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E�ects of BCAA supplementation
on plasma and mare’s milk amino
acid contents in Yili mares and
growth performance of suckling
foals
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Xiaokang Chang2, Jun Meng 2, Wanlu Ren2, Jianwen Wang2,

Xinkui Yao2 and Yaqi Zeng2*

1Xinjiang Horse Industry Association, Urumqi, China, 2School of Animal Science, Xinjiang Agricultural

University, Urumqi, China

Branched-chain amino acids (BCAAs) play a crucial role in regulating nutritional

metabolism in lactating animals. However, limited research has been conducted

on BCAAs in equines. This study aimed to investigate the e�ects of di�erent doses

of BCAA supplementation on plasma and milk amino acid profiles in Yili mares,

as well as the growth performance of their suckling foals, thereby providing

a scientific basis for optimizing feeding management practices. Eighteen pairs

of Yili mares and their sucklings were randomly assigned to four groups: a

control group (Group D, no BCAA supplementation) and three experimental

groups (S1, S2, and S3, receiving 38 g/day, 76 g/day, and 114 g/day of BCAA

supplementation, respectively). The trial lasted for 67 days. The concentrations of

22 amino acids in plasma andmilk were quantified using liquid chromatography-

mass spectrometry (LC-MS), and their correlations with the body height, length,

and weight of the foals were analyzed using SPSS software (one-way analysis of

variance and Pearson correlation test). In mare plasma amino acids, the serine

(Ser) content in group S1 was significantly higher than that in group D (p < 0.05).

Additionally, in group S3, tryptophan (Trp), histidine (His), and aspartic acid (Asp)

contents were markedly elevated. For mare milk amino acids, Ser content in

group S1 was extremely significantly higher than in group D (p < 0.01), while

aspartic acid (Asp) and alanine (Ala) contents were significantly increased in

group S3. Regarding foal growth performance, body weight in group S3 was

significantly greater than in group D. Moreover, group S2 exhibited superior

trends in body height and length growth. Correlation analysis demonstrated that

plasma Ser and creatine (Cr) were positively correlated withmaremilk Ser and Cr.

Maremilk threonine (Thr) showed a positive correlationwith foal body height and

length. Studies indicate that branched-chain amino acids (BCAA) regulate protein

synthesis and amino acid metabolism via the mTOR pathway. In this experiment,

38 g/d BCAA enhanced mammary gland Ser transport, thereby increasing its

content. Furthermore, 114 g/d BCAA promoted Asp and Ala accumulation, likely

due to enhanced catabolic activity. The positive correlation between mare milk

Thr, His, and skeletal development suggests that BCAA indirectly promotes

growth through milk composition regulation. However, given the small sample

size of this study, long-term validation is necessary.
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1 Introduction

Amino acids, the fundamental building blocks of proteins,
play indispensable roles in governing physiological processes
critical to animal growth, development, and reproductive success.
Recent advancements in maternal amino acid supplementation
strategies have expanded research frontiers in lactation modulation
and offspring vitality enhancement (1–3). Lactating mares face
exceptional metabolic demands to sustain both physiological
homeostasis and milk synthesis, with nutritional status directly
determining mare’s milk compositional quality. Branched-chain
amino acids (BCAA)—leucine (Leu), isoleucine (Ile), and valine
(Val)—constitute a distinctive category of essential amino acids
that have attracted significant research attention for their
regulatory functions in animal nutrient metabolism. Emerging
evidence underscores BCAA’s lactogenic potential in livestock
production systems. Hultquist and Casper (4) demonstrated that
Val supplementation enhances milk yield in late-lactation dairy
cattle. At the cellular level, Gao et al. (5) revealed elevated
Ile concentrations in bovine mammary epithelial cells stimulate
sterol regulatory element-binding protein 1 (SREBP1) expression,
thereby promoting lipogenesis. Complementary findings by
Wang (6) identified a positive correlation between graded Leu
supplementation in periparturient sow diets and progressive
increases in milk lipid content. Most of the existing studies on
BCAA in livestock production focus on animals such as cattle
and pigs, and there are few studies on the specific effects of
BCAA on the performance of equine animals. Especially in the
feeding and management of mares during lactation, the effects of
supplemental feeding of BCAA on the content of amino acids in
plasma and milk of mares are still unclear. While existing studies
have focused on the direct association between the high efficiency
of mammary BCAA metabolism and milk component synthesis in
ruminants, research on BCAA metabolism in horses is seriously
lagging behind. This study systematically evaluates dose-dependent
responses of plasma and mare’s milk amino acid profiles to dietary
BCAA supplementation, while establishing correlation matrices
to decipher mammary amino acid utilization patterns (Figure 1).
These findings are anticipated to provide theoretical foundations
for optimizing feeding strategies and enhancing mare’s milk quality
in this economically vital equine population.

2 Materials and methods

2.1 Materials

The experiment utilized branched-chain amino acids (BCAA)
obtained from Xinjiang Lianying Biotechnology Co., LTD.
Following the amino acid requirement study for equine animals
(7), the ratio of Isoleucine (Ile), Leucine (Leu), and Valine (Val) fed

Abbreviations: Gly, Glycine; Ser, Serine; Met, Methionine; Pro, Proline; Leu,

Leucine; Cr, Creatine; Glu, Glutamic; Phe, Phenylalanine; Lys, Lysine; Arg,

Arginine; Trp, Tryptophan; Tyr, Tyrosine; His, Histidine; Val, Valine; Orn,

Ornithine; Ala, Alanine; Tau, Taurine; Ile, Isoleucine; Asp, Aspartic; Thr,

Threonine; gln, glutamine; asn, asparaginate.

TABLE 1 Nutrient level of concentrate supplements for Yili mares during

lactation (dry matter basis) %.

Feed
composition

Content Nutritional
level

Content

Maize 46 Dry matter 90.76

Barley 8 Crude protein 14.44

Wheat bran 8 Neutral detergent
fiber

61.68

Rape-seed meal 28 Acid detergent fiber 9.95

Premix① 10 Calcium (Ca) 0.63

Total 100 Phosphorous (P) 0.35

① Each kg premix was supplied with 20,000 IU of VA1, 30,000 IU of VD3, 300mg of VB3,

2,500mg of VE, 250mg of Cu, 1,200mg of Fe, 1,200mg of Zn, 1,100mg of Mn, 8mg of I,

6mg of Se, and 4mg of Co.

in the experiment was 1:2:1.2. The resulting mixture appeared as a
white powder after thorough blending.

2.2 Design of experiments

The trial was conducted at Zhaosu Stud Farm in Yili Kazak

Autonomous Prefecture, Xinjiang Uygur Autonomous Region,
from July to September 2023. Eighteen lactating mares (body
weight: 392.90 kg ± 12.18 kg) and their suckling foals were
randomly divided into four groups: a control group (Group D, n=

4) and three treatment groups (S1, S2, S3; n = 5, 5, 4, respectively).
All mares were managed under identical feeding conditions for
67 d (7-d adaptation period and 60-d experimental phase). Each
mare received 2 kg/d of concentrate supplement (composition and
nutritional levels detailed in Table 1). Groups S1, S2, and S3 were
additionally supplemented with 38, 76, and 114 g/d branched-chain
amino acid (BCAA), respectively.

2.3 Feeding management

During the trial, mares and foals were moved daily at 10:00 h
from pasture to the milking parlor. Following foal separation,
mares were guided to individual stalls and supplemented with
branched-chain amino acid (BCAA) at respective doses mixed
into 2 kg of concentrate. Milking was performed every 1.5 h (four
times/d). After the final milking session, mares and foals were
returned to pasture for unrestricted grazing.

2.4 Sample collection and determination

2.4.1 Blood samples were collected from mares
On the 60th day of the experiment, mares were fasted for 2 h

before blood samples were collected using EDTA anticoagulant.
Specifically, 10mL of blood was drawn from the jugular vein to
obtain plasma, which was subsequently centrifuged at 3,000 r/min
for 15min. The resulting supernatant was then transferred to frozen
storage tubes, promptly frozen in liquid nitrogen for 15min, and
finally stored in a refrigerator at −80◦C for the analysis of free
amino acid content.
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FIGURE 1

Schematic overview of the experimental design.

2.4.2 Mare milk sample collection
Milk samples were collected on day 60 of the experiment and

manually milked every 1.5 h (at 11:00, 12:30, 14:00, and 15:30,
respectively). Subsequently, 25mL from each of the four milk
samples were combined, with 5mL aliquoted into frozen tubes for
rapid freezing in liquid nitrogen for 15min, followed by storage at
−80◦C in a refrigerator. The free amino acid content in the milk
was assessed using the identical determination index employed for
plasma free amino acids.

2.4.3 Determination of free amino acid content
The detection was carried out by Beijing Novogene Technology

Co., Ltd. using high performance liquid chromatography
tandem mass spectrometry (LC-MS) for quantitative analysis.
The measured indexes include: Glycine (Gly), Serine (Ser),
Methionine (Met), Proline (Pro), Leucine (Leu), Creatine (Cr),
Glutamic (Glu), Phenylalanine (Phe), Lysine (Lys), Arginine
(Arg), Tryptophan (Trp), Tyrosine (Tyr), Histidine (His),
Valine (Val), Ornithine (Orn), Alanine (Ala), Isoleucine (Ile),
Aspartic (Asp), Threonine (Thr), Taurine (Tau), glutamine (gln),
asparaginate (asn).

2.4.4 Measurement of growth performance in
suckling foals

Foals were restrained for measurement at 0 d and 60 d. Withers
height, body length, chest girth, cannon bone circumference,
and body weight were measured using a measuring stick
and tape.

2.5 Data processing

Data were initially organized in Excel and analyzed using SPSS
26.0. One-way ANOVA with Duncan’s multiple-range test was
applied, with significance thresholds set at p < 0.05 (significant)
and p < 0.01 (highly significant). Results are expressed as mean ±

SD. To investigate correlations between plasma andmare’s milk free
amino acid content in Yili mares, as well as associations between
milk amino acids and foal growth performance, Pearson correlation
analysis was conducted in SPSS 21.0 using data from day 60. Figures
were generated using Excel and the MetWare Cloud platform.

3 Results

3.1 E�ects of BCAA supplementation on
plasma free amino acid content of Yili
mares

Figure 2 demonstrates that histogram of the quantitative results
of plasma amino acid metabolome in mares. The plasma Asp
concentrations in group S3 significantly exceeded those in D (p <

0.05, Figure 2B). Both S2 and S3 demonstrated higher His content
than D (p < 0.05, Figure 2C), with S2 additionally surpassing S1
in His concentrations (p < 0.05). The Trp content in group S3
was significantly higher compared to that in group D (p < 0.05,
Figure 2D), while showing comparable values to S1 and S2 (p >

0.05). Notably, Ser levels in groups D, S2, and S3 were significantly
lower than those in S1 (p < 0.05, Figure 2E), with no significant
differences detected among D, S2, and S3 (p > 0.05, Table 2).
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FIGURE 2

For all the letters represented in the bar graphs, di�erent lowercase letters indicate p < 0.05 (A) Histogram of plasma amino acid metabolomics

quantitative results in Yili mares. (B) Histogram of Asp quantification results. (C) Histogram of His quantification results. (D) Histogram of Trp

quantification results. (E) Histogram of Ser quantification results.
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TABLE 2 E�ects of BCAA supplementation on plasma free amino acid content of Yilimares.

Amino acid Free amino acid content in plasma (µg/mL)

D S1 S2 S3

Gly 26.40± 5.46 26.56± 3.23 24.19± 14.30 27.26± 3.91

Ser 13.05± 3.28b 17.94± 2.59a 14.01± 1.75b 14.02± 2.01b

Met 4.25± 0.98 4.02± 0.51 4.96± 0.87 4.66± 0.68

Pro 68.17± 18.00 85.10± 7.73 69.74± 5.79 76.91± 17.29

Leu 202.53± 81.15 183.87± 16.19 215.68± 50.76 208.16± 41.63

Cr 9.50± 2.94 9.00± 2.92 9.62± 3.19 10.46± 2.75

Phe 12.80± 3.35 11.99± 1.65 12.66± 2.60 12.47± 1.63

Lys 0.98± 0.59 1.34± 0.13 0.93± 0.42 1.25± 0.22

Arg 28.07± 8.41 31.77± 3.87 35.04± 6.00 36.78± 4.61

Trp 6.10± 1.06b 6.88± 1.17ab 7.22± 1.22ab 8.23± 1.00a

Tyr 5.29± 1.68 4.27± 0.55 4.56± 1.00 4.9± 0.87

His 14.00± 2.31c 14.23± 0.79bc 18.57± 4.15a 18.08± 2.15ab

Val 41.32± 13.07 39.10± 4.20 43.37± 5.21 41.61± 0.91

Orn 7.37± 3.08 6.96± 0.99 6.53± 0.76 6.65± 1.02

Ala 5.32± 1.30 6.17± 1.25 5.74± 1.60 5.91± 1.08

Ile 19.60± 7.75 17.88± 1.67 20.84± 4.78 20.21± 3.87

Asp 2.21± 0.71b 2.7± 0.44ab 3.14± 0.81ab 3.32± 0.60a

Thr 12.69± 2.82 10.75± 1.50 12.96± 3.03 12.00± 2.01

gln 13.48± 4.63 16.17± 1.92 12.28± 2.46 15.00± 2.58

asn 3.51± 0.84 3.28± 0.35 3.14± 0.56 3.39± 0.51

No letter or the same letter in peer data shoulder indicates no significant difference (P > 0.05), and different lowercase letters indicate significant difference (p < 0.05).

3.2 E�ect of BCAA supplementation on free
amino acid content in Yili mare’s milk

Figure 3 demonstrates that histogram of the quantitative results
of the amino acid metabolome of Yili mare’s milk. Figure 3B
illustrates that group S3 exhibited elevated Ala concentrations
compared to both D and S1 (p < 0.05), while demonstrating a
more pronounced increase relative to S2 (p < 0.01) in mare’s milk.
The Ser concentrations in groups D, S2, and S3 were significantly
lower than those in S1 (p < 0.05, Figure 3C), with no significant
differences observed among D, S2, and S3 (p > 0.05, Table 3).
Notably, Ser levels in S1 were substantially higher than in D (p <

0.01, Figure 3C). Similarly, Asp levels in S3 surpassed those in D
and S2 (p < 0.05), with a highly significant difference compared to
S1 (p < 0.01, Figure 3D).

3.3 E�ects of BCAA supplementation in
lactating Yili mares on growth performance
of suckling foals

As shown in Figure 4, suckling foals in Group S3 exhibited
significantly higher body weight gain compared to Group D (p <

0.05). Chest circumference changes followed a similar trend across
groups as body weight gain, though no significant differences were
observed between treatment groups and the control (p > 0.05). No
significant differences were detected in withers height, body length,
or cannon bone circumference gains between experimental groups
and the control (p > 0.05). However, similar trends emerged, with
Group S2 demonstrating higher mean growth values than Groups
D, S1, and S3.

3.4 Correlation analysis between free
amino acids in mare plasma and free amino
acids in milk

Figure 5 illustrates correlations between plasma and milk
amino acid content in lactating Yili horses. Plasma BCAA exhibits a
positive but non-significant correlation withmilk BCAA (p> 0.05).
The figure further reveal significant positive correlations between
plasma and milk Ser (p < 0.05) and Cr (p < 0.01). Plasma Cr
demonstrates positive associations with milk Gly, His, and Val
(p < 0.05), while plasma His correlates positively with milk Ala
and Asp (p < 0.05). Notably, milk asn demonstrates a negative
correlation with plasma BCAA (p< 0.05).Milk Val shows a positive
association with plasma Cr (p< 0.05), and milk Arg correlates with
plasma Trp (p < 0.05). The figure highlight a highly significant
positive correlation between milk Tyr and plasma Pro (p < 0.01),
alongside a positive relationship between milk Ala and plasma
Thr (p < 0.05).

3.5 Correlation analysis between amino
acids in mare’s milk and growth
performance of suckling foals

As shown in Figure 6, changes in Thr content in mare’s milk
exhibited significant positive correlations (p < 0.05) with growth
changes in body height and body length of suckling foals. Body
length growth changes were significantly positively correlated with
His content variations in milk (p < 0.05), while body height
growth changes showed a significant positive correlation with asn
content fluctuations (p < 0.05). Chest circumference and body
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FIGURE 3

For all the letters represented in the bar graph, di�erent lowercase letters indicate p < 0.05, di�erent capital letters indicate p < 0.01. (A) Histogram of

quantitative results of amino acid metabolomics in mare’s milk. (B) Histogram of Ala quantification results. (C) Histogram of Ser quantification results.

(D) Histogram of Asp quantification results.

weight growth changes demonstrated positive correlations with
Arp and Asp content in milk, and body weight changes additionally
correlated with Ala content. However, none of these correlations
reached statistical significance (p > 0.05).

4 Discussion

4.1 E�ect of BCAA supplementation on
plasma amino acid content in Yili mares

BCAA, as essential amino acids for animals, can provide amino
groups for the synthesis of Asp and gln (8). In this experiment, after
BCAA supplementation in mares, the Asp content in Group S3 was
significantly higher than in Group D, while gln level in Group S1
showed an increasing trend compared to GroupD. This may be due
to the addition of appropriate BCAA quantities, which promoted
relevant metabolic pathways in the mare’s body, thereby inducing
changes conducive to Asp accumulation in plasma. McGuire et al.

(9) found that amino acids are preferentially absorbed and utilized
by the mammary gland through oxidation or incorporation into
milk proteins. Griinari et al. (10) showed that insulin (INS)
can inhibit protein degradation in muscles, and reduced protein
turnover decreases circulating amino acid concentrations, affecting
free amino acid levels in blood. In this study, the average BCAA
content in Group S1 was lower than in Group D, possibly due
to increased INS levels from concentrate supplementation, which
enhanced BCAA utilization along the feeding gradient, thereby
accelerating the mammary gland’s absorption rate of free amino
acids for milk protein synthesis. BCAA metabolism can influence
the concentrations of other amino acids, including Ser (11), α-
ketoglutarate (α-KG) produced by BCAA decomposition is not
only an intermediate in the tricarboxylic acid (TCA) cycle, but
also indirectly regulates the supply of 3-phosphoglycerate (3-
PG), a substrate synthesized by Ser. In addition, branchedchain
α-keto acids (BCKAs) may increase the production of 3-PG
by activating pyruvate dehydrogenase kinase (PDK) to inhibit
pyruvate dehydrogenase (PDH) and promote carbon flow to
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TABLE 3 E�ects of BCAA supplementation on the content of free amino acids in Yilimare’s milk.

Amino acid Free amino acid content in mare’s milk (µg/mL)

D S1 S2 S3

Gly 5.67± 1.26 13.59± 8.10 10.95± 5.66 10.88± 5.01

Ser 8.91± 2.10Bb 23.93± 1.61Aa 14.35± 5.27ABb 16.23± 9.41ABb

Met 0.24± 0.03 0.32± 0.11 0.29± 0.14 0.22± 0.02

Pro 0.60± 0.20 0.66± 0.19 0.58± 0.08 0.67± 0.10

Leu 1.88± 0.89 2.03± 0.69 2.24± 0.79 2.58± 0.86

Cr 40.80± 8.30 45.62± 10.35 47.05± 10.20 45.23± 8.11

Glu 328.90± 107.72 284.76± 66.70 283.98± 68.36 280.87± 51.00

Phe 1.15± 0.35 1.44± 0.21 1.20± 0.41 1.36± 0.29

Lys 30.17± 7.60 36.76± 12.91 27.78± 6.42 37.40± 8.24

Arg 4.03± 1.30 4.26± 0.69 4.47± 0.84 5.01± 0.48

Trp 0.29± 0.09 0.39± 0.04 0.35± 0.18 0.39± 0.14

Tyr 0.52± 0.09 0.63± 0.18 0.43± 0.18 0.59± 0.29

His 10.78± 3.92 10.72± 3.54 11.25± 3.84 11.93± 3.68

Val 1.65± 0.45 1.77± 0.43 1.87± 0.54 2.13± 0.45

Orn 1.22± 0.41 1.62± 0.59 1.25± 0.90 1.46± 1.02

Ala 3.66± 1.34ABb 4.43± 0.65ABab 3.41± 0.42Bb 5.52± 1.28Aa

Tau 3.62± 1.83 4.09± 1.88 4.75± 1.54 3.82± 2.36

Ile 0.79± 0.56 0.66± 0.18 0.72± 0.23 1.08± 0.33

Asp 1.06± 0.51ABb 0.95± 0.25Bb 1.07± 0.36ABb 1.75± 0.18Aa

Thr 14.97± 3.85 16.02± 3.98 15.29± 2.40 14.54± 7.06

gln 29.40± 7.44 35.54± 12.23 27.09± 6.25 35.65± 8.52

asn 2.85± 1.19 3.11± 0.73 2.46± 0.32 2.99± 0.94

No letter or the same letter in peer data shoulder indicates no significant difference (P > 0.05), and different lowercase letters indicate significant difference (p < 0.05); Different capital letters

indicate very significant differences (p < 0.01), as shown in the following table.

gluconeogenesis (12). In this experiment, Ser content in Group S1
was significantly higher than in Groups D, S2, and S3, indicating
optimal BCAA conversion and utilization in lactating mares at a
BCAA feeding rate of 38 g/d under these experimental conditions.
BCAA directly activates mechanistic target of rapamycin C1
(mTORC1), which promotes protein synthesis by phosphorylating
S6K1 and inhibiting 4E-BP1 (13). Studies have shown that
mTORC1 can also up-regulate the expression of ATF4, which is
a transcriptional activator of key SSP enzymes (PHGDH, PSAT1)
(14). Thus, BCAA may drive serine synthesis via the mTORC1-
ATF4 axis. BCAA supplementation may increase plasma BCAA
concentrations, thereby affecting other amino acids such as His and
Asp. In this experiment, His and Asp levels in Group S3 were higher
than in GroupD, consistent with the findings of Pitkänen et al. (15).

4.2 E�ect of BCAA supplementation on
mare’s milk amino acid content

Free amino acids in milk can be directly absorbed by the
body, and dietary amino acid supplementation can improve milk
amino acid composition. BCAA are major components of milk
proteins. Wei et al. (16) demonstrated that adding BCAA to
dairy cow diets increases BCAA content in milk. In this study,

the average BCAA content in experimental groups was higher
than in Group D, aligning with previous findings, though the
difference was not statistically significant, possibly due to BCAA
supplementation levels. High activities of asparagine synthetase
and glutamine synthetase in mammary tissue provide biochemical
mechanisms for synthesizing Asp, asn, Glu, and other non-essential
amino acids from BCAA. As BCAA concentration increases, its
degradation rate proportionally rises (17). In this experiment, Asp
and Ala contents in mare’s milk increased significantly at 114 g/d
supplementation, while Ser content increased notably at 38 g/d,
likely related to accelerated BCAA degradation in the mammary
gland. Ser is one of the crucial amino acids in lactating mare’s milk
(18). In this experiment, Ser, Gly, and Met levels in Group S1′s
milk were higher than in other groups, though Gly andMet showed
no significant differences. This may occur because Ser participates
in one-carbon metabolism and the Met cycle through enzymatic
interconversion with Gly (19), leading to increased Ser uptake from
plasma to the mammary gland. Additionally, Ser phosphorylation
by Ser kinase plays a key role in Met and BCAA synthesis (20, 21),
suggesting that 38 g/d BCAA supplementation enhances this amino
acid metabolic pathway under experimental conditions. In Group
S3, Ala and Asp levels were significantly higher than in Group
D, indicating that BCAA supplementation improves mammary
gland BCAA utilization efficiency, thereby affecting specific amino
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FIGURE 4

Histogram of One-Way ANOVA analysis for growth performance in suckling foals. For all the letters represented in the bar graph, di�erent lowercase

letters indicate p < 0.05.

acid levels in mare’s milk, consistent with Lei et al. (22). Protein
dephosphorylation is a critical process in mammary milk synthesis
(23), involving amino acids such as Ala, Asp, and Ser (24–26).
In this experiment, Ala, Asp, and Ser levels in the treatment
group’s milk differed significantly from Group D, suggesting that
appropriate BCAA quantities may promote anabolic pathways of
these amino acids in mammary cells or enhance their uptake
capacity, leading to milk composition changes. The mammary
gland can convert plasma free amino acids into Tyr and others
(27). In this study, Tyr and Met levels in milk were substantially
lower than in plasma, indicating active mammary utilization and
conversion of these amino acids.

4.3 Correlation between plasma and mare’s
milk amino acid content

In this study, plasma and milk Ser levels under 38 g/d BCAA
supplementation were significantly higher than in Groups D,
S1, and S2, potentially due to BCAA metabolism and transport
promoting milk synthesis. Leu and Ile activate the mTOR signaling
pathway to stimulate mammary epithelial cell proliferation and
milk protein synthesis (28, 29), while the mTOR pathway critically
regulates amino acid transporter expression (30). Correlation

analysis revealed a significant positive correlation between plasma
and milk Ser, likely reflecting increased mammary demand for
amino acids during lactation, elevating transporter expression
(31). Amino acid transport systems directly influence milk protein
synthesis; for example, Asp, Gly, Pro, Ser, and Tyr exhibit turnover
rates exceeding 50%, suggesting transporter-driven influx (32).
Exogenous Ser supplementation can enhance antioxidant capacity
in lactating sows and piglets via maternal transfer (33), implying
potential for improving antioxidant capacity in Yili mares through
Ser supplementation. This study found a significant positive
correlation between plasma Cr and milk Cr, possibly through
mammary epithelial uptake of plasma Cr via sodium/chloride-
dependent transporters (CreaT) or oligopeptide transporters
(e.g., PEPT1/2), followed by secretion into milk. Muscle Cr
concentrations are nearly 200-fold higher than in plasma,
indicating efficient transmembrane transport (34). Plasma Cr also
positively correlated with milk Gly, His, and Val. Gly, His, and
Val participate in Cr biosynthesis through distinct pathways: Ser
serves as a Gly precursor (35), and Gly is essential for Cr synthesis
(36), aligning with the plasma-milk Ser correlation and indicating
maternal provision of Cr and Gly precursors via circulation. His
is vital for hemoglobin synthesis (37), and Cr metabolism may
influence His methylation via methyl group donation (e.g., 3-
methylhistidine formation) (38), thereby regulating milk His levels.
As a BCAA, Val shares metabolic pathways with Leu and Ile; plasma
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FIGURE 5

Heat map of correlation between amino acids in mare plasma and milk of Yili mares. * p < 0.05, ** p < 0.01.

Cr may reduce BCAA catabolism by promoting muscle protein
synthesis (39), increasing Val transfer into milk. Milk BCAA (e.g.,
Val) are crucial for foal muscle development (40), suggesting
maternal metabolic prioritization of Val allocation to milk. Plasma
His showed significant positive correlations with milk Ala and
Asp, potentially through His transamination to Ala and Asp’s
role in urea cycle-mediated ammonia detoxification (41). Plasma
Thr positively correlated with milk Ala, possibly via Thr-derived
pyruvate and Gly serving as Ala precursors in the mammary gland,
with Thr enhancing alanine synthesis through transaminase (GPT)
activation or alanine dehydrogenase inhibition (42). Milk gln
negatively correlated with plasma BCAA, Met, and Orn, likely due
to competitive absorption via sodium-dependent neutral amino
acid transporters (3). gln is hydrolyzed to Glu and ammonia, which
enters the urea cycle to produce Orn (43). During lactation, mares
prioritize gln for milk protein synthesis over urea cycle entry,
reducing plasma Orn. Efficient mammary gln uptake may limit
hepatic gln availability, suppressing urea cycle Orn production (43).
gln serves as an Orn precursor for polyamine synthesis, which
requires S-adenosylmethionine (SAM) derived fromMet, indirectly
depleting Met. gln also upregulates cystathionine-β-synthase (CBS)
activity, promoting Met conversion to glutathione (GSH) and
reducing plasma free Met (44), indicating urea cycle suppression
and accelerated methyl donor metabolism.

4.4 Correlation between amino acid
content of horse milk and growth
performance of suckling foals

Foal body height and body length growth are related to
skeletal development (45). Ser supplementation improves both
femur length and bonemineral density in piglets, while significantly
increasing body length growth rate (46). His deficiency reduces
daily weight gain in weaned piglets (47), confirming the universal
essentiality of Ser and His in young monogastric mammals.
asn provides gln to osteoblasts through the SLC1A5 transporter,
supporting energy metabolism required for their differentiation
(48). Thr has been demonstrated to enhance growth rate and
feed conversion efficiency in offspring (49), closely associated
with its promotive effects on skeletal development. This study
found positive correlations between changes in Ser, His, Thr,
gln, and asn content in mare’s milk and body length growth
of suckling foals. Notably, variations in Ser, Thr, gln, and
asn content also positively correlated with body height growth,
indicating that BCAA supplementation in lactating mares alters
milk amino acids influencing foal growth performance. These
results suggest that BCAA supplementation in lactating mares
may alter the amino acid content in horse milk and thus may
have a positive effect on the growth performance of Suckling
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FIGURE 6

Heat map of correlation between amino acids in mare’s milk and

growth performance of suckling foals. * p < 0.05, ** p < 0.01.

foals. Arg activates the mTOR pathway to promote muscle fiber
hyperplasia and skeletal metabolism regulation (50, 51). Although
changes in Arg and Asp content in mare’s milk showed positive
correlations with foal weight and chest circumference growth,

these relationships were not statistically significant. Asp and
its metabolite aspartate aminotransferase (KYNA) can promote
osteoblast differentiation and bone formation by activating Wnt/β-
catenin signaling pathway. Studies have shown that KYNA can
improve bone mineral density in patients with osteoporosis and
play a role by regulating osteoblast differentiation and bone
remodeling (52). The specific impacts on foal growth performance
require further investigation. The changes of Ala content in
horse milk were positively correlated with the changes of body
weight and body height of Suckling foals, but no significant
correlation was found. Under the experimental conditions,
BCAA supplementation at 76 g/d positively influenced body
height and body length growth in suckling foals, while 114
g/d BCAA supplementation improved body weight and chest
circumference development.

4.5 Limitations of the study

In this study, due to the limited number of Yili horses
and the constraints of experimental resources, we selected 18
horses for the experiment; although this sample size has some
reference value in the preliminary exploratory study, it does
limit the universality and statistical significance of the study
results. We also recognize that the 60-day trial period may
not be sufficient to fully assess the long-term effects of BCAA
supplementation, particularly in terms of bone development,
immune function in foals, and long-term health and reproductive
performance in mares. Future studies may consider extending
the trial period to more fully evaluate the long-term effects
of BCAA supplementation in lactating mares and provide a
more comprehensive scientific basis for optimizing the nutritional
management of Yili horses.

5 Conclusions

This study demonstrates that supplementing Yili mares
with 38 g/d BCAA significantly increases plasma and milk
Ser levels, with a significant positive correlation between
plasma and milk Ser. Supplementation at 76 g/d significantly
increased plasma His content in lactating Yili mares while
positively influencing body height and body length development
in suckling foals. At 114 g/d, supplementation significantly
elevated plasma Asp and Trp levels, as well as Asp and Ala
content in mare’s milk, with concurrent positive effects on
foal body weight and chest circumference growth. Future
applications may utilize Ser as a dietary supplement for lactating
Yili mares to enhance the nutritional value of mare’s milk.
Similarly, His and Thr could be targeted as supplements
for suckling foals to improve growth performance. Further
research should investigate BCAA metabolic pathways and
their effects on milk amino acids in Yili mares, providing
theoretical foundations and metabolic explanations for
improving milk quality. This study also establishes a basis for
exploring maternal-milk amino acid metabolic relationships and
regulatory mechanisms.
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