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Porcine circovirus type 2 (PCV2) is a highly adaptable pathogen with significant 
implications for global swine health. In 2023, we investigated the prevalence and 
genetic variation of PCV2 in Henan Province, China, by analyzing blood and tissue 
samples from 380 pigs exhibiting clinical symptoms of PCV2 infection, including 
reproductive disorders and respiratory diseases. PCR analysis was used to detect 
PCV2, and viral sequences from 13 positive samples were characterized through 
phylogenetic and mutational analyses. PCV2 was detected in 56.58% (215/380) 
of samples. Nucleotide homology among newly identified PCV2 strains ranged 
from 95.14 to 100%, and 91.18–99.89% compared to 36 global reference strains. 
Phylogenetic analysis of the ORF2 gene encoding the viral capsid protein Cap 
identified PCV2a, PCV2b, and PCV2d subtypes, with most sequences clustering 
into three PCV2d subgroups (PCV2d-1, PCV2d-2, and PCV2d-3). Notably, the 
PCV2a strain HN230707 exhibited significant genetic divergence, forming an 
independent branch. Mutational analysis of the Cap protein revealed key amino 
acid substitutions in conformational epitope regions (T60S, R63T, N77D, V80L, 
L185M, A191K, and I200T), potentially contributing to immune evasion. Additionally, 
unique mutations in the nuclear localization signal and conformational epitope 
regions were identified in PCV2d subgroups. The emergence of genetically diverse 
PCV2 strains, particularly novel PCV2d sub-genotypes, raises concerns regarding 
their potential to evade vaccine-induced immunity. These findings highlight the 
importance of continuous molecular surveillance and the need for updated vaccine 
strategies to mitigate the impact of PCV2 on global swine health.
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1 Introduction

Porcine circoviruses (PCVs), belonging to the family Circoviridae 
and genus Circovirus, are the smallest known viruses infecting swine. 
They possess non-enveloped, icosahedral virions measuring 14-17 nm 
in diameter and contain a covalently closed, single-stranded circular 
DNA genome of approximately 1.7 kb (1, 2). Four PCV types have been 
identified (PCV1-PCV4) (2–5). Among these, PCV2 is the primary 
causative agent of porcine circovirus-associated diseases (PCVDs), a 
spectrum of conditions that include postweaning multisystemic wasting 
syndrome (PMWS), porcine dermatitis and nephropathy syndrome 
(PDNS), respiratory and intestinal disorders, and reproductive failure. 
These conditions pose a significant threat to global swine production 
due to their impact on pig health, growth, and mortality (1).

The PCV2 genome contains two major open reading frames 
(ORFs): ORF1 and ORF2 (6, 7). ORF1 encodes the Rep protein, a 
35.7 kDa replicase essential for viral replication (8). ORF2 encodes the 
27.8 kDa Cap protein, the sole component of the viral capsid and the 
primary target of host immune responses (9–11). The Cap protein 
displays functional variability across its amino acid (aa) sequence. In 
addition to the nuclear localization signal (NLS, aa1-41), Cap contains 
several antigenic structural domains, including genotype-specific 
domains (aa86-91, aa190, aa191, aa206, and aa210) and conformational 
epitopes (aa47-85, aa165-200, and aa230-233) (12, 13). These epitopes, 
particularly those recognized by neutralizing monoclonal antibodies 
(MAbs) at aa145-162, aa175-192, and aa231-233, play a key role in 
immune evasion. Mutations at residues such as aa59, aa86, aa88, aa91, 
aa151, aa190, aa191, and aa206 influence the immune response to 
PCV2 MAbs (14, 15), while mutations at aa59, aa60, aa190/151 and 
aa131/191 significantly alter the virus antigenicity and neutralization 
potential. Based on ORF2 sequence variations, at least nine genotypes 
(PCV2a to PCV2i) have been identified to date (16–23). Additionally, 
ORF3 protein induces apoptotic responses and contributes to viral 
pathogenesis in  vitro and in  vivo (24–27). ORF4 protein inhibits 
caspase activity and suppresses the proliferation of CD4 + and CD8 + T 
cells, further modulating the immune response (28).

Since its emergence, PCV2 has undergone two major genotype 
shifts, from PCV2a to PCV2b in 2003 and subsequently to PCV2d in 
2012, which now dominates globally (29, 30). Despite widespread 
vaccination, PCV2 continues to evolve, raising concerns about vaccine 
efficacy and the emergence of novel strains capable of evading immune 
protection. Henan Province, one of the largest pig farming regions in 
China, has experienced fluctuating PCV2 prevalence in recent years. 
While infection rates declined from 2017 to 2022, a significant 
resurgence was observed in 2023, particularly in some large-scale farms 
(31). The objective of this study was to investigate the prevalence and 
genetic diversity of PCV2 in Henan Province. To this end, we conducted 
PCR analysis on blood and tissue samples from 380 pigs that exhibited 
clinical symptoms such as piglet wasting, growth retardation, respiratory 
signs (e.g., coughing and fever), and reproductive issues in sows (e.g., 
mass abortion and stillbirth) from different farms across the province. 
Whole-genome amplification was then performed on 13 positive 
samples, and the genomic sequences were analyzed for homology with 
reference strains from GenBank. The comparative analysis focused on 
the Cap protein sequences, revealing key genetic variations and 
differences between the new strains and the reference strains. These 
findings provide valuable insights into the genetic variability of PCV2 
and its implications for vaccine development and disease management.

2 Materials and methods

2.1 Sample collection, DNA extraction, and 
PCR analysis

A total of 380 samples, including blood, lungs, and spleens, were 
collected from pigs exhibiting clinical signs of reproductive disorders 
and respiratory diseases. These samples were obtained from farms 
located in six cities within Henan Province (Nanyang, Zhumadian, 
Pingdingshan, Xinyang, Zhoukou, and Shangqiu) in 2023 (Figure 1). 
All samples were stored at −80°C until further processing. Viral 
genomic DNA was extracted from 200 μL serum or tissue homogenate 
using a Simply P Virus DNA/RNA Extraction kit (Hangzhou BORI 
Technology, Hangzhou, China) following the manufacturer’s 
instructions. The extracted DNA was stored at −80°C until use.

PCR amplification was performed using standard PCV2-specific 
primers (31). The PCR protocol consisted of an initial denaturation 
step at 95°C for 5 min, followed by 34 cycles of denaturation at 95°C 
for 30s, annealing at 55°C for 30s, and extension at 72°C for 30s, with 
a final elongation step at 72°C for 10 min. The PCR products were 
purified and recovered using the E.Z.N.A Gel Extraction kit 
(Guangzhou Feiyang Biological Engineering, Guangzhou, China) and 
subsequently cloned into the pMD18-T vector. Positive clones were 
identified by PCR and sent to Sangon Bioengineering (Shanghai, 
China) for Sanger sequencing. The positive rates of PCV2 were 
determined based on the combined results of PCR amplification and 
sequencing analysis.

2.2 Whole genome amplification and 
sequencing of PCV2

Viral genomic DNA was extracted from thirteen PCV2-positive 
samples by using a Simply P Virus DNA/RNA Extraction kit 
(Hangzhou BORI Technology, Hangzhou, China) and used as the 
template for PCR amplification. The complete PCV2 genomes were 
amplified in overlapping segments using a set of PCV2-specific primer 
pairs designed to span the entire viral genome (31). The PCR-amplified 
products were purified and subsequently ligated into the 
pMD18-T T/A cloning vector (Takara Bio, Seoul, Korea). The ligation 
products were then transformed into Escherichia coli TOP10 
competent cells (Thermo Fisher Scientific, Hanover Park, IL, 
United States). Positive colonies were screened by colony PCR and sent 
to Sangon Bioengineering (Shanghai) for Sanger sequencing. The 
sequencing data were assembled and analyzed using SeqMan in the 
DNASTAR software package (version 7.10, DNASTAR, Madison, 
Wisconsin, United States) to generate complete viral genome sequences.

2.3 Identification and phylogenetic analysis

To analyze the genomic nucleotide (nt) sequences and ORF2 nt 
sequences of the 13 newly obtained PCV2 strains and elucidate their 
phylogenetic relationships, the assembled sequences were aligned with 
the genomic sequences of 36 representative PCV2 strains from 
different sub-genotypes retrieved from GenBank. Whole-genome and 
ORF2 sequence similarity analyses were conducted for the 13 newly 
identified strains and the 36 reference strains using the MegAlign 

https://doi.org/10.3389/fvets.2025.1598383
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Leng et al. 10.3389/fvets.2025.1598383

Frontiers in Veterinary Science 03 frontiersin.org

program within the DNASTAR software package. A phylogenetic tree 
was constructed based on the genome sequences of the 13 new strains 
and the 36 reference sequences. The ORF2 sequences, commonly used 
to monitor viral genetic variation, were used to classify PCV2 into 
distinct genotypes based on their sequence variability. According to 
the MODELS program in the Molecular Evolutionary Genetics 
Analysis (MEGA) software (v.11.0), the ORF2 phylogenetic tree was 
constructed using the Maximum Likelihood method with the 
Hasegawa-Kishino-Yano model and a discrete Gamma distribution 
(HKY + G) to account for evolutionary rate differences among sites 
(32). Bootstrap values were calculated using 1,000 replicates.

2.4 Analysis of amino acid variability in the 
cap protein

The Cap protein of PCV2 contains multiple antigenic structural 
domains, including key amino acid (aa) sites that are critical for the 
recognition and binding of the host’s neutralizing antibodies to the 
virus (12, 33). To identify mutations and assess sequence variability, 
we performed a comparative analysis of the aa sequences of the Cap 
protein from 13 newly obtained PCV2 strains and 36 reference strains. 
Multiple sequence alignments were performed using the ClustalW 
method in the MegAlign program (DNASTAR package, version 7.10).

3 Results

3.1 Positive rate and regional distribution

PCR was performed on 380 suspected PCV2-positive samples 
collected from various cities of Henan Province. The results revealed 
an overall positive rate of 56.58% (215/380). Regional positivity rate 
varied, with the highest rate observed in Pingdingshan (64.2%, 45/70), 
followed by Nanyang (62.9%, 73/116), Zhoukou (56.8%, 21/37), 
Zhumadian (52.8%, 47/89), Xinyang (51.2%, 22/43) and Shangqiu 
(40%, 10/25) (Figure 1). Notably, the positivity rates in Pingdingshan, 
Nanyang and Zhoukou exceeded the overall positivity rate.

3.2 Sequence identity analysis

A total of 13 PCV2-positive samples were amplified by PCR, 
sequenced, and assembled to obtain whole genome sequences, all of 
which were 1,767 nt in length. Pairwise comparisons showed that the 
whole genome sequences of the 13 PCV2 endemic strains shared 
95.19–100% sequence identity among themselves, while their identity 
with the 36 PCV2 reference genome sequences from GenBank ranged 
from 91.23% to 99.89% (Figure 2A). Specifically, the sequence identity 
between the new strains and the vaccine strains PCV2a LG 

FIGURE 1

Regional distribution of samples and PCV2 positivity rates in Henan Province.
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(HM038034), PCV2b DBN-SX07-2 (HM641752), PCV2d SH 
(AY686763), and the Danish representative strain PCV2c 
DK1980PMWSfree (EU148503) ranged from 95.08%–96.55%, 
95.81%–98.47%, 96.21%–98.42%, and 94.12%–95.02%, respectively 
(Supplementary Table 1).

Analysis of the ORF2 sequences showed that the new PCV2 
strains shared 89.93–100% sequence identity among themselves. 
Their identity with the vaccine strains PCV2a LG (HM038034), 
PCV2b DBN-SX07-2 (HM641752), PCV2c DK1980PMWSfree 
(EU148503) and PCV2d SH (AY686763) ranged from 90.50%–
94.03%, 92.60%–99.29%, 86.81%–90.21%, and 91.21%–97.45%, 
respectively (Supplementary Table 1). Pairwise comparisons of ORF2 
sequences between the new strains and reference strains revealed 
sequence identities ranging from 80.75% to 100% (Figure 2B).

Further analysis indicated that the new strain HN230707 exhibited 
the highest sequence identity (96.38%–99.10%) with reference strains 
of the PCV2a genotype. Similarly, the new strain HN230704 showed the 
highest identity (98.13%–99.43%) with reference strains of the PCV2b 
genotype. The remaining 11 new strains displayed the highest identity 
(95.14%–99.89%) with reference strains of the PCV2d genotype. Based 
on these findings, the 13 new strains were preliminarily classified as 
belonging to the PCV2a, PCV2b, and PCV2d genotypes. Notably, the 
new strain HN230707 exhibited greater genetic variability, with 
sequence identities of only 94.12%–96.55% compared to four reference 
strains. These results suggest that the PCV2d genotype is currently the 
predominant strain circulating in Henan Province, and a significantly 
divergent new strain emerged in 2023.

3.3 Phylogenetic analysis

To investigate the genetic diversity of PCV2 in Henan Province in 
2023, a phylogenetic tree was constructed using the Cap protein 
sequences of 13 new strains and reference strains. As shown in 
Figure 3, the new PCV2 strains were classified into three genotypes: 
PCV2a, PCV2b and PCV2d.

Among the new strains, HN230707 clustered with the PCV2a 
reference strains, confirming its classification as a PCV2a genotype. 
Similarly, HN230704 clustered with the PCV2b reference strains, 
indicating it belongs to the PCV2b genotype. The remaining 11 new 
strains formed a larger cluster with the PCV2d reference strains. 
Within this cluster, five strains (HN230419, HN230511, HN230522, 
HN230830, HN231009) grouped into a distinct sub-cluster with the 
reference strains PCV2 CH-SD-ZiBo-9-2022-CAP (OP413469) and 
PCV2d SH (AY686763). A second sub-cluster included the new 
strains HN230829 and HN231124, which grouped with reference 
strains PCV2d UFV1 (KJ187306), PCV2d BDH (HM038017), 
PCV2d AH (HM038030), PCV2d GXQZ1 (KY305199), PCV2d 
SY-L-X6-CHN-2015 (KU041857), and PCV2d YQ-CHN-2014 
(KU041859). A third sub-cluster comprises reference strains PCV2d 
GDYX (JX519293) and PCV2d S811-4 (MF142276), which grouped 
with four new strains: HN230612, HN230910, HN230911, and 
HN231113. These three sub-clusters were designated as PCV2d-1, 
PCV2d-2, and PCV2d-3, respectively.

Interestingly, the new strain HN230829, which emerged in 2023, 
formed a relatively independent branch within the PCV2d-2 
sub-genotype, suggesting significant genetic divergence. Similarly, 
HN230707 clustered with the PCV2a reference strain but was 
distantly related to them, indicating potential genetic variability. 
These results suggest that the PCV2d genotype remains the 
predominant strain circulating in Henan Province, while PCV2 
continues to evolve, leading to increased genetic diversity and 
complex epidemiological patterns.

3.4 Amino acid sequence analysis of the 
cap protein

To further characterize the molecular features of the newly 
identified PCV2 strains, we compared the aa sequences of their Cap 
proteins with those of reference strains using MegAlign software 
(Figure  4). The results revealed consistent aa mutations across 

FIGURE 2

Heatmap illustrating the percentage identity between 13 new PCV2 isolates and 36 reference strains based on whole-genome sequences (A) and ORF2 
gene sequences (B).
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different PCV2 subtypes, which facilitate the identification of the 
new strains.

Compared to the PCV2a LG strain (HM038034), the PCV2d strains 
exhibited a consistent A68T mutation within the conformational epitope 
region aa 47–85. The newly identified PCV2d-1 sub-genotype displayed 
two additional mutations: V30L in the NLS region and S169G/R within 
the conformational epitope region aa 165–200, with V30L being unique 
to this sub-genotype. Similarly, PCV2d-2 and PCV2d-3 strains shared the 
Y8F mutation in the NLS region and S169G/R mutation within the 
conformational epitope region aa 165–200. However, at aa169 of the Cap 
protein, most PCV2d-2 strains carried an R, while all PCV2d-3 strains 
carried a G. These consistent aa mutations in the Cap protein sequences 
of PCV2d-1, PCV2d-2, and PCV2d-3 further support the existence of 
multiple sub-genotypes within PCV2d.

In addition, the newly identified strain HN230707 exhibited four 
mutations (T60S, R63T, N77D, and V80L) within the conformational 
epitope region aa 47–85 and three mutations (L185M, A191K, and 
I200T) within the conformational epitope region aa 165–200 when 
compared to the PCV2a LG (HM038034) strain. Furthermore, within 
the genotype-specific structural domains aa 86–91, the new strain 

HN230707 harbored an E88K mutation compared to PCV2a reference 
strains. Interestingly, all analyzed PCV2d strains contained a unique 
A68N mutation within the conformational epitope region aa 47–85, 
distinguishing them from other PCV2 strains. In contrast to other 
PCV2d strains, the PCV2d strain HN230829 exhibited a T190S 
mutation within the conformational epitope region aa 165–200, which 
was identical to that of PCV2a strains.

Overall, these results indicate that the Cap protein of some newly 
identified PCV2 strains carries more aa mutations compared to the 
reference strains, particularly the vaccine strain PCV2a LG 
(HM038034). Such genetic variations may contribute to immune 
evasion, potentially reducing the efficacy of current vaccines.

4 Discussion

In this study, we investigated the prevalence and genetic diversity 
of PCV2 in Henan Province, China, in 2023. Our findings reveal a sharp 
increase in PCV2 positivity rates in large-scale pig farms since late 2022, 
accompanied by significant genetic variability in circulating strains. 

FIGURE 3

Maximum-likelihood phylogenetic tree constructed from ORF2 gene sequences of 13 new PCV2 isolates and 36 reference sequences. New PCV2 
strains identified in this study are indicated with red circles.
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PCV2 remains one of the most prevalent pathogens responsible for 
PCVD, posing a serious threat to swine health and leading to substantial 
economic losses in the global swine industry (34, 35). Although 
widespread vaccination has helped control PCV2 to some extent, the 
genetic diversity of the virus enables persistent infections in large-scale 
pig farms, negatively impacting economic efficiency and the overall 
development of the pig industry (36). Henan, a major pig farming 
province in China, has its swine industry concentrated in Nanyang, 
Zhumadian, Pingdingshan, Xinyang, Zhoukou and Shangqiu. Since late 
2022, the PCV2 positivity rate has increased in some large-scale pig 
farms, causing a range of economic repercussions (31). To assess the 
prevalence of PCV2 in Henan Province in 2023, we collected samples 
from these areas and performed PCR on 380 suspected cases of 
infection. The results showed a PCV2 positive rate of 56.58% (215/380), 
with regional rates ranging from 40 to 64.2%, indicating widespread 
PCV2 infection in Henan. Previous studies have reported positivity rate 
exceeding 40% across different regions of China, with variations likely 
influenced by statistical time- and geographic-based factors (37).

Our recent research showed a declining PCV2 positivity rate in 
Henan from 2017 to 2022, decreasing from 58.65% to 7.87% (31). 
However, since late 2022, the detection rate has surged reaching 
56.58% in 2023, similar to 2017 levels (31). This resurgence may 
be linked to the low price of pigs in China since 2022, prompting 
farms to modify immunization programs to reduce costs. This likely 
resulted in decreased PCV2 vaccine administration and overall herd 
immunity, facilitating the rapid spread of the virus. Additionally, the 
concurrent widespread prevalence of porcine reproductive and 
respiratory syndrome virus (PRRSV), PCV3, and PCV4  in recent 
years has likely exacerbated PCV2 infections (38).

The Cap protein, encoded by the ORF2 gene, is the sole structural 
protein of PCV2, and serves as a key marker for monitoring genetic 

variation and genotyping (11, 39). Previous studies indicate that the 
dominant PCV2 genotype in China has shifted twice, with PCV2d 
emerging as the predominant genotype in 2012 (40, 41). To elucidate 
the genotypic distribution of PCV2 in Henan in 2023, we selected 13 
samples from the 215 positive cases, which exhibited typical clinical 
symptoms of PCV2 infection and tested negative for other major 
swine viruses. Complete genome sequences were obtained through 
sequence assembly using the SeqMan program. Phylogenetic analysis 
of the ORF2 gene classified these strains into PCV2a (7.69%), PCV2b 
(7.69%), and PCV2d (84.62%) subtypes, confirming the continued 
predominance of PCV2d subtype in Henan. This finding aligns with 
the broader trend in China, where PCV2d has largely replaced PCV2b 
as the dominant genotype since 2012.

The phylogenetic analysis also identified two independent clades, 
represented by PCV2b strain HN230704 of and PCV2a strain 
HN230707. Among the 11 isolated PCV2d strains, three distinct 
subclades—PCV2d-1, PCV2d-2, and PCV2d-3—were identified, 
marking the first detailed sub-genotypic classification of PCV2d. This 
classification enhances our understanding of PCV2d genetic diversity, 
facilitating more precise epidemiological tracking and the 
development of regional disease-control strategies and vaccines. 
Notably, the emergence of the new sub-genotypes PCV2d-1 and 
PCV2d-3 in large numbers over a short period of time suggests that 
genetic variation among PCV2d strains may be more frequent and 
rapid than previously thought. Continuous monitoring of PCV2d 
genotypic variation is, therefore, crucial, both for epidemiological 
assessment and the design of next-generation vaccines. However, 
whether these sub-genotypes will become dominant in the future is 
uncertain and requires further surveillance.

The PCV2a strain HN230707 was isolated from a farm where 
sows, despite routine PCV2 vaccination, experienced severe 

FIGURE 4

Amino acid sequence analysis of the Cap protein comparing new PCV2 isolates with reference strains.
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reproductive failures, including abortions, stillbirths, and mummified 
fetuses. Testing conducted by our laboratory ruled out other major 
reproductive pathogens, leading to the hypothesis that genetic 
mutations in this strain may have enhanced its pathogenicity or 
enabled it to evade vaccine-induced immunity. Current commercial 
PCV2 vaccines, primarily based on PCV2a subtype, have 
demonstrated cross-protection against PCV2b and PCV2d under 
laboratory conditions (42). However, the recent surge in PCV2 
positivity, the emergence of the HN230707 variant, and the prevalence 
of PCV2d-1 and PCV2d-3 sub-genotypes strongly suggest that 
existing vaccines may not provide comprehensive protection under 
real-world conditions (42–44). This underscores the urgent need for 
the development of updated vaccines tailored to evolving PCV2 strains.

Given the high variability of the Cap protein, we analyzed the aa 
sequence of the Cap protein from newly isolated strains of the 
predominant PCV2d. The results confirmed that all 11 new strains 
showed specific aa mutations within the conformational epitope region 
aa 47–85, consistent with PCV2d classification. Additionally, PCV2d-1, 
PCV2d-2 and PCV2d-3 showed distinct aa mutations within the 
conformational epitope region aa 165–200 and the NLS region aa1-41, 
reinforcing the presence of multiple sub-genotypes within PCV2d. The 
new strains HN230707 and HN230829 showed unique aa mutations 
in the conformational epitope region aa 175–192, a critical region for 
recognition by PCV2 neutralizing Mab, suggesting that these 
mutations may affect viral neutralization (45). Moreover, HN230707 
harbored multiple aa mutations within the conformational epitope 
regions aa 47–85 and aa 165–200, which could alter its antigenicity, 
pathogenicity, and vaccine-induced immune protection, potentially 
contributing to reproductive failures in affected farms. These findings 
emphasize the necessity of continuous PCV2 genomic surveillance to 
track viral evolution and its impact on vaccine efficacy, enabling the 
timely development of disease prevention and control strategies.

5 Conclusion

In summary, our study revealed a sharp increase in PCV2 
positivity rates in some large-scale pig farms in Henan Province since 
late 2022, accompanied by significant genetic variability in circulating 
strains. These developments warrant increased attention from China’s 
pig industry and emphasize the need for enhanced surveillance of 
PCV2 epidemiology and genetic diversity. Strengthening monitoring 
efforts will provide critical insights for the scientific prevention and 
control of PCV2, ensuring better management of its economic and 
health impacts on swine production.
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