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Analyses of nucleic acids from archival tissues offer invaluable prospects for 
numerous fields of veterinary medicine, such as the study of differential gene 
expression in rare or historic diseases. The establishment of modern methodologies, 
however, raises questions regarding the comparability and reproducibility of data 
obtained from unlike tools. 3′ RNA-Seq and direct RNA hybridization are such 
conceptually different approaches for high-throughput transcriptome analysis. 
Since both are applicable to short, partially degraded mRNA fragments, they 
in principle allow investigations of formalin-fixed, paraffin-embedded (FFPE) 
tissues that are abundantly available in pathology archives. Here, we compared 
the two methods in several relevant details using the RNA from the same set of 
35 FFPE canine tumors as input, including sample- and gene-wise count levels, 
gene expression strengths and directions, as well as the overlaps of differentially 
expressed genes (DEGs). Both methods proved suitable for their use on archival 
tissues with moderately to very strong overall count correlations, as indicated by 
a range of Pearson and Spearman means between 0.66 and 0.87. Of note, the 
gene-wise count correlations depended on gene expression strength. In an entity-
contrasting comparison, expression directions correlated very strongly ranging 
from 0.88 to 0.91, but DEGs overlapped only moderately with a Jaccard index of 
0.53. Finally, we contrasted the different practically relevant aspects of the two 
technologies with their distinct advantages that depend on the objectives and 
design of the study. This comparison will guide and help to select the appropriate 
method and to validate and interpret the data obtained.
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1 Introduction

Research and diagnostic institutions usually store formalin-fixed, 
paraffin-embedded (FFPE) tissues in archives, accumulating large 
numbers and variations of specific diseases, samples of rare entities, 
or otherwise valuable properties. Such archives represent a priceless 
resource for retrospective biomedical studies allowing basic and 
applied research in many fields, including comparative oncology. 
Recent technologies with different conceptual approaches (1–3) have 
made it possible to quantify specific RNA sequences from such 
samples that allow a deeper insight into the dynamics of disease-
specific gene expression levels and gene regulation.

However, FFPE specimens pose particular challenges in terms of 
RNA quality and detectability, such as contamination with RNases and 
other inhibitory proteins (3, 4) or diverse chemical alterations (5). The 
latter include RNA degradation prior to fixation, chemical 
modification via cross-linking with peptides by formaldehyde, and 
fragmentation by high temperatures during paraffin embedding and 
prolonged storage (6–8).

Recently developed 3′ RNA-Seq methods, such as QuantSeq 3′, 
generate libraries from one sequence per transcript by capturing and 
sequencing short fragments at the 3′ end of polyadenylated RNA (9, 
10), thereby requiring significantly fewer reads compared to 
conventional RNA-Seq. Moreover, poly(A) enrichment, rRNA 
depletion, and RNA fragmentation before reverse transcription are no 
longer needed which simplifies and accelerates processing. 
Additionally, transcript length bias usually seen in traditional next 
generation sequencing (NGS) techniques (11) where long transcripts 
are artificially overrepresented (12) is circumvented, facilitating 
bioinformatic processing. Moreover, by capturing only short 
sequences of 60–80 nucleotides (nt) from the 3′ end of mRNA, 
QuantSeq 3′ can be used for analyzing partially degraded RNA from 
FFPE samples.

Alternatively, RNA hybridization panels can be employed for the 
analyses of specific groups of genes involved in specific disease 
processes. nCounter® (13) represents such a technology, employing a 
panel of color-coded molecular barcodes to target a pre-selected set of 
RNA molecules for digital quantification without prior cDNA 
synthesis or amplification, as opposed to RNA-Seq methods. Each 
unique transcript target is hybridized to a capture and reporter probe 
pair to generate a target-probe-complex, yielding a single count per 
transcript (14). This assay currently allows the detection of 800 
pre-selected plus 6–55 optional, user-defined transcripts. The 
preselection of targeted gene transcripts is either based on commercial 
gene expression panels, such as select aspects in oncology or 
immunology, or customizable for individual research endeavors. 
Importantly, even partially degraded RNA may serve as adequate input.

Despite overlapping applications, several decisive differences 
distinguish the two methods both in study goal and practical 
perspectives, which are summarized in Table 1. Depending on the goal 
and design of a study, the two methods offer different strengths and 
limitations. The QuantSeq  3′ system is particularly suitable for 
investigating entire pathways over virtually all cellular functions. Thus, 
the aim is to obtain a holistic overview of the differences between 
contrasting groups, or in studies that focus on, for example, biomarker 
identification. On the other hand, the nCounter® Canine IO Panel is 
suitable for studies that focus directly on immuno-oncological 
questions in dogs, including inflammatory subtypes of cancer and 

clinical research involving, for example, the testing of treatment effects 
(15–17). The major advantage of this assay is that even lowly expressed 
genes can be detected with a high sensitivity as a result of the targeted 
analysis, whereas in a whole transcriptome approach these genes are 
potentially not detected due to the much higher abundance of other 
genes. On the other hand, prior knowledge about the genes of interest 
or splice variants of the transcripts is necessary to generate specific 
nCounter® probes, thus limiting the discovery of new or unexpected 
transcripts. Furthermore, it is not always possible to differentiate 
between different known splice variants (18, 19). However, the same 
applies to the QuantSeq  3′ method, since a small number of 
nucleotides is used to infer the presence of transcripts.

Several independent studies have shown that both QuantSeq 3′ (9, 
20) and nCounter® (21–23) are suitable for gene expression profiling 
performed on partially degraded RNA isolated from FFPE tissues. In 
a comparison of nine different methods, both nCounter® and 
QuantSeq 3′ performed well on up to 15 year-old FFPE tissues (24). 
In addition, molecular subtypes of specific tumors have been 
accurately identified with both approaches from FFPE tissue samples 
(10, 25–28).

So far, however, the data output of these two technologies has not 
been compared to one another in terms of mutual validation and 
reproducibility when using RNA from canine archival tissues as input. 
A comparison of the two platforms’ performances on canine FFPE 
tumor tissue is particularly interesting, as the dog is considered a 
valuable model for naturally occurring cancers in humans and other 
comparative oncological studies (29–31).

Therefore, this study was designed to determine the correlation 
of gene expression data generated by QuantSeq 3′ and the nCounter® 
Canine IO Panel from three types of canine tumors. In order to 
exploit the full potential of the immuno-oncological emphasis of this 
nCounter® panel, two different oncological perspectives were chosen 
that included a strong immunological component. First, a stage-
dependent comparison of early and late stages of a tumor with 
stereotypical spontaneous regression was selected to compare the 
performance on similar tissues. For this intra-tumor comparison, 
canine cutaneous histiocytomas (CCH) were employed. CCH is a 
common benign skin tumor generally of young dogs with progenitor 
cells to epidermal dendritic (Langerhans) cells as the cell of origin 
(32). CCH’s unique regression has been speculated to be due to an 
immune-mediated anti-tumor host response that warrants further 
investigation (33–37). The two stages compared here, namely group 1 
and group 3 based on Cockerell & Slauson (38), represent early and 
late time points in the course of CCH regression: After a short period 
of complete absence of lymphocytes (group 1), superficial ulceration 
and basolateral lymphofollicular infiltration ensue (group  2), 
followed by progressive infiltration of the tumor by lymphocytes 
(group  3), and final tumor regression with a predominance of 
lymphocytes and coagulation necrosis of the histiocytic tumor cells 
(group 4) (38).

Second, an entity-contrasting comparison between the two most 
common glandular, perianal tumors in the dog – the hepatoid gland 
adenoma (HGA) and apocrine gland anal sac adenocarcinoma 
(AGASAC)  – was elected. Despite their virtually identical site of 
origin, they represent both extremes on the dignity spectrum. While 
HGAs hardly ever develop invasive or metastatic behavior (39, 40), 
malignant AGASACs commonly metastasize early to regional lymph 
nodes (41–44). Thus, the biological differences and the different cells 
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of origin served as another suitable setting for a technical and 
bioinformatic comparison of the two methodologies.

2 Materials and methods

2.1 Selection of FFPE tissue samples

A total of 35 FFPE tissue samples from 2012 to 2021 were obtained 
from the archive of the Institute of Veterinary Pathology. Specimens 
had originally been surgically excised from privately owned pet dogs 
and submitted for individual diagnostic and therapeutic purposes. 
Dog owners had given their consent and the work was ethically 
approved by the State Office for Health and Social Affairs, Berlin (StN 
010/23). The tumors (AGASAC: n = 15, HGA: n = 10, CCH: n = 5 
early stage, and n = 5 late stage) were selected based on 
histopathological diagnosis on hematoxylin and eosin stained slides 
by a board-certified veterinary pathologist. Tumor-adjacent tissue was 
removed to obtain largely homogeneous tumor cell masses. Further 
information on the individual tissue samples is provided in 
Supplementary Table S1.

2.2 RNA extraction from FFPE samples and 
RNA quality control

Five 10 μm FFPE scrolls were prepared from entire cross sections, 
collected in sterile centrifuge tubes and stored at −80°C. Total RNA 
was extracted using the PureLink™ FFPE Total RNA Isolation Kit 
(Thermo Fisher) according to the manufacturer’s guidelines. Total 
RNA concentrations were measured with the NanoDrop™ 2000c 
spectrophotometer (Thermo Fisher) and quality was determined 
using the Agilent 5200 Fragment Analyzer (Agilent Technologies, Inc., 
Santa Clara, United States) employing the DNF-471F33 - SS Total 
RNA 15 nt - FFPE Illumina DV200 method mode with a range of 
smear analysis from 200 to 20,000 nt. Only samples with a total RNA 
quality number (RQN) (45) of > 4 and a DV200 (percentage of RNA 
fragments over 200 nt in length) (46) of > 64.5% were chosen. For 
RNA quality classification, the Illumina® recommendations were 
applied, which denote a DV200 of > 70% as high and a DV200 of 50–70% 
as medium quality. For data on RNA quality, see 
Supplementary Table S2. Total RNA was treated with DNase I. Both 
the nCounter® and QuantSeq 3′ analyses were employed on the total 
RNA from the same isolation batches.

TABLE 1 Overview of conceptual and practical differences between the QuantSeq 3′ and nCounter® Canine IO Panel technologies.

QuantSeq 3′ Counter® Canine IO Panel

Approach  • Mostly hypothesis-generating  • Usually hypothesis-driven (immuno-oncological 

landscape of canine tumors)

Output  • Whole transcriptome (dependent on reading depth)  • 800 preselected immuno-oncologically relevant genes, 

optional 6–55 used-defined genes

Principle of method  • Strand-specific NGS libraries close to 3′ end of polyadenylated RNA

 • One fragment per transcript

 • Direct linking of number of reads mapping to a gene to its expression

 • Direct quantification of specific mRNA molecules 

using capture and reporter probe

RNA input  • 0.5–500 ng  • 1–100 ng

Consumables and reagents  • QuantSeq 3′ mRNA-Seq Library Kit FDW for Illumina® or Ion Torrent™  • nCounter® IO Canine Panel (XT CodeSets)

 • nCounter® IO Canine Primer Pool

 • nCounter® Master Kit (including cartridges)

Workflow  • Library generation with oligo(dT) primers

 • Library amplification

 • NGS sequencing with customized sequencing primer (or T-fill reaction)

 • Data processing

 • Hybridization of RNA samples with probes over night

 • Load onto nCounter® analysis system

 • Data import into and analysis with nSolver™ software

Data processing  • Bioinformatic data analysis pipeline necessary (raw data processing, 

alignment to reference genome, software for differential gene expression 

analysis)

 • Autonomous evaluation using nSolver™ with 

Advanced Analysis plug-in

Laboratory equipment  • Sequencer (Illumina® or Ion Torrent™)  • nCounter® analysis system (SPRINT, Pro or 

MAX/FLEX)

Bioinformatic services  • Complete workflow can be ordered from the company  • None (but technical support for nSolver™ is available)

Required time  • 4.5 h with less than 2 h hands-on time  • ~15 min hands-on time, overnight hybridization

Suitable for  • FF, FFPE, cell lysates  • Any sample type (FFPE, FF, blood, etc.)

Multiplexing  • Illumina® libraries: up to 96 external barcodes

 • Ion Torrent™ libraries: 24 in-line barcodes

 • 12 reactions per cartridge (in a single run)

FF, fresh frozen; FFPE, formalin-fixed, paraffin-embedded; NGS, next-generation sequencing; (m)RNA, (messenger) ribonucleic acid; FDW, forward; IO, immuno-oncological.
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2.3 Direct mRNA hybridization

The RNA (150–250 ng) was hybridized to the nCounter® Canine IO 
Panel XT CodeSets (NanoString Technologies, Inc., Seattle, WA, 
United States), including probes representing 780 pre-selected genes and 
20 “housekeeper” genes. A 30 probe Panel Plus (Supplementary Table S3) 
was added to the hybridization of the HGA and AGASAC samples 
following the manufacturer’s hybridization protocols (manual IDs: 
MAN-10023-11, MAN-10056-06). This Panel Plus included genes of 
further interest for this entity comparison. Hybridized samples were 
loaded onto the nCounter® MAX Analysis System’s Prep Station 
(NanoString) for purification and immobilization on sample cartridges, 
transferred to the Digital Analyzer for data collection and analyzed 
following the manufacturer’s user manual (manual ID: MAN-C0035-08).

Following the workflow described in the manufacturer’s 
recommendations (manual IDs: MAN-C0019-08, MAN-C0011-04), 
the reporter library files (RLF) and reporter code count (RCC) files 
were imported into the nSolver™ 4.0 Analysis Software (NanoString). 
Quality control and normalization followed default settings. 
Differential gene expression (DGE) analysis was implemented with 
the R 3.3.2-based Advanced Analysis 2.0 plug-in (version 2.0.134) 
with the recommended statistical settings. The raw, normalized, and 
DGE data were exported and read into R / Python Jupyter notebooks 
for further bioinformatic analysis and correlation calculations.

2.4 3′ RNA sequencing

The RNA was sequenced with QuantSeq  3′ (Lexogen GmbH, 
Vienna, Austria) at Lexogen Services. DNase I  treated total RNA 
(500–1,000 ng from HGA and AGASAC; 375 ng from the early and 
late CCH stages) was processed with the QuantSeq 3’ mRNA-Seq 
FWD Library Preparation Kit (Lexogen) according to the 
manufacturer’s guidelines (user guide: 015UG009V0251) using the 
low-quality RNA protocol. Quality of the libraries was determined 
with the Agilent 5300 Fragment Analyzer (DNF-474-33 - HS NGS 
Fragment 1-6000 bp method mode). The samples were pooled in 
equimolar ratios. The library pool was quantified using a Qubit™ 
dsDNA HS assay kit (Thermo Fisher) and sequenced utilizing an 
Illumina® NextSeq™ 500 system with a SR75 High Output Kit. In 
total, 0.011 sequencing lanes were used per sample, resulting in an 
output of 4,025,165 to 7,548,231 trimmed reads for the HGA and 
AGASAC samples with an average input read length of 63.41 to 71.6 nt 
and 5,426,266 to 7,783,141 trimmed reads for the CCH samples with 
an average input length of 66.21 to 71.65 nt.

The FASTQ sequencing files were first pre-processed (adapter 
trimmed, filtered) using Cutadapt (47) and subsequently aligned to the 
NCBI Reference Sequence (RefSeq) assembly for the dog (Canis lupus 
familiaris) CanFam3.1 (48) (GCF_000002285.3) with the STAR aligner 
(49). Read counts per gene were generated with two rounds of 
featureCounts (50) to mitigate the effect of too short 3′ UTR annotations. 
Reads that remained unassigned in the first round were subjected to the 
second round of featureCounts on an adjusted annotation with a 3′ 
extension by 2 kilobases. Multi-mapped reads were retained and all 
counts distributed evenly across all mapping locations. For comparison 
with nCounter® counts, the raw gene counts were normalized with the 
edgeR package (51–53). DGE analyses were performed with R using 

DESeq2 (54). The workflow is fully accessible in figshare (see data 
availability, DOI: 10.6084/m9.figshare.25768587). The significance 
thresholds were set at a log2 (fold change) (log2FC) of ≤ −1 or ≥ 1 and 
an adjusted p-value (padj) of ≤ 0.05.

As the nCounter® Canine IO Panel probes were designed using 
CamFam3.1, the same reference genome for QuantSeq  3′ read 
alignment was used for proper gene annotation comparison, despite 
the dog reference genome having been updated since. This same 
annotation offers a more robust background for comparison, as genes 
have been either dropped or added in the more recent genome.

2.5 Biological comparisons for differential 
gene expression

Two biological comparisons were chosen to test whether data sets 
stemming from an intra- or an inter-tumor contrast might be more 
prone to errors, possibly reflected in a weaker correlation of results 
from different measurements. For the inter-tumor, entity-contrasting 
comparison, the HGA (n = 10) was compared to the AGASAC (n = 15 
for gene correlation, n = 11 for DGE) as baseline (from now on “HGA 
versus AGASAC”) and for the intra-tumor, stage-dependent 
comparison, the early CCH stage (n = 5) was compared to the late 
CCH stage (n = 5) as baseline (from now on “CCH early versus late”).

2.6 Correlation calculation

For correlation calculations of gene abundance, nCounter® read 
counts were normalized with nSolver™, while QuantSeq  3′ read 
counts were normalized using three different methods based on the 
full set of known genes (Figure 1). nCounter® reads were normalized 
in nSolver™ in a two-step process with positive control and 
“housekeeping” gene normalization. At the level of QuantSeq 3′ data 
normalization, three different commonly applied normalization 
methods were compared. These were TMM (Trimmed Means of 
M-values); the method used by edgeR, CPM (counts per million), and 
RLE (relative log expression); the method used by DESeq2. All three 
methods were implemented within the edgeR package.

Different correlation coefficients were calculated for each the 
correlation of counts and the differentially expressed genes (DEGs) 
based on their log2FC values. The Pearson correlation coefficient 
indicated the correlation of counts and Spearman’s rank correlation 
coefficient the correlation of gene rank. To mitigate the effect of 
outliers, the Pearson correlation was also calculated on 
log-transformed counts with a pseudocount of 1 (from now on 
“Pearson-log”) for the sample-wise correlation calculation.

Count correlations were considered on a sample-wise (with 
Pearson-log and Spearman) and gene-wise (with Pearson and 
Spearman) level. The sample-wise level evaluated the correlation of 
counts of all genes per matched FFPE sample in both analysis methods 
used. The gene-wise level viewed the correlation of counts of an 
individual gene across the analyzed sample pairs.

The interpretation of the correlation strengths was based on 
previous publications for application in the medical field (55, 56): 
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≥  0.8 = very strong, ≥ 0.6 to < 0.8 = moderately strong, ≥ 0.3 to 
< 0.6 = fair, and < 0.3 = poor.

For the “HGA versus AGASAC” comparison, all 25 samples were 
used for the sample- and gene-wise count correlations, as a higher 
sample size generally improves data reliability. For DEG correlation, 
only the 21 primary tumor samples were included, thereby decreasing 
some biological variability in the tissue background within the sample 
cohort. All 5 CCH samples in either the early or late stage were used 
in both count and DEG correlations.

2.7 p-value adjustment

Different procedures for the calculation of the false discovery rate 
(FDR) used for p-value adjustment during DGE calculation are 
routinely used. The nSolver™ user manual recommends using the 
Benjamini-Yekutieli (BY) procedure (57). On the other hand, DESeq2 
routinely employs the Benjamini-Hochberg (BH) procedure (58). 
Thus, to allow for better comparisons, the BY method was employed 
on all data shown here, as it is the more conservative and 
discriminating of the two (59–61).

3 Results

3.1 Normalization of reads from both 
techniques and correlation of counts

To begin, the genes included on the nCounter® Canine IO 
Panel were identified which are not annotated in CanFam3.1 and 
thus could not be routinely found in the QuantSeq 3′ data after 
alignment to this genome assembly. The genes were considered 
“missing” or without overlap between the two methods. It was 
consequently impossible to calculate correlation coefficients for 
these genes.

In the “HGA versus AGASAC” comparison, out of 830 genes 
included on the nCounter® panel with Panel Plus, 821 genes (98.9%) 
were found in the QuantSeq 3′ data. The following nine genes (1.1%) 
were missing in the QuantSeq  3′ data: FCAR, HAVCR2, IFNA7, 
IGHG, IGHM, IL2, MIF, TRAC, and TRBC.

Similarly, in the “CCH early versus late” comparison, out of 800 
genes included on the nCounter® panel, ten genes (1.25%) were 
missing in the QuantSeq 3′ data: CCR2, FCAR, IFNA7, IGHG, IGHM, 
MIF, TRAC, TRBC, TRGC2, and TRGC3. Thus, 790 genes (98.75%) 
genes overlapped.

FIGURE 1

Study workflow. The schematic representations of QuantSeq 3′ and the nCounter® Canine IO Panel depict the respective basic principles of the 
technologies. For correlation calculations of gene abundance, nCounter® read counts were normalized with nSolver™, while QuantSeq 3′ read counts 
were normalized using three different methods based on the full set of known genes, not only the panel subset considered by nCounter®. At the level 
of QuantSeq 3′ data normalization, three different commonly applied normalization methods were compared. These were TMM (Trimmed Means of 
M-values), CPM (counts per million), and RLE (relative log expression). FFPE = formalin-fixed, paraffin-embedded, DV200 = percentage of RNA 
fragments over 200 nucleotides (nt) in length, DEG = differentially expressed genes, log2FC = log2 (fold change).
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To determine the correlations on a count level, counts of all genes 
per matched FFPE sample analyzed with both nCounter® and 
QuantSeq  3′ (sample-wise level) were investigated. Overall, the 
sample-wise count correlations exhibited a narrow distribution of 
correlations and all correlation medians on this level were very strong 
in both biological comparisons (> 0.83).

For the “HGA versus AGASAC” comparison, data obtained with 
TMM provided a very strong count correlation (Pearson-log median: 
0.87). All normalization methods, however, similarly yielded very 
strong count correlations (Pearson-log medians: > 0.84). All gene rank 
correlations were identically very strong (Spearman medians: 0.86) 
among all normalization methods (Figure 2A).

In the “CCH early versus late” comparison, the utilization of 
TMM also provided a very strong count correlation (Pearson-log 
median: 0.85). The data from all normalization methods, however, 
likewise yielded very strong correlations (Pearson-log medians: > 
0.83). All gene rank correlations were equally very strong (Spearman 
medians: 0.84) among all normalization methods (Figure 2B).

For the sample-wise count correlation calculations in both 
biological comparisons, the application of TMM and CPM (medians: 
0.87 and 0.85, respectively) both slightly improved the Pearson-log 
correlations compared to the correlations with no normalization 
(medians: 0.86 and 0.84, respectively). However, the application of 
RLE slightly decreased the correlations (medians: 0.85 and 0.84, 
respectively). No improvement was seen after implementing the three 

normalization methods on the Spearman correlations; here all 
coefficients were identical (medians: 0.86 and 0.84, respectively).

In summary, all sample-wise count correlations were very strong 
with TMM, CPM, and RLE. Both the Pearson-log and Spearman 
correlations were slightly stronger in the entity-contrasting 
comparison (“HGA versus AGASAC”) than in the stage-dependent 
comparison (“CCH early versus late”).

Next, the correlations on a count level based on the counts of an 
individual gene across FFPE sample pairs analyzed with both 
nCounter® and QuantSeq  3′ (gene-wise level) were examined. 
Altogether, for the gene-wise count correlations, there was a much 
wider distribution of correlations.

Moderately strong (medians: > 0.63) correlations were calculated 
for the “HGA versus AGASAC” comparison (Figure 2C). This was 
observed on the level of counts (Pearson medians: > 0.67) and gene 
rank (Spearman medians: > 0.63). All normalization methods 
generated stronger correlations compared to no normalization 
(Pearson median: 0.67, Spearman median: 0.63). The application of 
RLE resulted in a slightly stronger correlation of counts (Pearson 
median: 0.732), compared to TMM (Pearson median: 0.726) and CPM 
(Pearson median: 0.731). With the use of TMM and CPM, almost 
identical gene rank correlations (Spearman median: 0.66) were 
calculated, compared to RLE (Spearman median: 0.65).

The “CCH early versus late” comparison also showed a much 
larger distribution of correlation values in all normalization methods 

FIGURE 2

Correlation of counts from QuantSeq 3′ and the nCounter® Canine IO Panel. The box plots show the sample-wise (A,B) and gene-wise (C,D) 
correlations of counts from both methods. Results for the entity-contrasting comparison (“HGA versus AGASAC”; A,C) and the stage-dependent 
comparison (“CCH early versus late”; B,D) are shown. The Pearson (for gene-wise) or Pearson-log (for sample-wise) correlation (white background) 
indicates the correlation at the count level, while the Spearman correlation (gray background) reflects the values at the gene rank level. The 
calculations were performed without normalization (patternless) and with three different normalization methods: Trimmed Means of M-values (TMM; 
obliquely striped), counts per million (CPM; horizontally striped), and relative log expression (RLE; reticulated). Orange horizontal line represents the 
median. Circles indicate outliers.
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(Figure  2D). This was observed on the level of counts (Pearson 
medians: > 0.76) and gene rank (Spearman medians: > 0.71). The 
application of all three normalization methods only slightly improved 
the correlations on count level (Pearson medians: > 0.77), compared 
to no normalization (Pearson median: 0.76). The application of CPM 
resulted in a slightly stronger correlation for counts (Pearson median: 
0.79), compared to TMM and RLE (Pearson medians: 0.777 and 0.779, 
respectively).

Notably, both the Pearson and Spearman correlations were slightly 
stronger in the stage-dependent comparison (“CCH early versus late”) 
than in the entity-contrasting comparison (“HGA versus AGASAC”), 
contrary to the sample-wise results.

3.2 Gene-wise correlation by gene 
expression level

To identify the gene-wise correlations of gene counts depending 
on the respective gene expression level, the Pearson and Spearman 
correlation coefficients normalized with TMM were plotted against 
the mean gene expression data from either nCounter® or QuantSeq 3′ 
(Figure 3). Thresholds were drawn based on the gene distribution 
within the scatter plots. All gene counts above a respective threshold 
were grouped into an expression strength category and the correlation 
coefficients calculated for each of the respective genes. Specifically, the 
mean expression correlations for all, the top 90%, and 50% of genes 
were calculated. In both comparisons, the median correlation among 
all genes including the lowly expressed genes was weaker (“HGA 
versus AGASAC”: Pearson: 0.73, Spearman: 0.66/“CCH early versus 
late”: Pearson: 0.77, Spearman: 0.73) than among all genes excluding 
the lowly expressed genes (“HGA versus AGASAC”: Pearson: 0.77, 
Spearman: 0.69/“CCH early versus late”: Pearson: 0.8, Spearman: 0.75) 
and including only the highly expressed genes (“HGA versus 
AGASAC”: Pearson: 0.85, Spearman: 0.8/“CCH early versus late”: 
Pearson: 0.83, Spearman: 0.81). Summarizing, the correlation of genes 
including the highly expressed genes was strongest.

3.3 Correlation of log2FC and differentially 
expressed genes

To ascertain the correlations of genes based on their differential 
gene expression in the two biological comparisons, it was first 
necessary to calculate the correlations of the log2FC values from 
DESeq2 without log2FC-shrinkage (log2FC-shrinkage = shrinks 
estimated effect size toward zero, stronger for genes with little 
information, i.e., low average read counts that can likely yield 
artificially high log2FC estimates) on the overlapping genes. For the 
“HGA versus AGASAC” comparison, both correlations were very 
strong (Pearson: 0.91, Spearman: 0.87) based only on the log2FC 
values of the genes. For the “CCH early versus late” comparison, on 
the other hand, both correlations were only moderately strong 
(Pearson: 0.68, Spearman: 0.72).

In order to determine the overlap of differential gene expression 
direction, the log2FC values from DESeq2 with shrinkage were 
collated into scatter plots. Therefore, the log2FC of a given gene from 
the QuantSeq  3′ data was plotted against the log2FC of the 
corresponding gene from the nCounter® data. The dots of the 

corresponding genes were colored according to the significance 
thresholds padj ≤ 0.05 and log2FC ≤ −1 or ≥ 1 and the correspondence 
of the expression direction based on the log2FC (≤ −1 = “down”; 
log2FC ≥ 1 = “up”).

The scatter plot for the “HGA versus AGASAC” comparison 
showed a total of 599 genes (Figure 4A). One hundred and twenty 
genes (79 “down”; 41 “up”) had the same log2FC direction (red dots). 
One hundred and twelve genes were predicted only in one of the 
methods: 62 in nCounter® (orange dots): 16 “down”; 46 “up” and 50 in 
QuantSeq 3′ (blue dots): 42 “down”; 8 “up.” No genes were classified 
in opposite directions. Three hundred and sixty-seven genes fell under 
the significance thresholds.

For the “CCH early versus late” comparison, a total of 658 genes 
were displayed in the scatter plot (Figure 4C). However, with a p-value 
threshold based on the BY adjustment, no genes were recognized by 
nCounter® and 89 genes (15 “down”; 74 “up”) only by QuantSeq 3′. 
The other 569 genes fell under the significance thresholds.

The lists of DEGs with their corresponding log2FC values and padj 
from both methods calculated by DESeq2 with shrinkage (scatter plot 
groups) from both biological comparisons are provided in 
Supplementary Table S4.

Differential gene expression (DGE) analysis performed using the 
BY p-value adjustment and log2FC with shrinkage calculated a total 
of 182 significantly differentially expressed genes (DEGs) for 
nCounter® and 170 significantly DEGs for QuantSeq 3′ in the “HGA 
versus AGASAC” comparison. To identify the overlap of the 
significantly DEGs in the “HGA versus AGASAC” comparison, a 
Venn diagram was created using the Matplotlib Python library (62). 
An overlap of 120 significantly DEGs was found in the “HGA versus 
AGASAC” comparison (Figure 4B), corresponding to a Jaccard index 
of 0.52.

In the “CCH early versus late” comparison, no significantly DEGs 
were calculated for nCounter® and a total of 89 significantly DEGs for 
QuantSeq 3′ were computed. As there were no significantly DEGs in 
the nCounter® data, the Venn diagram showed no overlap, matching 
a Jaccard index of 0 (Figure 4D).

4 Discussion

4.1 Stronger correlations compared to 
similar correlation studies

Here, we present the first systematic comparison between data 
resulting from the technical platforms QuantSeq 3′ and nCounter® 
using the Canine IO Panel on canine archival FFPE tissue. 
Previous correlation studies had contrasted data from QuantSeq 3′ 
or nCounter® to other mRNA quantification methods utilizing 
FFPE tissue. These had, for example, used different human FFPE 
tissues to directly compare nCounter® gene selections to other 
RNA-Seq methods or RT-PCR. For instance, a comparison of 
immune gene expression in 27 clear cell renal cell carcinoma 
samples between the nCounter® Pan Cancer Immune Profiling 
Panel and the Oncomine™ Immune Response Research Assay on 
FFPE specimens had revealed a moderately strong correlation 
(Spearman: 0.73) of fold changes for 248 shared genes. On a gene-
wise level, 226 of these genes had shown positive correlations and 
16 had negative correlations. The mean Pearson correlation for all 
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genes had been fair at 0.45 (range: 0.98 to −0.25) (63). Comparing 
20 genes in oral carcinoma samples using custom nCounter® 
CodeSets and RT-PCR, a moderately strong overall correlation 
(Pearson: 0.59) had been calculated (22) for gene expression levels 
in 19 FFPE sample pairs. In contrast, the correlation results of our 
study on canine tissues were stronger on both count and log2FC 
levels. This could be  due to the improved compatibility of 
nCounter® and QuantSeq 3′ for FFPE material compared to the 
Oncomine™ assay and RT-PCR that had been employed in the 
previous studies. Considering RNA quality, the DV200 values of the 
total RNA in the samples chosen for this study on canine tissues 

were predominantly of high quality (n = 31 with DV200 > 70%) 
with some samples with medium quality (n = 4 with DV200 
50–70%). One previous study (63) had not provided RNA quality 
data. The other study (22) had employed only the RNA integrity 
number (RIN) and disclosed the use of strongly degraded RNA 
(mean RIN: 2.3, range 1.5–2.5). However, the DV200 has been 
shown to be a superior criterion to evaluate RNA quality compared 
to the widely used RIN, especially when employing partially 
degraded RNA from FFPE samples (46). Thus, somewhat superior 
RNA quality may have contributed to the slightly better 
correlations in our comparison.

FIGURE 3

Correlation coefficients for genes with low, medium, and high mean expression. Results for the entity-contrasting comparison (“HGA versus AGASAC”; 
A–F) and the stage-dependent comparison (“CCH early versus late”; G–L) are shown. Scatter plots present the correlation (y-axis) of the counts of 
both methods plotted against the mean nCounter® (A,B,G,H) or QuantSeq 3′ (D,E,J,K) log gene count (x-axis). Pearson (A,D,G,J) and Spearman rank 
(B,E,H,K) correlation coefficients were calculated with the TMM normalization method. The vertical lines indicate the thresholds between all, the 
top 90%, and top 50% of expressed genes. Box plots depict the correlations of all the genes included in these expression strength groups for 
nCounter® (C,I) and QuantSeq 3′ (F,L). Pearson (white) and Spearman rank (gray) correlation coefficients were calculated. Orange horizontal lines 
indicate medians. Circles indicate outliers.
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Other studies performed on cancer cell lines (18) or peripheral 
blood (64) had shown that the correlations on count level are dependent 
on the gene expression level. Generally, weaker correlations had been 
observed for genes with low expression levels and stronger correlations 
had been calculated for genes with high expression levels. This is in line 
with our study’s results: both nCounter® and QuantSeq 3′ exhibited the 
same expression-level dependent correlation phenomenon, with stronger 
correlations for higher expressed genes.

The strong correlations observed in this study raise much hope 
for retrospective studies using samples from veterinary pathology 
archives, as routinely stored FFPE tissues seem principally accessible 
for transcriptome analyses using both nCounter® and QuantSeq 3′. 

In comparison to FFPE material, fresh, or fresh-frozen tissue is much 
more difficult to obtain in veterinary and comparative pathology for 
logistical, ethical, potentially infectious, and legal reasons. 
Additionally, the cost of RNA-Seq has greatly decreased since its first 
introduction and in combination with the easy storage of FFPE 
material provides a cost-effective research and diagnostic tool for 
veterinary researchers and clinicians. Especially in favor of Russell’s 
and Burch’s 3 R (reduce, refine, replace) principles to improve ethical 
concerns when using experimental animals, it is imperative to obtain 
the highest possible benefit out of animal tissues. Obviously, routine 
archiving of FFPE tissues for many decades has proven to be  a 
fortunate circumstance.

FIGURE 4

Overlap of log2FC direction and significantly differentially expressed genes (DEGs) from the subset of nCounter® Canine IO Panel targets. (A,B) Results 
for the “HGA versus AGASAC” comparison (entity-contrasting comparison). (C,D) Results for the “CCH early versus late” comparison (stage-dependent 
comparison). (A,C) Scatter plots show the log2FC of a given gene from the QuantSeq 3′ data (y-axis) plotted against the log2FC of the corresponding 
gene from the nCounter® data (x-axis). The dots are colored according to the correspondence of expression direction: Significantly (padj ≤ 0.05 and 
log2FC ≤ −1 or ≥ 1) highly/lowly expressed in both methods (red), significantly differentially expressed in only one method (nCounter®: orange, 
QuantSeq 3′: blue), or not significantly differentially expressed in both methods (gray). (B,D) Venn diagrams depict the overlap (light gray), if any, of 
significantly DEGs from nCounter® and QuantSeq 3′. DEGs exclusively detected by nCounter® are colored in dark gray (left), while DEGs found only in 
QuantSeq 3′ are labeled in slate gray (right). The padj were corrected with the Benjamini-Yekutieli (BY) method and the log2FC were calculated with 
shrinkage from DESeq2 for the scatter plot and Venn diagram.
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4.2 Confounders and influences on 
transcriptome data from FFPE samples

Confounding factors when using FFPE material, however, include 
the type, buffering state, and concentration of formalin used, duration 
of fixation, tissue processing, and storage conditions, which all may 
impact RNA quality (1, 6, 65–68). In the case of this study, in which 
all tissues stemmed from routinely fixed, processed, and stored 
samples as part of the institutional diagnostic service, such limitations 
seemed to have had little, if any impact, on the results based on the 
RNA quality (Supplementary Table S2).

Still, multiple other aspects likely have an influence on correlations 
of data from different transcriptome analysis methodologies and might 
also account for the differences in DEGs detected in both methods in this 
study. To begin, the differing detection methods may result in slight 
discrepancies in the identification of transcripts and bioinformatic 
alignment of sequences after RNA-Seq may not be as specific as the 
probes used in nCounter®. Furthermore, by focusing on a selection of 
approximately 800 genes, the nCounter® panel offers the possibility to 
detect even weakly expressed transcripts, which may be overlooked 
compared to highly expressed genes, depending on the depth of 
sequencing in the case of QuantSeq 3′. However, pre-selected gene panels 
have some inherent limitations due to their focused design compared to 
genome-wide approaches, such as RNA-Seq. As expression analysis is 
restricted to specific genes of interest, changes in other genes not 
included on the panel remain undetected. Thus, potential novel 
biomarkers, broader biological processes, or unforeseen gene interactions 
can remain unidentified (69). Incomplete interpretation of underlying 
mechanisms or the oversight of key regulatory genes involved in a 
disease phenotype can result. Rather, panels are intended for focused 
research questions or validation of known targets. The choice of genes 
selected for inclusion is dependent on current knowledge and thus 
introduces a bias, restricting the scope of discovery. The gene set 
enrichment analysis tools available for RNA-Seq are of little statistical 
value for panels, as the background gene set is limited and biased by the 
panel’s focus. Thus, pre-selection violates the statistical assumption of 
unbiased, comprehensive, and genome-wide gene expression data (70).

Furthermore, different normalization methods may have an effect. 
This study employed the nSolver™-embedded normalization method 
for the nCounter® data and compared three common normalization 
methods (TMM, CPM, RLE) for the QuantSeq 3′ data. All methods 
performed similarly, with only minimal differences that seemingly did 
not influence the strength of correlations. Extending beyond these 
normalization methods, there is however a multitude of other 
approaches, which were developed to correct biases or weaknesses, 
such as accounting for gene length, refinement for FFPE RNA-Seq 
data, or microarray input (71, 72). For nCounter® data, further 
methods have likewise been developed for normalization and 
differential expression analysis apart from nSolver™. As the three 
normalization methods employed in this study provided little 
differences in correlations, it was not deemed necessary to test the 
impact of alternate normalization strategies on count correlations. 
Instead, it seems that DESeq2 and edgeR can reliably be used for count 
normalizations on QuantSeq 3′ data and that the software package one 
uses for normalization will likely have very little impact on the data. 
Similarly, other packages or approaches for differential gene expression 
(DGE) analysis are available (73). Again, in this study, the impact that 
these alternate DGE calculations may have on DEG correlations was 
not investigated. Overall, the analysis of DEGs is based on different 

approaches, i.e., statistical calculations, available software, and 
pathway lists for enrichment analyses, when using transcriptomic 
platforms. The nCounter® reads are usually fed into the nSolver™ 
software with the Advanced Analysis plug-in and pathway analyses 
are conducted with the program’s inbuilt modules. Annotations are 
assigned to most genes, which are provided in annotation files. The 
annotations for the Canine IO Panel are based on two previously 
developed human panels: the immune response categories originate 
from the PanCancer Immune Profiling Panel and the functional 
annotations are based on the IO 360 Panel. These annotations in turn 
stem from the Gene Ontology (GO) (74, 75), Kyoto Encyclopedia of 
Genes and Genomes (KEGG) (76), and Reactome (77, 78) databases. 
If an investigator has another research focus in mind, a gene curation 
team is able to annotate genes included on a panel with suitable terms. 
A custom annotation route, using an annotation engine, assigns 
annotations to customized gene add-ons (Panel Plus) or CodeSets 
directly from a database based on context (NanoString curation team, 
personal communication). Additionally, based on a specific research 
query, each investigator has the ability to manually change and adjust 
the annotations in an annotation file. This can lead to fluctuations and 
different statistical outcomes and should be transparently declared in 
consequent publications. With a multitude of gene annotation 
databases available for pathway analysis, such as GO, KEGG, 
Reactome, and Molecular Signatures Database (MSigDB) (79, 80), the 
nCounter® annotations add further nomenclature for gene grouping 
categories and pathways, which are not always transferable and/or 
interchangeable when comparing terms. However, researches may 
be able to answer questions more target-oriented this way.

Noteworthy, in the stage-dependent comparison conducted in this 
study, 89 DEGs were detected using QuantSeq  3′, but none using 
nCounter®. As previously outlined, it is generally to be expected that 
the two methods will yield divergent results, partly due to the differing 
scope of potentially detectable transcripts (whole transcriptome versus 
focus on 800 genes) and partly, to a lesser extent, due to different 
underlying detection methods used. Still, when comparing the stages 
of CCH, it must be emphasized that there are only minor differences 
at the transcriptome level (36). This is also reflected by the low number 
of detected DEGs using QuantSeq 3′ in the stage-dependent contrary 
to the entity-contrasting comparison in this study. However, studies 
that specifically had examined individual transcripts utilizing 
quantitative PCR found differences between early and late stages of 
CCH, for example in expression of proinflammatory cytokines (34). 
Thus, further investigation is required in order to resolve this 
discrepancy. Larger group sizes than those used in this study (n = 5) 
might be necessary to detect a larger number of significantly DEGs. 
Additionally, to the presumably minor differences at transcriptome 
level, the number of DEGs is likely to be reduced by the implementation 
of the BY procedure, which has been demonstrated to be  more 
conservative than other FDR calculation methods (57–61).

Major differences also lie in data processing. As with all large-
scale transcriptome analysis systems, vast amounts of raw data are 
generated requiring further bioinformatic analysis. The QuantSeq 3′ 
system provides nucleotide sequences in FASTQ data files for 
alignment and normalization using standard bioinformatic methods. 
Prior bioinformatic know-how is thus indispensable. In comparison, 
the nCounter® system has the advantage of the specially developed 
nSolver™ software. The generated raw data can be imported into this 
software, normalized and analyzed by the user without any previous 
bioinformatic expertise.
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4.3 Biological interpretation of 
transcriptome differences between the 
tumor entities studied

This technical study was based on two comparisons between 
contrasting tumor entities, the first between early and late stages of the 
spontaneously regressing canine cutaneous histiocytoma (CCH) and the 
second between two common canine perianal tumors with very distinct 
biological behaviors. The widely overlapping data obtained from the two 
methodological approaches clearly allowed for several oncologically 
interesting implications, with mutual confirmations by the two methods 
used. These results and interpretations, however, are subject of separate 
publications already published (36) or in preparation.

5 Conclusion

Taken together, our comparison between gene expression data 
obtained from QuantSeq 3′ and the nCounter® Canine IO Panel revealed 
very strong to moderately strong correlations when FFPE archival tissues 
stored up to 8 years long were used. The best correlations were achieved 
on the sample-wise level in both biological comparisons. Based on these 
strong correlations, it appears feasible to use either of the approaches to 
validate data generated by the other. nCounter® seems to be superior for 
validation compared to PCR for fragmented mRNA from FFPE tissue. 
There are, however, several more strategical and practical differences 
between the technologies and their actual use depends on the project’s 
study goal and design (Table 1). Clearly, both approaches make archival 
tissue well accessible for transcriptome studies in veterinary and 
comparative medicine. In particular, studies on rare entities or elusive 
biological cases will profit immensely from recent technological progress 
when compared to previous transcriptome methodologies.
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