whole genome was

partitioned based on MAF, chromosomal position, and functional

annotation of the markers. To investigate the additive genetic

variance of traits due to MAF bins, imputed WGS were classified

into five bins: 0 < MAF ≤ 0.09, 0.09 < MAF ≤ 0.18, 0.18 <

MAF ≤ 0.27, 0.27 < MAF ≤ 0.38, and 0.38 < MAF ≤ 0.5. The

bin thresholds were set to ensure each MAF class contained an

equal number of SNPs. The markers were initially classified into

four main groups to estimate the proportion of genetic variance

explained by functional annotations: intergenic, intron, regulatory

regions, and exon. However, due to an imbalance in the number

of SNPs within these categories, further analysis was conducted to

compute the variance captured by each subcategory within the exon

group, as described in section 2.6. The contribution of autosomal

chromosomes (n = 29) to the genetic variance of the traits under

study was also investigated.

Two different strategies were applied to partition the total

additive genetic variance attributed to each studied factor (MAF,

chromosome, and functional annotation). In the first strategy

(separate analysis), each category of MAF (n = 5 bins),

chromosome (n = 29), and functional annotations (n = 4 groups)

was considered separately in a single random effect model. To do

this, the genomic relationship matrix (GRM) constructed using

the SNPs of the respective category was applied to model the

covariance among individuals in a univariate mixed linear model.

The statistical model, in matrix form, was as follows:

y= Xb+Zg+ e

In the second strategy (joint analysis), all respective categories

of each factor (MAF, chromosome, and functional annotation)

were simultaneously fitted in a univariate mixed linear model with

multiple random effects. The model was as follows:

y = Xb+

n
∑

i=1

Zgi+ e,

where y is the vector of phenotypes; b is the vector of fixed effects

including birth year, birth month, recording year, recordingmonth,

birth farm, feedlots and slaughtering age (as covariate); g ∼ N(0,

Gσ
2
a ) is the vector of random additive genetic effects attributed

to the ith SNP subset, and e∼ N(0, Iσ 2
e ) is the vector of random

residual errors. X and Z are the incidence matrices relating b and

g effects to y, respectively. G and I are the genomic relationship

matrix (defined below) and identity matrix, respectively. σ
2
g and

σ
2
e are the genetic variance explained by genome-wide SNPs and

the residual variance, respectively. Also, n is the number of subsets

for non-overlapping SNP partitions (n = 5 for MAF bins, n =

29 for the autosomes, and n = 4 for the functional annotations).

In joint analysis, no covariance among the random effects was
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assumed. GRM was constructed following the method defined in

Yang et al. (28).

Gjk =
1

M

M
∑

i=1

(xij − 2pi)(xik − 2pi)

2pi(1− pi)
,

where Gjk is the off-diagonal element for animals j and k,

or the diagonal element if j=k. Genotype codes of xij =0,

1, 2 for A1A1, A1A2, and A2A2, respectively. pi is the allele

frequency of A2 at locus i calculated based on population SNP

genotype data, and M is the number of SNPs used for GRM

construction. To explain the strategies, as an example, we fitted

29 different mixed linear models, each corresponding to a

chromosome being analyzed separately (Strategy 1; separate

analysis). Additionally, a model including 29 different random

effects, each structured by one chromosome, was fitted (Strategy

2; joint analysis). All genetic variance partitioning analyses

were conducted using genomic-relatedness-based restricted

maximum-likelihood (GREML) estimation implemented in the

Genome-wide Complex Trait Analysis (GCTA) program version

1.94.1 (28).

2.6 Genetic variance per SNP

Although fitting a multiple-factor model at once (joint analysis)

can partition the total genetic variance appropriately and prevent

confounding signals from different effects, the estimates could be

affected by unbalanced distribution (unequal number of) variants

in the fitted effects. In this study, there were notable differences

among functional annotation classes regarding SNP numbers.

Hence, to gain insight into the genetic variation of the traits

explained by each annotation class and to address this issue, the

proportion of genetic variance captured by each SNP (VarPerSNP)

was estimated. This approach, proposed by Koufariotis et al. (2), is

calculated using the following formula:

VarPerSNPi =

[(

h2i
ni

)

∗ 100
]

10− 4
,

where h2 is the estimated heritability, and n is the total number of

SNPs in the ith annotation class. The calculated value for each class

was multiplied by 100 to express it as a percentage and divided by

10−4 to scale the value for better visualization.

3 Results

In the current study, the imputed genotypes at the whole

genome sequence level were used to partition the genomic

variance of carcass weight and meat quality traits in Angus beef

cattle. Genotype imputation significantly increased the information

available (>164 times; 39,580 vs. 6,511,978 autosomal SNPs).

The distribution of markers across the genome is summarized in

Table 2. The average marker interval for the imputed WGS was

∼381 base pairs (bp). The autosome marker density showed a

consistent pattern, ranging from 316 bp (BTA23) to 442 bp (BTA5).

TABLE 2 Chromosome length, number of SNPs, and summary of marker

interval for each chromosome.

BTA∗
Length
(Mbp)

No. SNPs
Marker interval (bp)

Min Max Mean

1 157.90 451,494 1 240,215 349.73

2 134.37 352,103 1 354,137 381.62

3 120.97 312,673 1 326,021 386.88

4 119.74 312,754 1 286,441 382.86

5 120.04 271,721 1 590,038 441.78

6 117.79 368,198 1 440,976 319.92

7 110.60 282,397 1 290,617 391.64

8 113.10 276,607 1 444,895 408.87

9 104.35 246,313 1 305,590 423.64

10 103.27 273,550 1 1,181,758 377.52

11 106.40 268,698 1 217,101 395.98

12 87.12 229,000 1 982,989 380.42

13 83.26 195,198 1 646,635 426.53

14 82.13 214,646 1 261,799 382.65

15 84.76 215,280 1 365,559 393.70

16 80.94 200,102 1 454,530 404.50

17 73.11 222,995 1 172,473 327.88

18 65.28 149,284 1 233,339 437.28

19 63.40 146,122 1 280,917 433.89

20 71.61 200,773 1 278,968 356.68

21 69.39 159,833 1 654,446 434.17

22 60.58 152,216 1 279,710 398.01

23 52.46 166,250 1 142,342 315.54

24 62.24 172,528 1 136,712 360.77

25 42.31 125,939 1 68,926 335.94

26 51.96 134,892 1 253,127 385.18

27 45.59 130,372 1 133,281 349.67

28 45.88 132,345 1 460,326 346.69

29 51.02 147,695 1 412,660 345.46

Overall 2,481.56 6,511,978 1 1,181,758 381.08

∗BTA, Bos taurus autosomes.

There was a strong linear relationship between chromosome

length (the difference of physical position of the last and the

first SNP on each chromosome) and number of SNPs (R2 >

0.93; Supplementary Figure S1). The heritability of the traits was

estimated using mixed linear models that accounted for the

genomic relatedness among individuals, modeled by the genomic

relationship matrix constructed using imputed WGS SNPs. The

heritability estimates were 0.22, 0.25, 0.35, and 0.15 for CW, MS,

REA, and BFT, respectively.
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FIGURE 1

Estimated proportion of variance explained by each chromosome for carcass weight (CW) against physical length of the chromosomes using

separate and joint analysis.

3.1 Genomic variance partitioning by
individual chromosomes

The estimation of genetic variance due to the autosomes was

performed using mixed linear models, fitting each chromosome as

a random effect. To do this, the covariance among individuals due

to each chromosome was modeled using a genomic relationship

matrix constructed by SNP genotypes located on that chromosome.

Each chromosome was fitted as a random effect in either a multi-

factor model (joint analysis) or a single-effect model (separate

analysis). The results showed that the total genetic variance of the

traits, by summing up the estimates of all autosomes obtained by

separate analysis, was 378.51, 0.66, 1.65, and 0.015 for CW, MS,

REA, and BFT, respectively. These values were higher than the

corresponding estimates obtained from the joint analysis (233.42,

0.413, 0.565, and 0.009, respectively) and those derived from the

model fitting the entire set of imputed SNPs (6.5 million) at once

(229.58, 0.419, 0.554, and 0.009, respectively).

The proportion of genetic variance of CW, MS, REA, and

BFT explained by each chromosome using separate and joint

analysis is shown in Figures 1–4, respectively. The estimates are

expressed as the ratio of additive genetic variance captured by each

chromosome to total phenotypic variance, which is referred to as

chromosome heritability. In both joint and separate analyses, the

autosomal chromosomes showed a wide range of contributions to

the phenotypic variation of the studied traits. For joint analysis,

the ranges of chromosome heritability were 0.14% (BTA29) to

2.49% (BTA20) for CW, 0.27% (BTA24) to 3.1% (BTA7) for MS,

0.08% (BTA24) to 3.35% (BTA1) for REA, and 0.0001% (BTA24)

to 1.61% (BTA20) for BFT. In the separate analysis, chromosome

heritability estimates ranged from 0.40% (BTA22) to 3.04% (BTA7)

for CW, 0.57% (BTA26) to 3.44% (BTA7) for MS, 1.91% (BTA24)

to 6.53% (BTA1) for REA, and 0.22% (BTA25) to 2.04% (BTA20)

for BFT traits. The estimates for joint analysis were generally lower

than those for separate analysis, particularly for REA. Additionally,

while the chromosome length is highly correlated with the

number of variants located on it (Supplementary Figure S1), the

relationship between heritability and chromosome length was not

as strong (R2 < 0.35).

3.2 Genomic variance partitioning by SNP
MAF

The proportion of additive genetic variance explained by SNPs

in different MAF bins for the traits is shown in Figures 5–8,

respectively. The variance explained by each MAF bin, estimated

by separate analysis, was larger than the corresponding values

obtained from joint analysis for all traits. In addition, the results

revealed that the estimates from fitting five MAF bins separately

were within a small range of 15.39–19.67% for CW, 16.49–22.37%

for MS, 24.08–32.59% for REA, and 10.25–13.23% for BFT. In

contrast, the estimates obtained from the joint model exhibited a

wider range: 0.05–9.6% for CW, 1.42–7.76% for MS, 1.71–15.79%

for REA, and 0.79–4.79% for BFT.

The total genetic variance captured by all MAF bins (sum of

the estimates) from the separate analysis was substantially greater

than that captured by all imputed variants modeled as a single

effect. For MS and REA, the accumulated variance even exceeded

the phenotypic variance of the trait. Conversely, the ratio of the sum

of variance components obtained from joint analysis to phenotypic

variance was very close to the heritability of the traits. The traits did

not exhibit a consistent pattern regarding the proportion of genetic

variance explained by different allele frequency classes. In the joint

analysis, the highest proportion of genetic variance for all traits was

explained by SNPs with 0.27<MAF≤ 0.38 bin. This bin accounted

for 9.6%, 7.76%, 4.79%, and 15.79% of the phenotypic variance of
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FIGURE 2

Estimated proportion of variance explained by each chromosomes for marbling score (MS) against physical length of the chromosome using

separate and joint analysis.
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FIGURE 3

Estimated proportion of variance explained by each chromosomes for rib-eye area (REA) against physical length of the chromosome using separate

and joint analysis.

CW, MS, BFT, and REA, respectively. Interestingly, rare variants

explained 5.25% (23.53%), 3.75% (15.33%), 4.75% (13.45%), and

2.55% (16.90%) of the phenotypic (genetic) variance of CW, MS,

REA, and BFT, respectively.

3.3 Genomic variance partitioning by
functional annotation

The whole-genome imputed SNPs were functionally annotated

into 15 different groups, as shown in Supplementary Table S1. Due

to a very low number of SNPs in some categories, we grouped the

SNPs into 4 major classes, including intergenic (58.97%), intron

(31.52%), regulatory region (8.66%), and exon variants (0.85%).

The results of separate (fitting each annotation class at the time) and

joint (fitting all classes together in a multi-random effect model)

analysis for the aforementioned annotation classes are summarized

in Table 3. The results indicated that when the annotation classes

were analyzed separately, each class accounted for a significant

proportion of the total genetic variance, much higher than the

corresponding values obtained from the joint analysis. The total

genetic variances (sum of the estimates) explained by classes
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FIGURE 4

Estimated proportion of variance explained by each chromosomes for back fat thickness (BFT) against physical length of the chromosome using

separate and joint analysis.
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FIGURE 5

Estimated proportion of variance explained by MAF bins for carcass weight (CW) using separate and joint analysis.

in separate analyses were 79.68%, 87.54%, 129.44%, and 53.31%

for CW, MS, REA, and BFT, respectively. These estimates were

considerably higher than those obtained when all imputed SNPs

(6.5 million) were fitted simultaneously. The proportion of total

genetic variances due to annotation classes in the joint analysis,

relative to phenotype variance, was 21.85%, 24.7%, 35.47%, and

15.62%, respectively, for CW, MS, REA, and BFT. These values

were consistent with the heritability estimates obtained using all

imputed SNPs.

The traits showed considerable differences in the contribution

of each function annotation class to genetic variation. For

example, variants located in regulatory regions explained 16.52%

(46.58%) of the total phenotype (genetic) variation for REA,

while this annotation class accounted for only 1.21% (4.89%)

of the phenotypic (genetic) variance for MS. The proportion

of phenotypic variance of carcass weight explained by the

annotation classes was similar, ranging from 3.06% (regulatory

region) to 7.78% (intron). However, the differences in contribution

of annotation classes were sizable for the other three traits.

Intergenic and intron variants were the major contributors to

genetic variation for all traits, with their contribution ranging

from 22.21% (intron SNPs for REA) to 45.65% (intergenic

variants for MS). The contribution of exon variants to phenotypic

variance was modest, with values of 4.83%, 2.68%, 1.37%, and

0.0001% for CW, MS, REA, and BFT, respectively. Similarly,

regulatory region variants explained 3.06%, 1.21%, 16.52%, and
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FIGURE 6

Estimated proportion of variance explained by MAF bins for marbling score (MS) using separate and joint analysis.
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FIGURE 7

Estimated proportion of variance explained by MAF bins for rib-eye area (REA) using separate and joint analysis.

3.56% of the phenotypic variance for CW, MS, REA, and

BFT, respectively.

The annotation subclasses comprising the exon category

were also analyzed using both separate and joint computational

approaches (Table 4). For all four traits, the estimates obtained

from the separate analysis were higher than those from the

joint analysis. In addition, the aggregated variances attributed to

these subclasses were significantly greater than the total variance

explained by the exon annotation class. This discrepancy highlights

the overestimation of genetic variance for individual annotation

classes when other classes are excluded from the model (separate

analysis). There was a considerable variation among annotation

subclasses regarding the genetic variance they explained. For

example, synonymous variants contributed a negligible (close to

zero) proportion of the phenotypic variance for CW, MS, and

BFT, while they accounted for 3.58% of the phenotypic variance

for REA. The high proportion of variance explained by the exon

SNP category for CW primarily originated from missense variants

(3.49%). In contrast, other subclasses, such as synonymous and

5′ UTR variants, had a very low contribution. The results also

showed that “other regulatory variants” play a significant role in the

inheritance of both MS and BFT.

3.4 Genetic variance per SNP

The results revealed that the explained genetic variance per SNP

for intergenic, intron, and regulatory region categories (except for
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FIGURE 8

Estimated proportion of variance explained by MAF bins for back fat thickness (BFT) using separate and joint analysis.

TABLE 3 Partitioning genetic variance of the studied traits due to functional annotation of genome regions.

Category No. SNPs % Analysis CW MS REA BFT

Intergenic 3,840,411 58.98
Separate 20.23± 1.2 23.65± 1.22 33.09± 1.32 13.9± 1.07

Joint 6.18± 1.51 11.28± 1.67 9.7± 1.7 5.97± 1.44

Intron 2,052,343 31.52
Separate 20.41± 1.17 22.29± 1.19 32.26± 1.27 13.85± 1.05

Joint 7.78± 1.98 9.54± 2.03 7.88± 2.14 6.09± 1.79

Regulatory region

(Upstream+

Downstream)

563,722 8.66
Separate 19.71± 1.17 21.65± 1.19 33.24± 1.29 13.46± 1.05

Joint 3.06± 2.31 1.21± 2.21 16.52± 2.7 3.56± 2.06

Exom 55,502 0.8524
Separate 18.33± 1.11 19.94± 1.13 30.85± 1.25 12.09± 0.99

Joint 4.83± 2.17 2.68± 2.06 1.37± 2.35 0.001± 1.88

CW, carcass weight; REA, rib-eye area; MS, marbling score; BFT, back fat thickness.

REA) is notably low (Figure 9). Also, the proportion of variance

explained per SNP varied considerably across traits within each

annotation class. Synonymous variants had the highest genetic

variance explained per SNP for REA, while for BFT, “other

regulatory variants” and 5′ UTR SNPs exhibited significantly higher

genetic variance per SNP compared to other annotation classes.

Interestingly, CW and MS showed a different pattern regarding

average genetic variance explained by each SNP.Missensemutation

variants had the largest contribution to genetic variance for CW,

while their contribution to MS was minimal. Conversely, 5′ UTR

variants contributed significantly to the genetic variance of MS but

had a negligible impact on CW. Additionally, 3′ UTR annotations

played a considerable role in the genetic variation of both CW

and MS.

4 Discussion

This study deciphered the genomic variance of the carcass

weight, marbling score, rib-eye area, and back fat thickness

in Angus beef cattle due to several factors using imputed

WGS variants. Genotype imputation increased genome resolution,

reducing the average SNP distance from 48,397 bp in the Bovine

50K SNP array to 381 bp in imputed WGS. This improvement

provided a great opportunity for more accurate partitioning

of additive genetic variance by increasing marker density and

enabling access to a larger number of low-frequency and causal

variants for analysis (3). Consequently, using imputed WGS data is

expected to enhance the proportion of genetic variance explained

by genotype information. The estimated heritabilities were 0.22,

0.25, 0.35, and 0.15 for CW, MS, REA, and BFT, respectively,

reflecting a relatively considerable genetic contribution to the

phenotype variation of the traits. These estimates were in the

range of previously reported heritability estimates in other cattle

populations (29–32). However, higher heritability estimates based

on pedigree-based relationships have been reported by Smith

et al. (33) and Kause et al. (34). This discrepancy could be

attributed to the applied methods, as heritability estimates derived

from pedigrees are often higher than those based on genomic

relationship matrices (35, 36).
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TABLE 4 Explained genetic variance of the studied traits due to di�erent components of the “Exome” category.

Category of
exons

No.SNPs % Analysis CW MS REA BFT

Missense 13,140 0.2018 Joint 3.49± 1.43 0.12± 1.29 0.26± 1.53 0.0001± 1.23

Separate 15.87± 1.03 16.8± 1.05 26.07± 1.18 10.26± 0.91

Other regulatory

variants

5,480 0.0842 Joint 0.46± 1.48 1.07± 1.15 0.0001± 1.22 0.174± 1.03

Separate 13.26± 0.91 14.76± 0.95 20.01± 1.02 8.85± 0.81

Synonymous 22,284 0.3422 Joint 0.0001± 1.8 0.0001± 1.76 3.58± 2.004 0.001± 0.1.58

Separate 17.18± 1.07 18.69± 1.09 29.03± 1.2 11.18± 0.94

3′ UTR 11,720 0.18 Joint 0.84± 0.91 1.29± 0.91 0.0001± 0.98 0.0001± 0.78

Separate 13.57± 0.97 15.16± 1.01 23.32± 1.16 7.26± 0.78

5′ UTR 2,878 0.0442 Joint 0.0001± 0.69 0.19± 0.67 0.051± 0.72 0.106± 0.609

Separate 8.22± 0.74 10.5± 0.81 16.31± 0.97 6.09± 0.66

CW, carcass weight; REA, rib-eye area; MS, marbling score; BFT, back fat thickness.

CW MS REA BFT

×

Trait

3′ UTR 5′ UTR

FIGURE 9

Estimated proportion of genetic variance of the traits studied captured on a per SNP basis for the functional annotations obtained using joint analysis.

Two methods, GREML and BayesR, have been commonly

used for genomic variance partitioning. Recently, Yuan et al. (37)

demonstrated that the accuracy of variance component estimation

by these models depends on the genetic architecture of the trait. We

applied the GREML algorithm implemented in the GCTA program

(28) due to its computational efficiency, ability to provide unbiased

variance-component estimates (20), and flexibility in partitioning

variance attributable to subsets of SNPs in large datasets. In this

study, genetic variance of carcass weight and meat quality traits

in Angus beef cattle was partitioned into different components

based on MAF, chromosomes, and functional annotation. Each

component was considered a random effect in a mixed linear

model, where genetic covariances among individuals were modeled

using a GRM constructed by a subset of SNPs corresponding to the

component. The components were fitted either separately in single-

random effect models (separate analysis) or simultaneously in a

multi-random effect model (joint analysis). The relatively huge data

size used in this study (6.5 million SNPs for 13,241 samples) met

the requirements of sample size and genotype coverage proposed

by Abdollahi-Arpanahi et al. (11) and Zhang et al. (3) for obtaining

more reliable estimates. In addition, Ogawa et al. (17) stated that

the smaller sample size can complicate the interpretation of results

due to spurious LD structure.

The results showed that fitting a subset of SNPs as a single

random effect, while ignoring the other SNPs in the model,

results in overestimation of the variance components. For all

three investigated factors (chromosome, MAF, and functional

annotation), the genetic variance estimates obtained from separate
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analyses were substantially higher than those estimated using joint

analysis. Notably, the proportion of genetic variance explained

by each MAF bin or functional annotation class relative to the

phenotypic variance of the trait was close to, or slightly lower than,

the total heritability of the trait. Also, the accumulated genetic

variance of the subsets estimated using separate analyses greatly

exceeded the genetic variance of the trait estimated using the

entire SNPs fitted at once. Similar findings have been reported by

Abdollahi-Arpanahi et al. (11) and Bhuiyan et al. (1).

The overestimation of genetic variance components in separate

analyses may result from linkage disequilibrium (LD) between

the subset of SNPs included in the model and those excluded.

These findings support that SNPs will strongly carry over the

effects of their neighbors’ variants, leading to biased estimates

(11, 38). Therefore, the estimates cannot be interpreted as the

proportion of variance explained solely by the subset of SNPs. A

comparison of the estimated genetic variance due to functional

annotation classes and autosomes further illustrates this issue.

Different genome regions, such as intergenic and genic regions,

including regulatory regions (promoters, enhancers, terminators,

etc.), exons, and introns, are tightly linked and are expected to

exhibit high LD.

In contrast, there is no physical linkage between variants on

different chromosomes. However, they could be involved in the

same gene expression network. Abdollahi-Arpanahi et al. (11)

stated that selection programs have resulted in negative LD between

markers and causative genes in chicken populations, even on

different chromosomes.

On the other hand, the total genetic variances (aggregated

estimates due to all random effects in the model) were similar

to those obtained by fitting all 6.5 million variants as a single

random effect. This pattern was consistent across all traits. These

findings were in agreement with the results reported by Bhuiyan

et al. (1) and Jensen et al. (4). They indicated that fitting multiple

random effects modeled by GRMs in mixed linear models would

appropriately (unbiasedly) partition the total genetic variance of the

complex quantitative traits into the components.

4.1 Autosomes

The results indicated that all autosomes contributed to trait

variation, though significant differences were observed among the

chromosomes regarding the explained genetic variance. While

chromosome length was highly correlated with the number of

harboring variants (Supplementary Figure S1), there was no strong

linear relationship between heritability and chromosome length (R2

< 0.35), reflecting that some short chromosomes can capture a

higher proportion of genetic variance, likely due to the presence

of major genes or QTLs on these chromosomes. Similar results

have been previously published for production, reproduction, and

health-related traits in Holstein cattle (3, 4, 39, 40), carcass traits in

Korean Hanwoo beef cattle (1), human height (18), and multiple

sclerosis in humans (41). Our findings support the idea that carcass

weight and meat quality traits in Black Angus cattle are affected by

many loci on all autosomes. However, these effects are not equally

distributed across the genome, which aligns with the polygenic

inheritance model (42).

In this study, the highest variance for CW and BFT was

attributed to BTA20, which is a relatively short chromosome. This

chromosome harbors the growth hormone receptor (GHR) gene,

which is involved in muscle development processes by activating

intercellular signals that promote growth (43). Additionally, some

QTLs and genome regions with significant effects on carcass and

body weights have been reported on BTA20 by Casas et al. (44),

Li et al. (45, 46), Edea et al. (47), and Hay and Roberts (48).

Qin et al. (49) identified a genome region on this chromosome,

overlapping between three QTLs, associated with body weight

and GHR in three cattle breeds. In addition, Saatchi et al. (50)

reported a large-effect pleiotropic QTL on BTA20 linked to traits

such as birth weight, carcass weight, BFT, mature weight, weaning

weight, and yearling weight in Angus, Hereford, Red Angus, and

Simmental breeds. Additionally, chromosome 7 explained a great

proportion (∼ 3 times that of BTA1) of the genetic variation of

MS in this population. These findings were in accordance with the

results of previous studies reporting the presence of QTLs/genomic

regions significantly affecting MS in Japanese Black cattle (51–53),

commercial American Angus (54), as well as 10 different cattle

breeds (50).

4.2 MAF bins

Wedid not observe a consistent pattern in the explained genetic

variance across the MAF bins for the studied traits, which reflects

the differences in genetic architectures of carcass weight and meat

quality traits in Angus cattle. However, the contribution of MAF

classes varied significantly among the traits, with all MAF bins

contributing, to some degree, to the genetic variation of the traits.

Among theMAF bins, SNPs with 0.27≤MAF< 0.38 explained the

highest genetic variance across all traits. In addition, more common

variants (27≤MAF≤ 0.5) collectively accounted for at least 50% of

the total genetic variance of the traits. Several studies have reported

that the variants with common alleles contribute more to the

genetic variance of CW and meat quality traits in Korean Hanwoo

beef cattle (1) and CW in Japanese Black cattle (17). The recently

reported results for schizophrenia (10) and multiple sclerosis (41)

traits in humans also support the findings of the present research.

In contrast, Abdollahi-Arpanahi et al. (11) reported that a

great proportion of the genetic variance for body weight, breast

muscle, and egg production traits in chickens is explained by

rare variants (MAF < 0.2). The inconsistency is likely due to the

differences between the species studied and, more importantly,

the intense artificial selection programs applied to commercial

chicken populations.

The lower frequency alleles (0 ≤ MAF < 0.09) explained a

considerable proportion (∼ > 13%) of the total genetic variance

for the studied traits. To further investigate, we partitioned this bin

into two subclasses (0≤MAF< 0.05 and 0.05≤MAF< 0.09). The

results revealed that a great portion of the variance in the traits,

ranging from 6.23% (MS) to 16.39% (CW), was explained by rare

variants (MAF < 0.05) in the population under study (data not

shown). This suggests that some causal variantsmay be located near

rare variants or that these variants can relatively model the family

relationships within the population (55). Similarly, Zhang et al. (3)

reported that SNPs with MAF < 0.05 had a larger contribution to
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the genetic variance of health-related traits compared to production

traits in Holstein cattle. It has also been reported that a considerable

proportion of fertility traits in Holstein cattle could be explained by

rare variants (56).

4.3 Functional annotations

The imputed WGS variants were classified into major

functional annotation classes, including intergenic (58.97%), intron

(31.52%), regulatory region (8.66%), and exon (0.85%) variants.

The distribution of SNPs across annotation classes was close to

that reported by Santana et al. (12) in Nellore cattle, where 63.74%

and 28.17% of SNPs were intergenic and intronic, respectively.

Similarly, Koufariotis et al. (2) reported 67.0%, 31.0%, 8.0%, and

1.0% of HD bovine chip SNPs (777-K) data were intergenic, intron,

regulatory region, and exon variants, respectively, in beef cattle.

However, Bhuiyan et al. (1) reported that 70.30%, 28.79%, and

0.88% of the imputed WGS SNPs were intergenic, intron, and exon

variants, respectively. This inconsistency is probably due to the

differences in imputation strategy and the fact that these authors

have considered the regulatory variants and intergenic regions as a

single class.

However, all functional annotation classes contributed

significantly to the traits considered in this study, though notable

differences were observed in the distribution patterns of genetic

variance explained by these classes. For carcass weight, the

estimates were in a relatively small range (14–35.6%), while a wider

range was observed for the three other traits. These findings reflect

the distinct biological nature of CW compared to the other studied

traits in Angus beef cattle. The contribution of genome annotations

appears to depend on both the traits and species. Morota et al. (14)

studied the body weight, area of breast meat, and egg production

traits in chickens using a 600K SNP array and reported a variation

in predictive ability of different functional annotations among the

traits. These authors recommended using all markers to predict

complex traits. In contrast, Do et al. (13) stated that the predictive

accuracy across genomic annotations was similar for residual

feed intake and its component traits, such as daily feed intake,

average daily gain, and back fat. However, these authors utilized

only 30,234 SNPs, a relatively small dataset compared to imputed

WGS data.

The regulatory region and exon variants showed considerable

differences among the traits. For instance, regulatory region

variants explained a great proportion of the total genetic variance

for rib-eye area (46.58%), while their contribution was <5%

for MS. Interestingly, exon variants showed a broad range of

contribution, explaining 22.11%, 10.85%, 3.85%, and 0.00% of the

genetic variance for CW, MS, REA, and BFT, respectively, despite

comprising only 0.8% of all SNPs. In addition, the annotation

subclasses of the exon variant category showed great differences in

explained genetic variance, both within and between the traits. The

missense SNPs contributed significantly to the genetic variance of

CW (3.49%), while other subclasses, in particular synonymous and

5′ UTR variants, had a negligible contribution. The synonymous

variants captured a considerable proportion of the phenotypic

variance of REA (3.58%), while their contribution was very low

(close to zero) for all the other traits. The “other regulatory

variants” class, including splice acceptor, splice donor, splice region,

start lost, stop lost, and stop retained variants, captured a higher

proportion of genetic variance for BFT than the other exon class

subclasses. Yang et al. (9) reported that genic regions proportionally

explained more variation than intergenic regions, likely due to

the physical proximity of causal variants to functional genes.

Previous results in dairy and beef cattle (2) were in agreement

with our results, emphasizing that higher genetic variances are

attributed to genic regions compared to intron and intergenic

regions. In contrast, Abdollahi-Arpanahi et al. (11) reported that

the largest proportion of genetic variance for production traits in

broiler chickens is explained by the synonymous SNPs. In addition,

Bhuiyan et al. (1) stated that the synonymous class explained

significantly more genomic variances than other functional classes.

These inconsistencies may be due to differences in traits, species,

breeds, LD patterns, and genotyping platforms.

4.4 Genetic variance per SNP

To further investigate, we also calculated the proportion of the

genetic variation explained per SNP in each functional annotation

class. This value reflects the average genetic variance per SNP

when all other annotation classes are simultaneously fitted in a

multiple-random-effect model. The results revealed considerable

differences in genetic variance explained per SNP, both within

and between the traits. Missense, synonymous, “other regulatory

variants,” and 5′ UTR variants showed the highest contribution

to the genetic variance of CW, REA, MS, and BFT, respectively.

These findings suggest that protein-coding region variants are

more important for traits associated with muscle development

(e.g., CW and ERA), while regulatory-related region variants play

a more critical role in traits related to lipid and fat metabolism,

such as MS and BFT. Koufariotis et al. (2) reported that protein-

coding variants explained most of the genetic variance for dairy

traits, while UTR annotation classes were more relevant for fat

percentage. Additionally, our findings were quite in agreement with

those reported by Bhuiyan et al. (1), who proposed that differences

in the genetic variance explained by functional classes among

traits are attributable to the distinct genetic architecture underlying

biological processes for muscle development and fat biosynthesis.

Intergenic and intron functional annotations showed a great

contribution to the genetic variance of the traits. However, the

genetic variance explained per SNP in these classes was notably low.

These differences are likely due to the extremely high number of

SNPs in these classes compared to the others. In this regard, Yang

et al. (38) demonstrated that when the genomic relationships are

not adjusted for incomplete LD between SNPs and causal variants,

the proportion of explained genetic variance increases with the

number of SNPs.

5 Conclusion

This study applied genomic-based mixed linear models to

partition the genetic variation of carcass weight and meat quality

traits in Angus beef cattle according to MAF bins, functional

annotations, and autosomal chromosomes. Our findings revealed

that while most genetic variation is attributable to common alleles,

rare variants also explained a significant proportion. Considerable
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differences were observed among functional annotations both

within and between traits, suggesting two key genetic mechanisms

underlying these traits in beef cattle: muscle development and lipid

biosynthesis. Almost all components (e.g., functional annotations,

chromosomes, and MAF bins) contributed to the genetic variation

of the studied traits, supporting a polygenic inheritance model.

Overall, this study provides comprehensive and valuable insights

into the genetic architecture of carcass and meat quality traits,

offering opportunities to enhance genomic prediction accuracy and

develop more efficient breeding strategies in Angus beef cattle.
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