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Under the combined effects of long-term natural selection and artificial domestication, 
Tibetan sheep on the Qinghai-Tibet Plateau have evolved distinct ecotypes to 
survive extreme high-altitude conditions, including hypoxia, cold, and low oxygen 
levels. These ecotypic variations not only serve as an ideal model for studying 
plateau livestock adaptation but also harbor valuable genetic diversity. However, 
the lack of comprehensive genetic analyses on their adaptive and phenotypic traits 
has hindered the effective conservation and utilization of these resources. Using 
whole-genome resequencing, we systematically studied seven Tibetan sheep 
breeds, uncovering their genetic structure and diversity. Population analyses, 
including NJ and maximum likelihood trees, revealed clear genetic differentiation 
and migration patterns. Selective sweep analyses (Fst and θπ) identified hypoxia-
related genes (DOCK8, IGF1R, JAK1, SLC47, TMTC2, and VPS13A) and wool color 
genes (TCF25, MITF, and MC1R). GWAS further detected candidate genes for body 
size traits (height, length, weight), enriched in cGMP-PKG, cAMP, and Hedgehog 
signaling pathways. Integrating GWAS and transcriptomics, we pinpointed key 
wool trait genes, including WNT16 (non-synonymous mutations), PRKCA, MAP3K8, 
MMP7, OVOL2 (intergenic SNPs), and COL7A1, KDM8, ZNF385D (intronic SNPs). 
Notably, HOX family transcription factors were found to critically regulate hair 
follicle development. These genetic markers offer promising targets for molecular 
breeding to enhance wool quality and adaptive traits. Our findings provide a 
genetic basis for understanding Tibetan sheep’s unique adaptations and production 
traits, supporting future breeding strategies and sustainable utilization of their 
genetic resources.
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Introduction

With the migration of human populations, particularly nomadic 
groups, domesticated sheep (Ovis aries) were first domesticated in the 
Fertile Crescent approximately 9,500 to 10,000 years ago (BCE, BP). 
Genetic analyses have revealed multiple distinct domestication 
lineages that have subsequently dispersed nearly worldwide (1). 
Tibetan sheep gradually disseminated from the northeastern region 
of the Tibetan Plateau to its central area as the Di-Qiang people 
expanded 3,100 years ago, and subsequently from the southwestern 
region to the central area by 1,300 years ago (2, 3). Tibetan sheep, 
inhabiting the relatively isolated Tibetan Plateau, have developed rich 
genetic resources and distinct local varieties due to natural 
geographical barriers and limited external species intrusion. Over 
time, these sheep have undergone both natural and artificial selection, 
resulting in significant phenotypic diversity, including variations in 
hair type, hair color, horn morphology, and tail structure, etc. The 
diverse phenotypes of Tibetan sheep, along with the extensive 
variation in economically important traits, offer researchers a wealth 
of genetic resources.

Previous research has identified approximately 17 local Tibetan 
sheep populations on the Qinghai-Tibet Plateau (4). As the exploration 
of germplasm resources continues, an increasing number of new 
germplasms have been discovered, including the Zashgar, Zeku, and 
Maduo sheep. These breeds, belonging to distinct groups within the 
Tibetan sheep population, have since evolved into independent 
breeds. Tibetan sheep breeds on the Qinghai-Tibet Plateau exhibit 
remarkable traits including drought tolerance, cold resistance, 
roughage adaptability, disease resilience, high-altitude acclimatization, 
foraging capability, robust physique, and strong genetic adaptability 
(5). Furthermore, Tibetan sheep hold significant agricultural, 
economic, cultural, and religious value in the Tibetan Plateau region 
of China, contributing substantially to the economic development of 
pastoral areas (6).

Artificial selection has significantly influenced the genetic 
diversity of sheep during domestication and production-oriented 
breeding, resulting in populations with distinctive characteristics and 
valuable genetic resources. The genome of Tibetan sheep offers a 
unique opportunity to identify traits associated with this selection. 
Under artificial intervention, the genetic variation affecting the 
fertility of consecutive multiple births in Tibetan sheep was 
investigated. It was discovered that PAPPA is a key gene responsible 
for stimulating the growth and development of ovarian follicles and 
enhancing steroid production, thereby improving reproductive 
success (7). A study examining genomic variation in 986 Tibetan 
sheep samples across their range identified strong selection signals in 
genes related to hypoxia and ultraviolet signaling pathways, including 
the HIF-1 pathway and the HBB and MITF genes. Additionally, strong 
selection was observed in genes associated with morphological traits, 
such as horn size and shape, particularly the RXFP2 gene. 
Furthermore, the study detected 5.23–5.79% gene introgression from 
argali (Ovis ammon) into Tibetan sheep (2). Genome-wide association 
analysis was conducted on 103 subtypes, including normal large 
horns, scurs, and polled, derived from the second generation (G2) of 
a Tibetan sheep polled core herd. Six SNPs located on chromosome 
10 within the RXFP2 gene showed significant positive correlations 
with horn length, horn base circumference, and horn base interval (8). 
High-frequency structural variant genes, including EPAS1, PAPSS2, 

and PTPRD, represent significant sources of genetic variation in the 
gene expression of Tibetan sheep and play a crucial role in their 
adaptation to high-altitude environments (9). Positive selection genes 
related to meat production, coat color, wool traits, horn type or 
adaptability of different ecological types of Tibetan sheep have also 
been explored (10). During the successive generations of Tibetan 
sheep domestication, varying degrees of genetic imprints have been 
left on the genome, ultimately becoming fixed in certain domesticated 
breeds of Tibetan sheep. These valuable genetic resources delineate the 
genomic landscape of various ecological types of Tibetan sheep across 
their distribution range. However, each species may possess distinct 
candidate genes that are responsible for their unique traits, and there 
is a relative paucity of research on the selection markers for various 
economic traits across different ecological types.

In this study, we  conducted whole-genome resequencing of 
Tibetan sheep populations from diverse ecological environments. 
Each sample possesses distinct traits, including hair length, high-
altitude adaptation, body size, and coat color. Through the application 
of signal analysis methods for whole-genome scanning, we identified 
the specific genetic markers responsible for these traits in Tibetan 
sheep. This study enhances our understanding of the underlying 
genetic mechanisms and contributes to the broader field of 
fundamental biological research.

Materials and methods

Animal care

The study was conducted according to the guidelines of the 
Institutional Animal Care and Use Committee of Institute of Animal 
Science and Veterinary Medicine, Chinese Academy of Sciences 
(IACUC2021311).

Animals and phenotypic measurement

Seven Tibetan sheep breeds exhibiting significant geographical 
and phenotypic variations were selected from Qinghai Province 
(plateau-type Tibetan sheep, valley-type Tibetan sheep, Black Tibetan 
sheep, Qumaari Speckled sheep, Zeku sheep, Oula sheep, and Zashgar 
sheep). A total of 140 blood samples were collected from unrelated 
adult ewes (n = 20 per breed). Each sample was meticulously 
documented with the species name, codes, geographical coordinates 
of the sampling site (longitude, latitude, and altitude), and phenotypic 
characteristics (see Figure 1a and Supplementary Table 1 for further 
details). All tissue samples were preserved in 95% ethanol and stored 
at −80°C for subsequent genomic analysis. The phenotypes of five 
traits were measured in 20 different breeds of Tibetan sheep, including 
three body size traits (body weight, body length, and body height) and 
two wool quality traits (wool fiber length and fiber fineness).

Whole-genome resequencing

Total genomic DNA was extracted from the samples, and at least 
3 μg of genomic DNA was used to construct paired-end libraries with 
a read length of 2 × 150 bp for paired-end sequencing. Simultaneously, 
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FIGURE 1

Geographic distribution and genetic diversity analyses. (a) Geographic distribution of seven Tibetan sheep breeds in Qinghai. The map was generated 
using Adobe Illustrator software. (b) SNPs and InDels density distribution circle. (c) Plots of principal components. (d) Neighbor-joining tree 
constructed from SNP data among six sheep populations. (e) Genetic structure analysis of samples using admixture, with changing ancestral 
populations from K = 2 to K = 10. (f) Distribution of cross-validation error values associated with varying K values. (g) The linkage disequilibrium (LD) 
decay analysis. (h) Gene flow diagram and residual fitting heat map.
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we obtained the farmer’s consent to collect skin samples. We randomly 
selected three unrelated plateau Tibetan sheep and three unrelated 
Oula sheep, and collected 2 square centimeters of skin tissue from the 
shoulder region using sterile surgical blades. The samples were 
promptly immersed in liquid nitrogen (−80°C) for subsequent 
transcriptome sequencing and real-time quantitative polymerase 
chain reaction (RT-qPCR) analysis. These libraries were sequenced 
utilizing the Illumina NovaSeq  6000 platform located in 
Shanghai, China.

Read processing and variant calling

ASTP Toolkit v0.18.0 was utilized for stringent quality control 
of the raw reads based on the following criteria: (1) removal of 
reads containing ≥ 10% unidentified nucleotides (N); (2) 
elimination of reads with > 50% bases having Phred quality scores 
≤ 20; and (3) discarding reads that aligned to the barcode adapter. 
The Burrows–Wheeler Aligner (BWA) was employed to map the 
cleaned reads from each sample to the CAU O.aries_1.0 reference 
genome1 using the parameters “mem 4 -k 32 -M”. Here, -k specifies 
the minimum seed length, and -M marks shorter split alignment 
hits as secondary alignments (11). Variant calling was conducted 
across all samples using GATK’s Unified Genotyper (12). 
Subsequently, SNPs and InDels were filtered through GATK’s 
Variant Filtration tool, applying specific thresholds (-Window 4, 
-filter “QD <2.0||FS >60.0||MQ <40.0,” -G_filter “GQ <20”), and 
variants showing segregation distortion or indicative of sequencing 
errors were excluded (13). For the determination of the physical 
positions of each SNP, the ANNOVAR software (14) was applied 
for alignment and annotation of SNPs or InDels. Structural 
variations (SVs), encompassing translocations, inversions, and 
insertions, were identified using the breakdancer software 
(Max1.1.2.) (15). Copy number variants (CNVs) were classified 
using CNVnator (0.3.2) (16).

Population genetic analyses

The SNP-only dataset was analyzed utilizing a maximum 
likelihood algorithm. A phylogenetic tree was constructed using 
PHYML 3.0 (17) and FastTree, based on the selected optimal 
nucleotide substitution model, generalized time reversible (GTR). 
Node support was assessed through 1,000 bootstrap replicates. 
Principal component analysis (PCA) was conducted using SNP data 
[excluding SNPs with a minor allele frequency (MAF) less than 0.05] 
via the GCTA software. Individuals were subsequently clustered into 
distinct subgroups based on the principal components derived from 
the analysis. The ADMIXTURE software2 was utilized to analyze the 
genetic structure of the population using SNP data. A mixed model 
was selected, with K ranging from 2 to 10 (assuming 2 to 10 ancestral 
populations). All other parameters were set to the software’s default 
values. The optimal K value, which is closest to the true number of 

1 https://www.ncbi.nlm.nih.gov/datasets/genome/GCA_017524585.1/

2 http://dalexander.github.io/admixture

ancestral populations, was determined based on the cross-validation 
(CV) error values.

Selected sweep

Select regions with extremely low or high θ, where the π ratio is in 
the 5% left and right tails, and those with significantly high Fst values 
(i.e., the top 5% of Fst), as these are identified as regions that have 
undergone strong selective sweeps.

Enrichment analysis of selected candidate 
genes

Use top GO/KEGG to conduct enrichment analysis. In this 
process, the gene list and gene count for each pathways are derived 
from the candidate region genes annotated. The p-value is then 
calculated using the hypergeometric distribution method, with a 
threshold of p-value <0.05 indicating significant enrichment. This 
approach identifies the pathways that are significantly enriched in the 
candidate region genes relative to the whole-genome background, 
thereby elucidating the primary biological functions of these genes.

GWAS analysis

Based on inter-population SNPs and linkage disequilibrium, the 
EMMAX software was utilized to perform association analysis 
between molecular markers and trait phenotypes,3 identifying markers 
or candidate genes closely associated with the target traits. These 
findings were visualized using Manhattan plots and QQ plots.

RNA extraction, library construction

Total RNA was extracted using the Trizol Reagent (Invitrogen Life 
Technologies). Subsequently, the concentration, quality, and integrity 
of the RNA were assessed using a NanoDrop spectrophotometer 
(Thermo Scientific). To isolate cDNA fragments of the desired 
400–500 base pairs in length, the library fragments were purified 
utilizing the AMPure XP system (Beckman Coulter, Beverly, CA, 
United States). Products were purified using the AMPure XP system 
and quantified with the Agilent High Sensitivity DNA Assay on a 
Bioanalyzer 2100 (Agilent Technologies). Subsequently, the 
sequencing library was subjected to sequencing on the NovaSeq X 
Plus platform (Illumina).

Library construction and sequencing

Fastp (18) (version 0.18.0) was used to filter adapters or low 
quality bases from raw reads. The reference genome and gene 
annotation files were retrieved from the genome database. The filtered 

3 http://genetics.cs.ucla.edu/emmax/index.html
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reads were aligned to the reference genome using HISAT2 
version 2.0.5.

Differential expression analysis

We utilized HTSeq (version 0.9.1) to compare the read count 
values for each gene as a measure of its original expression, followed 
by normalization using FPKM. Differential gene expression was 
analyzed using DESeq (version 1.30.0) with the following screening 
criteria: an absolute log2 fold change greater than 1 and a significant 
p-value less than 0.05. Additionally, we  employed the R language 
Pheatmap (version 1.0.8) package to conduct bi-directional clustering 
analysis of all differentially expressed genes across samples. The 
heatmap was generated based on the expression levels of the same 
gene in different samples and the expression patterns of different genes 
within the same sample, using the Euclidean method to calculate 
distances and the complete linkage method for clustering.

Analysis integrating GWAS and 
transcriptomic data

The SNPs identified through GWAS were mapped to the 
corresponding genes in the expression dataset to evaluate their impact 
on gene expression. The significant genes obtained from GWAS were 
intersected with differentially expressed genes (DEGs), and KEGG/
GO enrichment analysis was performed on the overlapping genes. 
Cluster analysis of the commonly differentially expressed genes was 
carried out using the Pheatmap package (version 1.0.8) in the R 
programming language.

RT-qPCR analysis

Seven DEGs were selected and confirmed by RT-qPCR. The 
housekeeping gene actin served as an internal control for normalizing 
mRNA expression levels. Primers were designed using Oligo 6.0 
software (Supplementary Table 30). Quantitative real-time PCR was 
performed in a 20 μL reaction volume containing 10 μL of 2 × Top 
Green EX-Taq Mix, 2 μL of cDNA, 7 μL of ddH2O, and 0.5 μL each of 
forward and reverse primers. The thermocycling conditions were as 
follows: initial denaturation at 94°C for 30 s; followed by 42 cycles of 
denaturation at 94°C for 5 s, annealing at 61°C for 35 s; a final 
extension at 97°C for 10 s, and a dissociation curve analysis stage 
consisting of 65°C for 60 s and 97°C for 1 s. Relative mRNA expression 
levels were determined using the 2−ΔΔCT method. All experiments were 
conducted with six biological replicates.

Results

Sequencing, mapping and SNP/InDel 
detection

Whole-genome resequencing of 140 samples generated 36.4 
billion paired-end raw reads with an insert size of 400 bp, and 35.98 
billion high-quality reads, achieving an average depth of 14.44 × per 

sample and an average genome coverage of 99.33%. The GC content 
varied between 42.77 and 44.30%, the Q20 value was no less than 97%, 
the Q30 value was at least 93.69%, and the mapping rate against the 
reference genome surpassed 99.84% (Supplementary Table  2). 
Furthermore, a total of 46,681,283 SNP sites were identified for 
purine-pyrimidine transitions and transversions, with a Ts/Tv ratio of 
1.86 (Supplementary Table 3). A total of 46.69 million SNPs were 
identified and utilized for subsequent analyses. The majority of these 
high-quality SNPs (64.35%) were found in intergenic regions, 
characterized by T/C and A/G transitions, while only 0.67% were 
located within exonic regions. The remaining SNPs were distributed 
as follows: 0.58% upstream, 0.56% downstream, and 33.82% within 
introns. In total, 314,431 SNPs were detected in exons, of which 
46.63% were non-synonymous and 51.09% were synonymous, 
yielding a non-synonymous to synonymous ratio of 0.913 
(Supplementary Table 4). In addition, a total of 1,880,322 insertions 
and 2,680,046 deletions were identified across seven indigenous sheep 
breeds (Supplementary Table 5).

The majority of insertions and deletions were situated in intergenic 
regions (63.71%). Additionally, exon InDels predominantly comprised 
in-frame deletions or insertions (56.62%), leading to alterations in the 
reading frame of protein-coding genes, which often exhibited a 
multiple of the triplet codon length (Supplementary Table 6). After 
quality control, the following copy number variants (CNVs) were 
detected: 24,803 in GY, 238,655 in HZ, 24,984 in OL, 24,960 in QM, 
23,435 in SG, 22,029 in ZK, and 24,868 in ZS (Supplementary Table 7). 
A total of 337,491 reliable structural variants (SVs) were identified. 
Specifically, this included 3,469 insertions, 186,018 deletions, 15,204 
inversions, 46,226 intrachromosomal translocations, and 86,574 
interchromosomal translocations (Supplementary Table 8).

Genetic diversity analysis and population 
genetic structure

The observed heterozygosity (Ho) of seven Tibetan sheep 
populations ranged from 0.358 to 0.372, while the expected 
heterozygosity (He) ranged from 0.349 to 0.358 
(Supplementary Table  9). The observed heterozygosity was 
consistently higher than the expected heterozygosity, Fis values 
for ZS, SG, and GY were all less than 0. To gain a more 
comprehensive understanding of the distribution of chromosomal 
variations in Tibetan sheep, we established a 1 Mb sliding window 
and generated density maps for genes, SNPs, CNVs, and InDels 
within each window (Figure 1b). Notably, the genomic variation 
exhibits a high degree of homogeneity. The constructed weighted 
phylogenetic tree elucidates the relationships among seven 
Tibetan sheep breeds, and the resulting neighbor-joining (NJ) tree 
provides evidence of distinct separations between breeds, with 
each breed forming its own branch, although some overlap is 
observed in Tibetan sheep populations (Figure 1d). On the other 
hand, PCA cluster analysis offers further empirical support for the 
delineation of these groups, thereby demonstrating the robust 
consistency of the selected samples (Figure 1c). The mixed model 
was employed to assess the genetic structure of the population. At 
K = 2, the cross-validation error reached its minimum, resulting 
in the division of 140 germplasm resources into two distinct 
groups. When K = 3, SG tends to diverge in a different direction 
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from the main group, while the remaining breeds are distributed 
across the other two clusters. When K = 7, the majority of the 
genetic information of GY, HZ, OL, QM, ZK, and ZS appears to 
stem from a shared ancestral population (red). When K = 10, the 
Tibetan sheep population exhibits extremely rich genetic diversity, 
which may be attributed to its highly complex population history, 
extensive geographical distribution, or diverse adaptive traits 
(Figures 1e,f). Linkage disequilibrium (LD, r2) decreases to half of 
its maximum value within less than 10 kb, with ZK populations 
exhibiting the fastest decline and SG populations showing the 
slowest decline. These findings indicate that SG species exhibit 
strong LD and are more prone to inbreeding, which may be  a 
result of long-term artificial selection (Figure 1g). The maximum 
likelihood tree, based on the number of optimal migration events, 
provided evidence of gene flow between distinct Tibetan sheep 
populations (Figure 1h).

Genome-wide study of selective sweeps 
for hypoxic adaptability

Through the analysis of genomic regions, we identified loci with 
high levels of Fst and nucleotide diversity ratio (θπ), which are 
associated with hypoxic adaptability. Specifically, by comparing 
varieties below 3,000 meters and those above 4,000 meters, 
we identified 2,900 and 2,618 candidate positively selected regions in 
the SG (Fst >0.082, θπ >0.496) (Supplementary Table 9) and HZ (Fst 
>0.044, θπ >0.365) (Supplementary Table 10) varieties, respectively. 
These two varieties exhibited 607 and 586 candidate genes, 
respectively, during variety-specific selection events, with a total of 
218 co-selected genes (Figure 2a). These shared genes were selected 
through critical adaptive responses to hypoxic conditions in high-
altitude environments, exhibiting higher levels of differentiation. For 
instance, several positively selected genes associated with hypoxic 
adaptation were identified in one or more of the studied populations, 
including DOCK8, IGF1R, JAK1, SLC4A7, TMTC2, and 
VPS13A. KEGG enrichment analysis revealed that these genes were 
predominantly enriched in signal transduction, development and 
regeneration, and endocrine system (Figure  2b and 
Supplementary Table 11).

Genome-wide study of selective sweeps 
for coat color

Considering the physical properties of coat color, we employed a 
comprehensive comparative analysis, evaluating the OL, GY, HZ, ZS, 
and ZK varieties against the black-coated HZ variety. For OL (Fst 
>0.037, θπ <−0.305), GY (Fst >0.039, θπ >0.273), QM (Fst >0.039, θπ 
<−0.250), and ZS (Fst >0.044, θπ <−0.257) and ZK (Fst >0.039, θπ 
<−0.363), a total of 2,136, 2,625, 2,193, 2,376, and 2,034 selection 
regions were identified (Supplementary Tables 12–16), encompassing 
37 co-selection genes (Figure 2c). Among the shared genes, including 
TCF25, MITF, and MC1R, which are associated with hair color, these 
genes are involved in transport and catabolism, regulation of the 
endocrine system, development and regeneration processes, as well 
as signaling molecules and interaction pathways (Figure  2d and 
Supplementary Table 17).

Genome-wide association studies of body 
size and wool traits

GWAS serve as a crucial tool for elucidating the genetic 
underpinnings of traits, revealing the relationship between genetic 
variation and these traits. To account for known confounding factors, 
we incorporated gender and age as fixed effects into the mixed linear 
model using a general linear modeling approach. Based on the 
significance criterion of a p-value with a −log10 value exceeding 4, 
we identified several significant SNP loci associated with body height 
(BH), body length (BL), and body weight (BW) at the genomic level 
(Supplementary Tables 18–20). The p-value Manhattan plot revealed 
significant associations between SNPs and BH, BL, and BW. Through 
gene annotation, 30 significant loci related to body shape traits were 
identified. For the BH trait, five significant SNPs were located on OAR1, 
while one SNP was found on OAR2, OAR5, OAR21, and OAR6 
(Figures 3a,d). For BL, five SNPs showed significant associations, with 
candidate regions identified on OAR1, OAR3, and OAR23. Notably, the 
five most significant SNPs were located on OAR2 (Figures 3b, e). For BW, 
10 significant SNPs were identified, with the most prominent associations 
occurring in the EVC and EVC2 regions on OAR6 (Figures 3c,f). These 
SNPs demonstrated a strong positive correlation with body size traits 
(Table 1), exceeding the predefined threshold for significance.

Similarly, through GWAS analysis, several key genes associated 
with wool traits and their genetic variations were identified 
(Supplementary Tables 21, 22). Further annotation analysis revealed 
19 significant loci linked to these traits. For wool fiber length (WL), 
the two most significant SNPs were located on OAR1, while one SNP 
was identified on each of OAR26, OAR11, OAR15, OAR24, OAR19, 
and OAR4, and two SNPs were found on OAR13 (Figures  4a,c). 
Regarding wool fiber fineness (WF), five SNPs were significantly 
associated with candidate regions on OAR8, OAR11, and OAR2, with 
the two most significant SNPs located on OAR6 (Figures  4b,d). 
We identified a set of significantly correlated SNP loci, with detailed 
information regarding these significant SNPs presented in Table 2.

To comprehensively assess the characteristics of the candidate genes 
annotated by SNPs, we conducted enrichment analyses to identify the 
functional categories associated with these genes. In terms of body size 
traits, the enriched KEGG pathways are primarily associated with the 
cytoskeleton in muscle cells, cGMP-PKG signaling pathway, cAMP 
signaling pathway and hedgehog signaling pathway (Figures 5a–c and 
Supplementary Table 23). For wool fiber traits, the focus is mainly on 
the melanogenesis, TNF signaling pathway, Wnt signaling pathway, 
EGFR tyrosine kinase inhibitor resistance, hedgehog signaling pathway 
and Rap1 signaling pathway (Figures 5d,e and Supplementary Table 24).

Analysis of RNA-seq data and functional 
annotation of DEGs associated with wool 
traits

To elucidate the molecular mechanisms underlying the 
distinctive long hair traits of Tibetan sheep, we  conducted 
transcriptomic analyses on skin samples from two Tibetan sheep 
breeds, ZY and OL, which exhibit significant differences in wool 
length. On average, 143,236,464 and 126,767,572 original reads were 
produced in the ZY and OL cDNA libraries, respectively. The GC 
contents of ZY and OL were 47.09 to 48.30% and 48.05 to 48.25%, 
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respectively (Supplementary Table 25). Based on the significance 
threshold (|FC| >2 and p-value <0.05), a total of 1,065 DEGs were 
identified, including 434 up-regulated and 631 down-regulated 
genes (Figure 6a). The hierarchical clustering showed that there were 
significant differences in the expression profiles of DEGs between 
the treat group (GY) and the control group (OL) (Figure 6b). GO 
analysis revealed significant enrichment in several biological 
processes, including fibrillar collagen trimer, melanin metabolic 
process, peptidase regulator activity, and cellular lipid metabolism 
process (Figure  6c and Supplementary Table  26). A total of 39 
significant pathways were identified through KEGG pathway 
analysis. The top 20 enriched pathways are presented in Figure 6d, 
indicating that DEGs (73 up-regulated and 155 down-regulated) 
were predominantly enriched in ECM-receptor interaction, PPAR 
signaling pathway, focal adhesion, fatty acid elongation and 
biosynthesis of unsaturated fatty acids these pathways 
(Supplementary Table 27). Based on the threshold for DEGs analysis, 
we identified and screened protein pairs with a node score greater 
than 0.95 in the STRING database to construct the PPI network 

(Figure  6e). According to the interaction results, there are four 
up-regulated gene modules (HOXC6, HOXA6, HOXA7, and 
HOXB6) and four down-regulated gene modules (COL1A1, 
COL1A2, COL3A1, and SPARC). Additionally, some modules 
contain both up-regulated genes (such as ATP6, COX2) and down-
regulated genes (such as CYTB). Notably, the HOX homeobox 
genes, which encodes transcription factors (TFs), exhibited a 
significantly high degree of connectivity within this network. To 
further investigate the distribution characteristics of differentially 
expressed TFs, we conducted a statistical analysis of the number of 
differentially expressed TFs in each family within the control group. 
The results indicate that the homeobox family exhibits the most 
significant differential expression, with 10 upregulated TFs 
identified, including HOXC6, HOXC8, HOXA6, HOXA10, HOXC9, 
HOXA1, HOXB6, and HOXC10, as well as six downregulated factors 
(Figure 6f and Supplementary Table 28). Notably, the Hox subfamily 
demonstrates the most extensive distribution pattern within this 
family. This finding highlights the critical role of the HOX homeobox 
family, particularly its Hox subfamily, in gene regulatory networks.

FIGURE 2

Venn diagrams of co-selected genes for hypoxic adaptability (a) and KEGG enrichment of the corresponding genes (b) among different comparisons. 
Venn diagrams of common selected genes for coat color (c) and KEGG enrichment of the corresponding genes (d) among different comparisons.
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Identification of functional mutations in 
DEGs supported by whole-genome 
resequencing data

To further evaluate the expression levels of candidate genes 
identified through GWAS, we  examined the intersection between 
these candidate genes and DEGs associated with two distinct wool 
traits. SNPs were identified in critical regions of 10 key overlapping 
DEGs. For instance, a non-synonymous SNP in the coding region of 
WNT16 was predicted to alter the protein sequence, whereas 
synonymous mutations were observed in the coding regions of NES 
and TIAM1. SNPs were also detected in intergenic regions of PRKCA, 
MAP3K8, MMP7, and OVOL2, as well as within introns of COL7A1, 
KDM8, and ZNF385D (Table  3). The expression levels of 10 
overlapping DEGs exhibited differential expression and distinct 
clustering patterns, with 8 genes up-regulated and 2 genes down-
regulated (Figure 7a). Subsequently, KEGG enrichment analysis was 

conducted on these overlapping genes to elucidate their biological 
functions. The results indicate that these genes are involved in multiple 
metabolic pathways, including the Wnt signaling pathway, Ras 
signaling pathway, protein digestion and absorption, TNF signaling 
pathway, melanogenesis and chemokine signaling pathway (Figure 7b 
and Supplementary Table 29). Heat maps were utilized to visualize the 
genotypes of overlapping genes, and the results demonstrated that the 
polymorphism of the GY genotype was significantly higher compared 
to that of the OL genotype (Figure 7c).

RT-qPCR validation of DEGs

To validate the accuracy of the DEGs assay at the transcriptome 
level, we selected seven genes and evaluated their expression levels 
using six replicates for each sample. The results demonstrate a high 
degree of consistency between the two methods at the expression level, 

FIGURE 3

Manhattan plots and QQ plots of (a) body height, (b) body length, and (c) body weight traits. (d) QQ plots of the body height, (e) QQ plots of the body 
length, (f) QQ plots of the body weight.
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with a Pearson correlation coefficient of 0.75 (Figure 8). This indicates 
that the RNA-seq data exhibit strong reliability. The selected candidate 
genes exhibited strong concordance at both the transcriptional and 
actual expression levels, further substantiating their potential 
significance in subsequent functional analyses.

Discussion

The genetic diversity of sheep constitutes the foundation of their 
evolutionary success. This diversity arises from both natural 
selection in response to diverse environmental pressures and 
artificial selection driven by human breeding programs designed to 
enhance economically valuable traits. There is compelling evidence 
indicating accelerated changes in specific genomic regions under 
artificial selection (19). A lower level of genomic diversity in 

domestic breeds compared to their wild ancestors, suggesting that a 
significant amount of genetic variation has been lost during and 
after the domestication process. While the genomic diversity of local 
breeds has largely been retained in improved varieties, contemporary 
breeding practices that focus on a limited range of commercial 
varieties have led to genetic homogenization. This increases the risk 
of adaptive allelic loss in native populations (20). Despite significant 
advancements in genomics, systematic studies comparing genetic 
divergence among geographically distinct sheep populations are still 
limited, especially for local breeds that possess unique ecological 
adaptations. In this study, we performed a comprehensive analysis 
of seven indigenous Chinese sheep breeds, including several Tibetan 
sheep ecotypes, to elucidate the genetic basis underlying their 
divergent traits such as hypoxic adaptation, growth performance, 
and wool characteristics, and to investigate their population 
structure. Our results revealed significant genetic differentiation 
among Tibetan sheep subpopulations, driven by both natural 
selection and historical pastoral management practices. Notably, 
genome-wide comparisons of local breeds have been limited, and 
our study addresses this gap by providing high-resolution insights 
into the genetic variation within these understudied populations. 
These findings underscore the indispensable role of the distinctive 
phenotypic traits of local sheep breeds in preserving the genetic 
diversity of sheep within our country. Additionally, the molecular 
markers identified through whole-genome resequencing that are 
significantly associated with key economic traits offer a robust 
foundation for developing a marker-assisted selection system. The 
seven native sheep breeds examined in this study have developed 
distinct adaptive phenotypic differentiation across varying elevations 
on the Tibetan Plateau. Among these, GY, ZK, HZ, and ZS, as typical 
high-altitude adapted breeds (≥3,000 m), exhibit longer wool fiber 
lengths and higher hair follicle densities. These traits likely represent 
a low-temperature adaptive strategy achieved through positive 
selection of genes associated with hair follicle development (21). In 
contrast, QM and OL display a “short coarse hair” phenotype, 
which, while reducing textile suitability, is significantly positively 
correlated with muscle growth efficiency, reflecting the selection 
pressure driven by the economic needs of herders (22, 23). 
Domestication, adaptation, and artificial selection have led to a 
diverse array of coat colors, which are the most distinctive 
characteristics among different breeds (24). The ancestral coat color 
of sheep was predominantly brown; however, domesticated breeds 
now exhibit a wide variety of colors and patterns (25). Notably, the 
QM breed primarily displays black-brown and yellow-brown coats, 
often with white spotting on the back, sides, and hips. Some studies 
suggest that this coloration may be influenced by upstream regions 
of the MITF gene and strong linkage disequilibrium with other loci 
(26), providing a novel model for studying the formation of body 
surface patterns in mammals.

Hypoxic adaptation in plateau animals involves a complex, multi-
layered molecular regulatory network wherein key genes enhance 
oxygen utilization efficiency through synergistic interactions. IGF1R 
is a tyrosine kinase receptor located on the cell surface. Its binding to 
its ligands, IGF1 or IGF2, activates downstream PI3K/Akt and RAS/
MAPK signaling pathways, thereby promoting cell proliferation, 
differentiation, migration, and survival while inhibiting apoptosis 
(27). Hypoxia can induce alterations in the IGF system, potentially 
due to diminished anabolic effects of IGFs. Additionally, increased 

TABLE 1 Significant SNPs associated with body traits.

Trait Chr Position 
(bp)

p-value Nearest gene 
distance (bp)

BH 8 50,337,418 5.73 × 10−9 ADGB + 744

1 203,095,849 1.49 × 10−7 APOA2 within

1 203,095,849 1.49 × 10−7 ATP1A1 within

1 203,095,849 1.49 × 10−7 Col11A1 within

2 52,898,365 4.68 × 10−7 IHH

5 17,204,283 1.38 × 10−6 MEF2C within

21 34,264,023 4.70 × 10−5 NDUFC2 within

1 203,095,849 1.49 × 10−7 NDUFS2 within

1 203,095,849 1.49 × 10−7 RASA2 within

6 115,451,273 1.13 × 10−5 SLC10A4 within

BL 1 206,870,312 7.89 × 10−8 ALDH1A3 within

1 206,870,312 7.89 × 10−8 ASXL2 within

2 52,780,121 1.93 × 10−8 Col11A1 within

2 52,780,121 1.93 × 10−8 CREB3 within

2 52,780,121 1.93 × 10−8 DDR1 within

23 29,195,137 1.44 × 10−6 EPB41L3 within

2 52,780,121 1.93 × 10−8 GABBR2 within

2 52,780,121 1.93 × 10−8 GRIK3 within

3 23,040,533 1.73 × 10−7 IHH within

3 23,040,533 1.73 × 10−7 KDM4B within

BW 6 68,856,427 1.74 × 10−7 EVC

6 68,856,427 1.74 × 10−7 EVC2

21 6,487,822 2.24 × 10−5 GRM5

2 204,617,524 1.19 × 10−6 IHH + 874

1 75,251,362 1.93 × 10−6 IL10RB within

22 5,907,806 4.22 × 10−7 MYOF within

19 2,169,213 5.72 × 10−7 PTPRG within

17 8,005,274 6.42 × 10−7 SLC10A7 within

2 204,617,524 1.19 × 10−6 SLC23A3 + 874

19 2,169,213 5.72 × 10−7 VGLL4 within
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expression of IGF1R may reflect a tissue-protective mechanism that 
compensates for changes in the IGF system, such as reduced serum 
levels of IGF-I and -II and elevated IGFBP-1 (28). Decreased 

expression of SLC4A7 under hypoxic conditions may compromise 
critical intracellular pH regulatory functions that cells normally 
maintain through substantial resource allocation. This adverse effect 
is particularly pronounced in the mammalian central nervous system, 
where hypoxia induces a spectrum of physiological responses that 
vary depending on the developmental stage (29). This upregulation 
suggests that enhanced fluid reabsorption may serve to prevent edema 
and inhibit T cell proliferation, thereby mitigating acute lung 
inflammation and facilitating adaptation to hypoxic conditions (30). 
DOCK8 functions as a negative regulator of HIF2α nuclear 
translocation in CD4+ T cells (31). VPS13A, JAK1, TMTC2, and other 
genes are implicated in multi-dimensional biological regulation, 
collectively mediating the complex, multi-level response mechanisms 
involved in hypoxia adaptation (32–34). The stable genetic adaptability 
of Tibetan sheep facilitates dynamic multilevel adaptive variations at 
the genomic level, thereby enhancing the species’ systemic ecological 
response efficiency to extreme high-altitude hypoxia stress.

The high diversity of domestic animal coat color results from a 
combination of artificial selection and adaptive evolution. This 
diversity largely reflects variations in human preferences or the 
fixation of certain colors associated with desirable domestication traits 
such as docility, reproductive rate, and growth rate. In the local 
Tibetan sheep population, coat colors include black, white, brown, and 
variegated phenotypes, with white being the most common. MITF 
serves as a critical regulator in the development, proliferation, and 
survival of melanocytes. Mutations in MITF can result in metabolic 
dysfunction of pigment cells, thereby impacting fur pigmentation 
(35). A synonymous MITF g.1548 C/T mutation was identified, and 
the frequency of the C allele was strongly associated with the pure 
white coat in Tibetan sheep, indicating that the C allele is likely the 
dominant allele for white coat color (36). Loss-of-function mutations 
in the MC1R gene result in a shift towards phaeomelanin synthesis, 

FIGURE 4

Manhattan plots and QQ plots of (a) wool fiber length, (b) wool fiber fineness traits, and (c) wool fiber length. (d) QQ plots of the wool fiber fineness.

TABLE 2 Significant SNPs associated with body traits.

Trait Chr Position 
(bp)

p-value Nearest gene 
distance (bp)

WL 1 126,438,951 9.63 × 10−7 TIAM1

1 126,438,951 9.63 × 10−7 NES

26 33,042,355 1.63 × 10−6 ZNF385D

11 23,512,651 1.71 × 10−6 PRKCA within

13 12,598,138 2.34 × 10−6 OVOL2 + 153,175

13 12,598,138 2.34 × 10−6 MAP3K8 + 153,175

15 73,471,559 2.50 × 10−6 MMP7 within

24 10,393,840 7.58 × 10−6 KDM8

19 32,240,321 9.24 × 10−6 COL7A1

4 87,216,849 1.35 × 10−5 WNT16

WF 6 64,919,046 3.97 × 10−8 EVC within

6 64,919,046 3.97 × 10−8 PDGFAR within

8 69,634,158 7.96 × 10−7 FOXO3 within

3 64,541,866 9.53 × 10−7 AGPAT2 within

3 64,541,866 9.53 × 10−7 THADA within

11 17,517,094 1.78 × 10−6 WNT3

2 250,582,498 3.66 × 10−6 LRP1B within

4 55,140,180 9.06 × 10−6 FOXP2 within

4 55,140,180 9.06 × 10−6 DOCK4 within
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while SNPs at position 901C/T within the MC1R coding region are 
associated with white coat color (37). In mouse embryos, TCF25 is 
robustly expressed in the dorsal root ganglion. Based on this 
observation, we hypothesize that the regional differential expression 
of TCF25 may influence subsequent melanocyte migration, potentially 
leading to the formation of dark streaks along the midline of the back 
in goats (38).

Body size traits, including BH, BL, and BW, are critical indicators 
of production performance in livestock. Their genetic architecture is 
shaped by both natural selection (e.g., optimization of the body 
surface area-to-volume ratio for cold adaptation) and artificial 
selection (targeted breeding for economically important traits such as 
meat yield and feed conversion ratio). Variance estimation for sheep 
body size traits revealed heritability (h2) values of 0.22 ± 0.08 for BW, 

0.11 ± 0.06 for BL, and 0.17 ± 0.06 for BH, with significant genetic 
correlations among these traits. The observed positive genetic and 
phenotypic correlations indicate that selection for body size traits can 
improve both genetic and phenotypic body size, making it a key target 
for modern molecular breeding (39). As a crucial approach in modern 
quantitative genetics research, GWA studies have showcased 
substantial advantages in the genetic analysis of body shape traits in 
sheep. In this study, by employing the mixed linear model analysis 
method, we  systematically identified genetic variants significantly 
associated with body height, body length, and body weight in Tibetan 
sheep. These variants may represent key genetic factors influencing the 
development of body shape traits in Tibetan sheep. RASA2 is a 
compelling candidate gene for regulating height, as copy number 
variants (CNVs) and loss-of-function mutations in RASA2 have been 

FIGURE 5

KEGG enrichment analysis pathway map of candidate genes associated with body height (a). KEGG enrichment analysis pathway map of candidate 
genes associated with body length (b). KEGG enrichment analysis pathway map of candidate genes associated with body weight (c). KEGG enrichment 
analysis pathway map of candidate genes associated with wool fiber length (d). KEGG enrichment analysis pathway map of candidate genes associated 
with wool fiber fineness (e).
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FIGURE 6

Skin transcriptome analysis. (a) Volcano plot of DEGs. (b) Clustered expression heatmaps of all mRNAs. (c) The top 20 KEGG pathways for DE mRNAs. 
(d) GO enrichment pathways for DE mRNAs. (e) PPI network of DEGs. (f) Histogram of differentially expressed transcription factors.
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associated with short stature (40). NDUFS2 is considered a functional 
candidate gene influencing meat quality, primarily governing 
phenotypes such as fat metabolism and muscle development, and 
playing a crucial role in energy metabolism synthesis (41). IHH, as a 
critical signal for the local growth of endochondral bone, regulates 

bone development through multiple parallel pathways. Disruption of 
IHH signaling leads to a progressive reduction in embryonic bone size 
(42). Inactivation mutations in Evc or Evc2 within the perichondrium 
result in markedly elevated FGF signaling, leading to severe dwarfism 
characteristic of Evc syndrome (43). COL11A1 plays an essential role 

TABLE 3 Shared genes exhibiting similar expression patterns and functional annotations.

Gene Chromosome SNV region Expression Description

WNT16 4 Exonic Up Protein Wnt-16

MMP7 15 Intergenic Up Matrilysin precursor

ZNF385D 26 Intronic Down Zinc finger protein 385D isoform X1

NES 1 Exonic Down Nestin isoform X1

COL7A1 19 Intronic Up Collagen alpha-1 (VII) chain

MAP3K8 13 Intergenic Up Mitogen-activated protein kinase kinase kinase 8

KDM8 24 intronic Up Bifunctional peptidase and arginyl-hydroxylase JMJD5

OVOL2 13 Intergenic Up Transcription factor Ovo-like 2

TIAM1 1 Exonic Up Low quality protein: T-lymphoma invasion and metastasis-

inducing protein 1

PRKCA 11 Intergenic Up Protein kinase C alpha type isoform

FIGURE 7

Analysis of key gene expression and variation. (a) Clustered expression heatmap of 10 key genes. (b) KEGG enrichment analysis of key expression 
genes. (c) Heatmap of variation of 10 key expressed genes.
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FIGURE 8

RT-qPCR validation of DEGs and correlation scatter plot of DEGs.
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in bone morphogenesis, and variations in this gene are linked to 
human height (44). ALDH1A3, ATP1A1, MEF2C, NDUFC2, 
EPB41L3, IL10RB, PTPRG, and GRM5 are likely to play a significant 
role in growth traits (45–52). The effects of the aforementioned diverse 
genes highlight the intricate genetic regulatory mechanisms 
underlying body size, a quintessential quantitative trait. The 
development of body size is a dynamic and multi-tiered regulatory 
process. Future studies can achieve a more comprehensive 
understanding of the genetic basis of body size by constructing gene 
regulatory networks and identifying functional modules.

In an integrated analysis of GWAS and transcriptome data, 
we  combined genomic variation with gene expression profiles to 
identify a set of genes whose expression levels are significantly 
influenced by genetic variation. These candidate genes may contribute 
to phenotypic variation through the regulation of key biological 
pathways or molecular mechanisms. Long wool is a crucial genetic 
resource in Qinghai Tibetan sheep, characterized by its high content of 
medullated fibers. Consequently, Tibetan wool is extensively utilized in 
carpet manufacturing and renowned for its superior quality (53, 54). 
CircRNAs may play a crucial role in the development of hair follicles 
and the growth of cashmere by forming a balanced regulatory 
relationship with their host gene, TIAM1 (55). The long non-coding 
RNA (lncRNA) MSTRG.20890.1, transcribed from the intronic region 
of the ZNF385D gene, inhibits the proliferation and migration of 
dermal fibroblasts by competitively binding to chi-miR-24-3p with 
ADAMTS3. Consequently, this interaction leads to the inhibition of 
dermal papillary structure formation and secondary hair follicle 
morphogenesis (56). OVOL1-OVOL2 axis serves as a positive regulator 
in normal hair development and differentiation, facilitating the 
proliferation and differentiation of hair follicle cells. Therefore, OVOL1 
and OVOL2 may represent potential therapeutic targets for the 
treatment of hair loss (57). Nestin (NES)-containing cells constitute the 
predominant cell population in the hair follicle throughout each follicle 
cycle, and nestin-expressing cells serve as stem cells for the entire hair 
follicle (58). The down-regulated expression of MAP3K8 inhibits the 
proliferation and melanin synthesis in sheep melanocytes (59). PKC 
plays a pivotal role in cellular signal transduction, modulating the 
proliferation and differentiation of hair follicle cells (60). It is 
noteworthy that in our study, the HOX homeobox genes, which encode 
TFs, exhibited exceptionally high connectivity within the protein–
protein interaction (PPI) network and demonstrated the most 
significant differential expression. Previous research has found that 
HOX family TFs play a pivotal role in regulating cell differentiation, 
function, proliferation, embryonic development, and tissue 
homeostasis by modulating the promoter regions of multiple target 
genes (61). Specifically, in hair follicle biology, HOX homeobox genes 
are crucial for establishing the topological specificity of hair follicles 
and are integral to their development, cycle regulation, and regeneration 
(62–64). These genes may significantly influence hair follicle formation 
and function through the regulation of hair follicle stem cell activity, 
interaction with signaling pathways, and region-specific expression 
patterns. These findings underscore the important role of HOX genes 
in hair follicle biology and provide valuable insights for further research 
into the mechanisms of hair follicle development and regeneration. 
These results established a critical foundation for the subsequent 
validation studies and provided novel insights into the genetic analysis 
of sheep wool traits. Moving forward, we intend to conduct in-depth 

investigations of the identified candidate genes, encompassing gene 
function elucidation, regulatory network construction, and both 
in vitro and in vivo functional validations. This will further uncover the 
causal mutations influencing sheep wool traits and their associated 
molecular regulatory pathways, thereby offering alternative molecular 
targets and a robust theoretical basis for sheep breeding.

Conclusion

Our experimental strategy is based on selective clearance analysis 
of whole genome resequencing and integrated analysis of GWAS and 
transcriptome data to identify key genomic regions and genes under 
selection in the Tibetan sheep genome. By combining genomic 
variation and gene expression profiles, we have successfully pinpointed 
candidate genes associated with wool traits and their regulatory 
pathways. These findings not only elucidate the genetic mechanisms 
driving the unique adaptability of Tibetan sheep to extreme 
environments but also offer novel insights into the molecular basis of 
economically important traits. Furthermore, our results provide a 
robust theoretical foundation for the conservation and utilization of 
sheep genetic resources, significantly advancing molecular breeding 
and genetic improvement efforts for Tibetan sheep.
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