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Introduction: In recent years, global poultry consumption has increased rapidly, making
chicken the most widely consumed meat worldwide by 2019. To increase livestock
development, antibiotics are often added to animal feed as growth promoters. But
overuse of antibiotics may alter the gut microbiota, make people more resistant to them,
and raise the possibility that they will spread antibiotic resistance genes to the human
microbiome. Therefore, identifying safe and effective alternatives to antibiotics in livestock
production is crucial for maintaining and improving gut microbial balance, ultimately
promoting poultry health. The aim of this study was to investigate the mechanisms
behind the impacts of BaiRui YuPingFeng Powder (TCYP) on intestinal health in broilers
using combined metabolomics, bioinformatics analysis, and 16S rRNA sequencing.

Methods: In a 42-day feeding trial, 300 one-day-old broilers were randomly divided
into five groups (six replicates per group; 10 broilers per replicate) fed a basal diet
with or without supplements: control (CON), antibiotic (ATB), and TCYP at 500,
1000, and 1500 mg/kg. Growth performance, serum biochemical parameters,
intestinal morphology, cecal microbiota composition, and metabolomic profiles
were analyzed. Bioinformatics analysis was used to identify potential targets and
pathways, followed by gqPCR validation of key genes.

Results: Compared with the CON group, TCYP administration dose-dependently reduced
the feed-to-gain ratio (F/G) and average daily feed intake (ADFI) while increasing average
daily gain (ADG), with the high-dose TCYP showing more pronounced effects (p <
0.05). Serum biochemical analysis revealed that TCYP treatment significantly decreased
serum levels of total cholesterol (T-CHO), triglycerides (TG), lactate dehydrogenase
(LDH), and alanine aminotransferase (ALT) in a dose-dependent manner, while elevating
albumin (ALB) content. These beneficial effects were particularly marked in the high-dose
TCYP group (p < 0.05). Histopathological examination indicated that high-dose TCYP
significantly enhanced villus height and the villus-to-crypt ratio (V/C) in the duodenum,
jejunum, and ileum compared to the CON group (p < 0.05). 16S rRNA sequencing analysis
revealed that TCYP treatment significantly modified the g-diversity of cecal microbiota
(p < 0.01). Compared to the CON group, ATB treatment increased the abundance of
Faecalibacterium and Lachnospiraceae_unclassified but reduced Ruminococcaceae_
unclassified and Firmicutes_unclassified. Notably, dietary TCYP supplementation maintained
gut microbiota profiles similar to the CON group, demonstrating its stabilizing effect on
microbial community structure in broilers. Metabolomic analysis identified differential
metabolites primarily involved in lipid and lipid-like molecules, organic heterocyclic
compounds, and organic acids and derivatives. Spearman correlation analysis revealed
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significant associations between Lachnospiraceae_unclassified and metabolites such
as Gly-Leu, fumarate, and phenylpyruvic acid (|| > 0.5, p < 0.05). Bioinformatics analysis
suggested that TCYP may improve intestinal health by regulating key targets, including
MMP9, TGFB1, and PPARG, as well as the peroxisome proliferator-activated receptor
(PPAR) signaling pathway. Quantitative PCR (qQPCR) results showed that, compared to the
CON group, TCYP dose-dependently significantly upregulated the mRNA expression of
PPARG, PDPK1, and Bcl2 in jejunal tissues (p < 0.05), while significantly downregulating
the expression of MMP1 and Bax (p < 0.05).

Conclusion: TCYP enhances growth performance and intestinal health in broilers
through multiple mechanisms, including maintaining cecal microbial homeostasis,
modulating lipid and amino acid metabolism, with potential involvement of the
PPAR signaling pathway based on bioinformatics and gene expression analysis.

KEYWORDS

BaiRui YuPingFeng Powder, broilers, intestinal health, 16S rRNA gene sequencing,
metabolomics, bioinformatics

1 Introduction

The intricate ecosystem known as the gut microbiota is essential for
controlling how nutrients are absorbed and digested as well as blocking the
entry of harmful bacteria (1, 2). Butyrate, propionate, and acetate are short-
chain fatty acids that are produced as metabolic byproducts when the gut
bacteria ferments undigested dietary remnants. In addition to providing
the host with energy, these metabolites control intestinal pH and prevent
the growth of harmful microorganisms. In chicken, dysbiosis of the gut
microbiota can result in decreased immunity, poor nutrient absorption,
and digestive issues, raising the risk of intestinal illnesses such bacterial and
necrotic enteritis (3, 4). In recent years, global poultry consumption has
increased rapidly, making chicken the most widely consumed meat
worldwide by 2019 (5). To increase livestock development, antibiotics are
often added to animal feed as growth promoters. But overuse of antibiotics
may alter the gut microbiota, make people more resistant to them, and raise
the possibility that they will spread antibiotic resistance genes to the human
microbiome (6). Therefore, identifying safe and effective alternatives to
antibiotics in livestock production is crucial for maintaining and improving
gut microbial balance, ultimately promoting poultry health.

Herbal feed additives have been widely reported to enhance broiler
growth performance and improve gut microbiota composition (7, 8).
BaiRui YuPingFeng Powder (TCYP) is a compound herbal formulation
derived from YuPingFeng Powder, recorded in Shi Yi De Xiao Fang, with
the addition of Thesium chinense Turcz. As a classic traditional Chinese
medicine prescription, YuPingFeng Powder is composed of Saposhnikovia
divaricata (Turcz.) Schischk., Astragalus membranaceus (Fisch.) Bge., and
Atractylodes macrocephala Koiz, known for its ability to reinforce Qj,
strengthen the body’s defenses, and expel pathogenic factors (9). Modern
studies in animal husbandry have demonstrated that YuPingFeng
polysaccharides significantly improve gastrointestinal health by
regulating immune cell activity, promoting cytokine secretion, and
enhancing intestinal barrier function (10, 11). Thesium chinense Turcz. is
cool in nature, with a pungent, slightly bitter, and astringent taste. It is
known for its heat-clearing, detoxifying, and kidney-tonifying properties.
According to research, Thesium chinense extract is known as a “plant
antibiotic” since it successfully suppresses the development of a variety of
harmful pathogens, including both Gram-positive and Gram-negative
bacteria (12). Furthermore, our earlier research has demonstrated that
Thesium chinense can improve intestinal barrier integrity, control the
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makeup of the gut microbiota, and reduce inflammatory responses
through the EGFR/PI3K/Akt signaling pathway, all of which help mice
with antibiotic-induced diarrhea (13). Nevertheless, the effects of TCYP
on intestinal health in chickens warrant further exploration
and clarification.

This work evaluated TCYP’s effects on growth performance, cecal
microbiota composition, and associated metabolites in broilers using 16S
rRNA gene sequencing in combination with fecal metabolomic analysis to
better understand how TCYP impacts intestinal health in chickens.
Following molecular biological validation, possible targets and pathways
linked to TCYP-mediated enhancement of gut health were found using
weighted gene co-expression network analysis (WGCNA) based on the
GEO database. The purpose of this research is to provide a theoretical
framework for TCYP’s use in the poultry sector.

2 Materials and methods
2.1 Experimental materials and preparation

BaiRui YuPingFeng Powder consists of Thesium chinense Turcz.,
Saposhnikovia divaricata (Turcz.) Schischk., Astragalus membranaceus
(Fisch.) Bge., and Atractylodes macrocephala Koiz. in a 2:2:1:1 ratio. Thesium
chinense was provided by Anhui Jiuhua Huayuan Pharmaceutical Co., Ltd.,
and identified as Thesium chinense Turcz. of the Santalaceae family by
Anhui Science and Technology University. The additional medicinal plants
were verified to satisfy the requirements of the 2020 edition of the
Pharmacopoeia of the People’s Republic of China after being acquired from
Anhui Xiehecheng Pharmaceutical Co., Ltd. To obtain TCYP powder, the
herbs were decocted twice using distilled water at a 1:10 (g:mL) ratio. The
filtrate was then lyophilized. The chemical constituents in TCYP extracts
were subsequently identified and analyzed using UHPLC-QE-MS. Detailed
analytical methods and corresponding results are provided in
Supplementary file S1.

2.2 Experimental animals and grouping

The Anhui Science and Technology University Animal Ethics
Committee gave its approval to the experimental protocol (Approval No.
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TABLE 1 Antibiotic types.

10.3389/fvets.2025.1606531

TABLE 2 Composition and nutrient levels of the diets (air-dry basis).

Day-old Types and dosage of antibiotics Items (%) Days 1-21 Days 22-42
2~4 10% Spectinomycin (10 g mixed with 20 kg water) Ingredients
5% Lincomycin (10 g mixed with 20 kg feed) Corn 54.23 56.15
8~11 20% Tilmicosin (10 g dissolved in 40 kg water or 10 g mixed Soybean meal 24.57 23.11
with 10 kg feed) Wheat middling and 500 5.00
10% Amoxicillin (10 g dissolved in 20 kg water or 10 g mixed reddog
with 10 kg feed) Wheat bran 2.00 2.00
14 ~ 16 10% Doxycycline (10 g dissolved in 20 kg water or 10 g mixed Peanut meal 311 3.00
with 10 kg feed)
Cottonseed meal 2.55 2.20
0.5% Diclazuril Solution (10 mL diluted in 15 kg water)
Rapeseed meal 1.99 1.54
22~24 2.5% Danofloxacin Mesylate Powder (10 g dissolved in 20 kg
Soybean oil 2.00 4.40
water)
Blood meal 2.00 0
30 ~ 32 10% Colistin Sulfate Premix (10 g dissolved in 20 kg water)
NaCl 0.30 0.40
AK2024045). The animals were handled strictly in line with the Guide for Lys 045 0.50
the Care and Use of Agricultural Animals in Research and Teaching, Met 0.15 0.10
guaranteeing adherence to accepted experimental and ethical norms. N 0.20 005
. . . . g - -
Three hundred one-day-old broilers with uniform body weight
. Premix* 1.45 1.55
and an equal number of male and female were acquired from
Shandong Yisheng Livestock & Poultry Breeding Co., Ltd., a Total 100.00 100.00
commercial hatchery. Five sets of sixty chickens each, each consisting Nutrient levels?
of six replicates, 10 birds per replication. Under conj[rolled Sfett.mgs, ME/ (MJ/kg) 12.90 13.50
with an average temperature of 26 + 4°C and a relative humidity of
60 * 10%, the experiment was carried out for 42 days in the animal cp 2220 19.80
testing area of Anhui Science and Technology University. The broilers Ca 1.03 1.00
had unlimited access to food and water during the feeding session. TP 0.71 0.65
The control group (CON) received a standard basal diet, whereas the Iys 130 L10
antibiotic group (ATB) was administered antibiotics through both dietary
. - . . . Met 0.55 0.48
supplementation and water medication (see Table 1 for specific antimicrobial
agents and dosage regimens). In accordance with established research Arg 0.40 0.35

protocols, the treatment groups were allocated TCYP-supplemented diets at
graded inclusion levels of 500 mg/kg (TCYP-L), 1,000 mg/kg (TCYP-M),
and 1,500 mg/kg (TCYP-H) (14). All experimental diets were formulated to
meet the nutritional specifications outlined in the Chinese National Standard
GB/T 5916-2020, with corn-soybean meal serving as the basal formulation
(complete diet composition presented in Table 2).

2.3 Sample collection

On day 42, one bird per replicate was randomly selected for
sample collection (n = 6). Blood samples were obtained from the wing
vein and centrifuged at 3,000 rpm for 15 min at 4°C to separate serum.
Concurrently, the chickens were dissected to collect 1 cm tissue
segments from the mid-portions of duodenum, jejunum, and ileum.
Cecal content samples were immediately transferred to sterile
pre-chilled tubes and stored at —80°C for subsequent 16S rRNA
sequencing and metabolomics analysis.

2.4 Growth performance

Each replicate’s body weight of the fasting broilers was calculated
before to the experiment. The following metrics were computed: initial
body weight (IBW), final body weight (FBW), average daily gain
(ADGQ), average daily feed intake (ADFI), and feed-to-gain ratio (F/G).
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“The premix provided the following per kg of diets: VA 8200 IU, VD; 1,100 IU, VE 8 IU, VK
4.3 mg, VB, 3.1 mg, VB, 5.1 mg, VBs 5.6 mg, VB, 4.2 mg, folic acid 0.57 mg, niacin 37 mg,
Cu 13 mg, Fe 65 mg, Mn 140 mg, Zn 80 mg, and 1 0.3 mg.

"ME was a calculated value, while the others were measured values.

2.5 Serum biochemical analysis

Blood samples were collected from the wing vein and centrifuged
at 3,000 rpm for 15 min at 4°C to obtain serum. Using commercial test
kits from the Nanjing Jiancheng Bioengineering Institute, serum
biochemical parameters were evaluated. The following parameters were
measured: total cholesterol (TC), triglycerides (TG), albumin (ALB),
alanine aminotransferase (ALT) activity, high-density lipoprotein
cholesterol (HDL-C), lactate dehydrogenase (LDH), and low-density
lipoprotein cholesterol (LDL-C).

2.6 Intestinal morphological analysis

For intestinal morphology analysis, six chickens were randomly
selected from each group. Tissue samples (1 cm) were collected from the
mid-portions of the duodenum, jejunum, and ileum. The samples were
fixed in 4% paraformaldehyde for 48 h, embedded in paraffin, and
sectioned at approximately 5 pm thickness. Three sections were prepared
for each intestinal segment. For each section, three non-overlapping fields
of view were randomly selected. The microscopic images were analyzed
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using Image]J software to measure villus height, crypt depth, and the villus
height to crypt depth ratio (V/C) (15).

2.7 Microbial DNA extraction and
sequencing of 16S rRNA genes

Based on comprehensive pharmacodynamic evaluations including
growth performance parameters, serum biochemical indices, and
intestinal HE staining analyses, the CON group, ATB group, and the
most therapeutically effective TCYP dosage group were selected for
16S rRNA sequencing of cecal contents, which represent the intestinal
segment with the highest microbial density in avian species.

The cecal content samples collected from broilers as described in
Section 2.2 were subjected to microbial DNA extraction following the
manufacturer’s protocol of the DNA extraction kit. To determine the
final DNA concentration, RT-qPCR was used, and the integrity of the
DNA was evaluated using agarose gel electrophoresis. The V3-V4
variable region of the 16S rRNA gene was amplified using primers
341F and 805R (341F: 5-CCTACGGGNGGCWGCAG-3'; 805R:
5-GACTACHVGGGTATCTAATCC-3’). The PCR amplicons were
purified using the AMPure XP kit before to detection and
quantification. To sequence the purified amplicons, the Illumina
NovaSeq 6,000 platform was used.

Low-quality and chimeric sequences were filtered from the raw
sequencing data to obtain high-quality clean data. The clean data were
then denoised using DADA2 in Qiime2 to remove PCR amplification
and sequencing errors, generating an amplicon sequence variant
(ASV) abundance table for subsequent alpha diversity, beta diversity,
species composition, and LEfSe analysis (16).

2.8 Metabolomics analysis

Metabolites were extracted from the contents of the chicken’s cecum,
and then the extraction solvent was added, bead-beating, and
ultrasonication were performed. After centrifugation, the supernatant was
collected and lyophilized for examination. A Vanquish Flex UPLC system
with an ACQUITY UPLC T3 column (100 mm x 2.1 mm, 1.8 pm) was
used for the separation. Acetonitrile (B) and 5 mmol/L ammonium
acetate-acetic acid aqueous solution (A) were used as mobile phases, and
the column temperature was kept at 40°C. The flow rate was 0.35 mL/
min. In both positive and negative ion modes (+3,800/3400 V), mass
spectrometric detection was carried out using an Orbitrap Exploris 120
high-resolution mass spectrometer. The ion source temperature was set
at 350°C, and the gas parameters were set as sheath gas 1, auxiliary gas 15,
and nebulizer gas 50. After ten injections, quality control samples were
examined to guarantee the accuracy of the results.

2.9 WGCNA analysis based on the GEO
database

The GEO database provided the gene expression information for
chicken gut health from the GSE94095 dataset. R 4.4.2 was used for data
standardization, and the WGCNA R program was used for co-expression
network analysis of the GSE94095 dataset (17). By choosing a suitable soft
threshold, a weighted connection network was built, and dynamic tree cut
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analysis was used to find gene clusters. Modules exhibiting a substantial
link with Intestinal health (correlation coefficient > 0.7, p < 0.05) were
chosen after examining the statistical relationship between module
eigengenes (MEs) and phenotypic features.

2.10 Construction of protein—protein
interaction network

The SwissTargetPrediction' database was used to predict chemical
targets using TCYP chemicals derived from UHPLC-QE-MS analysis.
The GeneCards database was used to find targets linked to illnesses of
the chicken intestine.” The intersection of pharmaceutical targets,
disease-related genes, and significant genes from the WGCNA
modules was calculated in order to identify the intersecting gene set.
Using the STRING database,’ a protein-protein interaction network
was constructed with a confidence score criterion of > 0.4. Using
Cytoscape 3.7.2, the network was visualized (18).

2.11 Gene ontology and KEGG pathway
analysis

The clusterProfiler package in R was used to perform GO and
KEGG pathway enrichment analyses on the intersection gene set. A
p-value of less than 0.05 was established as the significance criterion.
For visualization, loops of KEGG pathway and GO enrichment
analyses were produced.

2.12 Reverse transcription quantitative PCR

After extracting RNA from chicken jejunal tissues, reverse
transcription was performed. RT-qPCR was then used to determine
the expression levels of MMPI, PDPK1, PPARG, Bax, and Bcl-2, using
f-actin as an internal reference. The 2A-AACt method was used to
determine the levels of gene expression. Table 3 contains the primer
sequences for the target genes.

2.13 Statistical analysis

Statistical analyses were performed using individual broilers as
independent experimental units (biological replicates, n = 6 per group).
The sample size was determined through a priori power analysis using
G*Power software (version 3.1.9.7). Based on a one-way ANOVA model
with an effect size f=0.25, @ =0.05, and power = 0.95, the calculated
actual power was 95.21%. Continuous data are presented as mean *
standard deviation. All statistical analyses were conducted using
GraphPad Prism 6 and SPSS 26.0 software. Comparisons between two
groups were performed using Students t-test, while multiple group
comparisons were analyzed by one-way ANOVA. A p-value < 0.05 was
considered statistically significant.

1 http://www.swisstargetprediction.ch
2 https
3 https

//www.genecards.org/

//string-db.org/
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TABLE 3 The primer sequences of MMP1, PDPK1, PPARG, Bad, Bcl-2.

Gene ‘ Sequences

F: ACACCCACACCCCTGTGATGAA

p-actin

R: TGCTGCTGACACCTTCACCATTC

F: TGCCCATCGAGCTCTACAAC
MMPI

R: TCCCGGAGGAAGTAGTAGCC

F: CCAGCAGCCACCTGTATGAT
PDPK1

R: TGCCACAGGTGGAAATGACA

F: TGACAGCGCCAGAGATTACA
PPARG

R: CATCCATCGCAGACAGATCCA

F: ATCGTCGCCTTCTTCGAGTT
Bcl-2

R: ATCCCATCCTCCGTTGTCCT

F: ACTCTGCTGCTGCTCTCCTCTC
Bax

R: ATCCACGCAGTGCCAGATGTAATC

3 Results

3.1 Effect of TCYP on growth performance
in broilers

Figures 1A-E demonstrate that compared with the CON group,
low-dose TCYP showed no significant effects on the FBW and ADG of
broilers (p >0.05). In contrast, the ATB group, TCYP-M group, and
TCYP-H group all significantly enhanced broiler FBW and ADG
(p <0.05). ADFI was significantly impacted by the ATB and high-dose
TCYP groups (p < 0.05). The F/G ratio was considerably lower in the ATB
and medium-high-dose TCYP groups than in the CON group (p < 0.05).
This suggests that both ATB and medium-high doses of TCYP may
enhance  broiler

growth  performance by improving feed

utilization efficiency.

3.2 Effect of TCYP on serum biochemical
parameters in broilers

Figures 1F-L, compared to the CON group, the high-dose TCYP
treatment significantly affected the levels and activities of T-CHO, TG,
ALB, LDH, and ALT in the serum of broilers (p < 0.05). Compared to
the CON group, the high-dose TCYP group showed a significant
reduction in T-CHO, TG, and LDH levels, as well as ALT activity,
along with a marked increase in ALB content (p < 0.05). In contrast,
no significant changes were observed in the medium-and low-dose
TCYP groups relative to the CON group (p > 0.05). In contrast to the
CON group, a significant reduction was exclusively observed in TG
concentrations within the ATB group (p < 0.05). Compared to the
CON group, there were no significant differences in HDL-C and
LDL-C levels across the groups (p > 0.05).

3.3 Effect of TCYP on intestinal
morphology in broilers

Compared to the CON group, moderate and high dosages of
TCYP significantly increased the villus height in the duodenum,
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jejunum, and ileum of broilers (p < 0.05), as Figure 2 illustrates.
Compared to the CON group, the TCYP-H group showed a
considerable reduction in crypt depth in the duodenum and ileum,
along with a significantly higher villus height to crypt depth ratio in
all three intestinal segments (p < 0.05). Furthermore, the antibiotic-
containing diet induced significant morphological alterations in the
duodenum, jejunum, and ileum of broilers compared to the CON
group, manifesting as decreased villus height in all three segments and
a markedly lower villus height to crypt depth ratio in the jejunum and
ileum (p < 0.05).

3.4 Effect of TCYP on gut microbiota in
broilers

The detected OUT, Chaol, Shannon, and Simpson indices of the
cecal microbiota did not differ statistically significantly between the
ATB and TCYP groups and the CON group (p > 0.05), per the results
of the Alpha diversity analysis in Figure 3A. When high-dose TCYP
was added to the broiler diet, the cecal microbiota OUT, Chaol,
Shannon, and Simpson indices were significantly higher than those in
the ATB group (p < 0.05). The results indicate that supplementation
with 1,500 mg/kg TCYP not only promotes growth performance in
broilers but also preserves the a-diversity of gut microbiota, thereby
sustaining the ecological homeostasis of cecal microbial ecosystems.

While the CON group overlapped with the other groups
(p < 0.01), the TCYP group’s coordinates differed considerably from
the ATB group’s (PCoA analysis, Figure 3B). 8.55% of the variation
between the treatment groups was explained by principal coordinate
1 (PCoAl), and 8.35% by principal coordinate 2 (PCoA2). For the
discrepancies, the NMDS analysis (Stress = 0.18), too, produced
trustworthy findings (Figure 3C). The cecal microbiota composition
3D,E) showed that
Faecalibacterium, Lachnospiraceae_unclassified, Ruminococcaceae_

analysis at the genus level (Figure
unclassified, and Firmicutes_unclassified were the dominant species.
The average proportion of Faecalibacterium in the CON group was
12.08%, which increased to 17.81% in the ATB group and decreased
to 11.95% in the TCYP group. The average proportion of
Lachnospiraceae_unclassified in the CON group was 9.90%, which
slightly increased to 10.57% in the ATB group and decreased to
5.68% in the TCYP group. The average proportion of
Ruminococcaceae_unclassified in the CON group was 5.45%, which
decreased to 4.87% in the ATB group and increased to 6.72% in the
TCYP group. The average proportion of Firmicutes_unclassified in
the CON group was 4.86%, which decreased to 3.92% in the ATB
group and further decreased to 4.45% in the TCYP group.

3.5 Effect of TCYP on cecal metabolites

As shown in Figure 4A, differential metabolites were collected under
both positive and negative ion modes, and the PCA plot illustrates the
overall distribution of the dataset. In the PCA model, QC samples tightly
clustered, indicating the stability and reliability of the experimental data.
Meanwhile, a separation trend was observed among the three groups of
broilers in the PCA plot, particularly between the CON and TCYP
groups, suggesting potential metabolic differences between groups. This
separation trend was further validated by the PLS-DA model (Figure 4B).
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As seen by Figure 4C, the permutation test verified that the PLS-DA
model was not overfitted after 200 rounds of 7-fold cross-validation.
Based on FC>1.2 or FC<1/1.2, p value < 0.05, VIP > 1,
differential metabolites after ATB and TCYP treatments were identified.
Comparison of the TCYP and CON groups showed 322 metabolites
with significant changes, including 49 metabolites upregulated in the
TCYP group, such as Esculin, Lysophosphatidylglycerol O-13:1, and
D-mannose 6-phosphate, and 273 metabolites downregulated in TCYP,
including L-Malic acid, (Z)-13-Docosenamide, and Diacylglycerol
8:0_16:3 (Figure 4D). Comparison between the ATB and CON groups
showed 196 metabolites with significant changes, including 28
metabolites upregulated in TCYP, such as Cadaverine, Voacristine, and
N-Acetylputrescine, and 168 metabolites downregulated, including
Lysophosphatidylcholine O-18:2, Monoacylglycerol 19:0, and Trans-
urocanate (Figure 4F). Comparison between the TCYP and ATB
groups revealed 257 metabolites with significant changes, including 91
metabolites upregulated in TCYP, such as Lysophosphatidylglycerol
0-13:1, Monogalactosyldiacylglycerol O-16:2_24:5, and 2-Methyladipic
acid, and 166 metabolites downregulated in TCYP, including Glutamic
acid, N-Acetyl-L-leucine, and Octadecanamide (Figure 4F). Figure 4G
displays a heatmap of the top 30 differential metabolites, with blue
denoting relatively low abundance and red denoting relatively high
abundance. The distinct and similar effects of the various treatments
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on the metabolites are revealed by the Venn diagram of differential
metabolites between the TCYP, ATB, and CON groups, which displays
overlapping and particular changes in metabolites (Figure 4H).

Metabolites and gut microbiota were shown to be highly associated,
according to the results of Spearman correlation analysis (Figure 41).
Notably, Lachnospiraceae_unclassified showed a significant positive
correlation with Gly-Leu, Fumarate, Phenylpyruvic acid, L- Aspartate, Phe
Gly, D-Lysine, and D-(+)-Malic acid (r> 0.5, p < 0.05) and a significant
negative correlation with Thymine (r < —0.5, p < 0.05), indicating that this
microbiota may be involved in the regulation of amino acid metabolism,
energy metabolism, and organic acid synthesis.

3.6 Co-expression network construction
and module identification

To identify key gene modules associated with chicken intestinal
health, this study utilized the WGCNA algorithm based on the
GSE94095 dataset from the GEO database. 16 samples from the
control and healthy chicken intestine groups were used to create a
gene co-expression network (Figure 5A). Following the
computation of the variance of gene expression, the top 25% of
genes with the largest variation were chosen for further
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Effects of TCYP on the morphology of duodenum, jejunum, and ileum in broilers. (A) HE staining of duodenal, jejunal, and ileal tissues (scale bar:

100 pm); (B) Villus length; (C) Crypt depth; (D) Villus length to crypt depth ratio. Data were shown as means + standard deviations (n = 6). Values with
the same or no letter superscripts mean no significant difference (p > 0.05), while with different letter superscripts mean significant difference
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FIGURE 3

Effect of TCYP on gut microbiota in broilers. (A) Alpha diversity analysis; (B) PCoA analysis; (C) NMDS analysis; (D) Genus-level community composition
analysis between samples; (E) Genus-level community composition analysis between groups. Data were shown as means + standard deviations

(n = 6). * indicates a significant difference between the TCYP and ATB groups (p < 0.05), ** indicates a highly significant difference between the TCYP
and ATB groups (p < 0.01).

examination. By optimizing the soft thresholding power (soft  network was successfully built, identifying 17 unique gene modules
thresholding power = 14) and combining hierarchical clustering  (Figures 58-D). Among these, the MEturquoise module showed a
with the dynamic tree-cutting algorithm, a gene co-expression  strong correlation with the chicken intestinal health phenotype
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FIGURE 4
Cecal metabolomics analysis. (A) PCA analysis; (B) PLS-DA analysis; (C) Permutation test analysis; (D) Volcano plot of differential metabolites between
TCYP and CON; (E) Volcano plot of differential metabolites between ATB and CON; (F) Volcano plot of differential metabolites between TCYP and ATB;
(G) Heatmap of the top 30 differential metabolites; (H) Venn diagram of differential metabolites between groups; (I) Spearman correlation analysis
between differential microbial taxa and differential metabolites in the cecum. Data are presented for a sample size of n = 6.

(correlation coefficient = 0.99, p < 0.001), suggesting that this
module may play a key role in regulating chicken intestinal health.

The compounds derived from UHPLC-QE-MS analysis were
entered into the SwissTargetPrediction database for target prediction
in order to further investigate the important genes implicated in the
treatment of chicken intestinal health by TCYP. This resulted in 841
compound-related targets. In the meanwhile, 15,282 targets linked
to intestinal health in chickens were predicted using the GeneCards
database. 46 key targets were chosen by examining the interaction
of medication and disease targets with important genes in the
MEturquoise module. To create a network of protein-protein
interactions, these intersecting targets were then entered into the
STRING database. TGEB1, PPARG, and MMP9 were selected as
core targets based on the Degree value (Figures 5E,F).

3.7 Gene ontology (GO) and KEGG pathway
analysis

Additional GO and KEGG pathway analyses were performed on
the 46 significant genes using the R program. The greatest levels of
cellular component (CC) enrichment were found in the plasma
membrane region, receptor complex, and neuron projection,
according to the GO analysis findings. The main molecular functions
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(MF) were endopeptidase activity, protein kinase activity, and protein
tyrosine kinase activity. Biological processes (BP) were closely related
to the regulation of cell population proliferation, the enzyme-linked
receptor protein signaling pathway, and the transmembrane receptor
protein tyrosine kinase signaling pathway (Figure 5G).

KEGG pathway enrichment analysis revealed that the FoxO
signaling pathway and PPAR signaling pathway might be key pathways
through which TCYP influences chicken intestinal health. These
results provide important clues for revealing the molecular mechanisms
by which TCYP regulates chicken intestinal health (Figure 5H).

3.8 TCYP activates PPAR pathway-related
gene expression in the jejunum of broilers

As illustrated in Figure 6, we used real-time PCR to measure the
expression levels of PPARG and its downstream genes. The ATB group’s
jejunum showed no appreciable alterations in gene expression when
compared to the CON group. PPARG, PDPK1, and Bcl2 gene expression
in the TCYP group considerably increased in a dose-dependent manner
(p <0.05) as TCYP concentration rose, but MMPI and Bax gene
expression dramatically reduced in a dose-dependent manner (p < 0.05).
The results demonstrate that TCYP potentially ameliorates intestinal
barrier integrity through PPARG-mediated regulation of proliferative
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and apoptotic processes. This mechanistic insight is consistent with the
histomorphological improvements observed in TCYP-H treated
broilers, substantiating the hypothesis that TCYP’s enteroprotective
efficacy stems from coordinated multi-target modulation.

4 Discussion

The water extract of TCYP contains various active components,
including Succinic acid, Prim-O-glucosylcimifugin, Linarin, and
others. These components have been widely reported in medical
literature for their anti-inflammatory, antioxidant, and therapeutic
effects on various gastrointestinal diseases (19). In recent years, the
application of TCYP has gained increasing popularity in animal
husbandry practices. According to a study by Zheng et al. (10)
YuPingFeng polysaccharides can enhance chick growth performance
by controlling gut microbiota, antioxidant balance, and serum
immunity. The results of this experiment show that adding medium
to high doses of TCYP to the diet of 1-42 day-old broilers
significantly increased their average daily weight gain and reduced
the feed-to-weight ratio. Serum biochemical markers including
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T-CHO and TG are closely associated with lipid metabolism.
Specifically, TG serves as the primary form of lipid storage in
hepatocytes, while T-CHO predominantly functions in systemic lipid
transport (20). For hepatic function assessment, LDH and ALT are
well-established biomarkers (21). LDH activity reflects the extent of
tissue damage, with decreased levels indicating attenuated cellular
necrosis and injury (22). As a hepatocyte-specific enzyme, ALT
exhibits elevated serum levels when cellular membrane permeability
increases (23). The observed reduction in serum LDH and ALT
activities demonstrates that TCYP effectively enhances hepatic
function in broilers, thereby optimizing lipid metabolism to support
growth performance and energy provision. In addition, ALB is the
major protein in blood and not only helps maintain the colloidal
osmotic pressure but also transports various substances (24). Studies
have shown that an increase in ALB levels may positively affect
immune function and nutritional status (25). The alterations in these
serum biochemical parameters indicate that TCYP may enhance the
physiological status of broilers by regulating lipid metabolism and
improving hepatic function.

In the small intestine, the morphological markers of villus height,
crypt depth, and villus/crypt ratio are often used to precisely evaluate
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FIGURE 6
Effects of TCYP on gene expression of (A) PPARG, (B) PDPK1, (C) MMP1, (D) Bcl2 and (E) Bax in the jejunum of broilers. Data were shown as means +
standard deviations (n = 6). Values with the same or no letter superscripts mean no significant difference (p > 0.05), while with different letter
superscripts mean significant difference (p < 0.05).

the functional and overall health of chickens. The structure of the
intestinal microbiota, the crypt depth ratio, and the length of the villus
in the duodenum and jejunum were all considerably enhanced by
adding 10 g/kg of Rumex nepalensis to broiler diets, according to
Banday et al. (26). The villus length and villus height to crypt depth
ratio in the jejunum were greatly raised by adding 1,500 mg/kg of
TCYP to the diet, but the same was dramatically lowered by adding
ATB. The findings suggest that TCYP likely improves nutrient
assimilation by optimizing intestinal architecture. The comparative
advantage of TCYP over ATB in preserving gut morphological
integrity provides compelling evidence for its application as a
sustainable antibiotic alternative in poultry production.

The 16S rRNA sequencing results indicated reduced a-diversity
in the ATB group. Compared with the ATB group, dietary TCYP
supplementation increased the a-diversity indices of broiler intestinal
microbiota, demonstrating that TCYP can enhance broiler growth
performance while maintaining intestinal microecological balance.
Previous studies have confirmed that coexisting components in
traditional Chinese medicine compounds can enhance intestinal
nutrient absorption by improving solubility and increasing the
permeability of intestinal epithelial cell membranes, suggesting that
TCYP may improve the growth performance of broilers through this
mechanism (27). YuPingFeng polysaccharide supplementation in feed
has been shown by Yin et al. to enhance chick development
performance by controlling gut microbiota, antioxidant balance, and
serum immunology (14). Faecalibacterium and Lachnospiraceae_
unclassified were more abundant in this experiment’s gut microbiota
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composition analysis at the genus level when ATB was added to the
diet than in the CON group, whereas Ruminococcaceae_unclassified
and Firmicutes_unclassified were less abundant. In contrast, after
adding TCYP to the diet, the relative abundance of Faecalibacterium,
Lachnospiraceae_unclassified, and Firmicutes_unclassified decreased,
while the relative abundance of Ruminococcaceae_unclassified
increased. The findings indicate that TCYP potentially ameliorates the
gut microenvironment via selective regulation of particular microbial
taxa, corroborating its established pharmacological efficacy in
promoting intestinal health. Thesium chinense, known as “plant
antibiotic” in traditional Chinese medicine, has been widely verified
for its inhibitory activity against harmful bacteria like Staphylococcus
aureus (28). Therefore, while Thesium chinense may inhibit harmful
bacteria, it could also have some inhibitory effect on beneficial
bacteria, leading to a slight decrease in the abundance of dominant gut
microbiota. Pseudoflavonifractor, Faecalibacterium, Ruminococcus
species, and many genera under the Firmicutes phylum are closely
related to the production of butyrate, which plays a key role in
repairing and enhancing the barrier function of intestinal epithelial
cells. Butyrate, as a short-chain fatty acid, not only provides energy for
colonocytes but also contributes to maintaining gut health by
strengthening the intestinal epithelial integrity and modulating the
immune response (29-31). It has been shown that butyrate can
support intestinal development, inhibit intestinal pathogens, reduce
pro-inflammatory cytokines, and promote the activation of regulatory
T cells (Treg) (32, 33). Through the f-hydroxy-f-methylbutyrate-CoA
pathway, butyrate may promote lipid synthesis from acetyl-CoA or
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ketone bodies, potentially leading to weight gain (34). However, the
effects of JYPF on intestinal butyrate levels in broilers require
further verification.

Endogenous metabolites and the gut microbiota are intimately
associated. The results of PCA and PLS-DA in this experiment showed
significant metabolic differences among the groups. A total of 26
differential metabolites were identified as the common differences
between the three groups, primarily consisting of lipids, amino acids,
and organic acids. Abnormal glycerophospholipid metabolism is often
associated with the development of various intestinal diseases.
Phosphatidylcholine can hydrolyze into lysophosphatidylcholine to
activate immune cells and participate in inflammatory responses (35).
In addition, the decrease in serum indicators such as T-CHO and TG
in this experiment further emphasizes the important role of lipid
metabolism in intestinal diseases. The metabolomics results showed
that after the addition of TCYP to the diet, the levels of phospholipid
components such as L-Malic acid, (Z)-13-Docosenamide, and
Diacylglycerol 8:0_16:3 were downregulated, while components such
as Esculin, Lysophosphatidylglycerol O-13:1, and D-mannose
6-phosphate were upregulated. This suggests that regulating lipid
metabolism may be a key mechanism through which TCYP improves
chicken gut health. Through regulating the expression of the miR-181
family in white adipocytes, Virtue et al. discovered that tryptophan-
derived compounds generated by the gut microbiota affect insulin
sensitivity, energy expenditure, and host fat accumulation in mice
(36). The Spearman correlation analysis between Lachnospiraceae_
unclassified and various amino acids and organic acids indicates that
this genus may play a significant role in amino acid metabolism and
energy metabolism. Especially the positive correlation with Fumarate
and L-Aspartate suggests that Lachnospiraceae_unclassified may
be involved in key metabolic steps of the tricarboxylic acid cycle,
thereby affecting energy production and cellular metabolic balance
(37). Thymine, as an important precursor for DNA synthesis, its
reduced abundance may be related to the regulation of cell
proliferation and repair processes (38). The negative correlation
between Lachnospiraceae_unclassified and Thymine may reflect the
regulatory role of this bacterial genus in nucleotide metabolism.

We mined the chicken gut health dataset from the GEO database
and conducted R analysis, identifying core targets such as MMP9,
TGFBI, and PPARG. We also found that the PPAR signaling pathway
may be a potential pathway through which TCYP improves chicken
gut health. The PPAR family plays a crucial role in cell signaling,
metabolic regulation, inflammation, and gene expression (39). PPARy
stimulates the upregulation of FABP, which in turn facilitates the
absorption and storage of long-chain fatty acids in cells (40).
Activation of PPARy leads to the activation of PDPK1, which, through
phosphorylation of Akt, exerts its pro-survival effects on cells (41).
This activation further triggers Bcl2 and downregulates Bax, thereby
alleviating cell apoptosis. Ye et al. used Chrysosplenosides I and A to
treat fruit flies and aging mice, and found that these compounds
activated the PPAR signaling pathway while inhibiting the EGFR
signaling pathway to restore intestinal stem cell aging (42). We further
validated these findings using real-time PCR and found that TCYP
significantly upregulated the mRNA expression of PPARG, PDPK1,
and Bcl2 in the jejunal tissue, while significantly downregulating the
mRNA expression of MMPI and Bax.

In contrast to antibiotics which primarily function through
pathogen suppression, TCYP exerts its beneficial effects via
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multi-target and multi-pathway regulatory mechanisms to enhance
intestinal health (43). While antibiotics can rapidly reduce pathogenic
bacterial loads, prolonged administration often leads to microbiota
dysbiosis and increased antibiotic resistance (44). In comparison,
accumulating evidence has demonstrated TCYP’s capacity to
modulate gut microbial composition (45). Notably, our findings reveal
that although both TCYP and antibiotics improve broiler growth
performance, TCYP demonstrates superior efficacy in maintaining
intestinal barrier integrity, preserving microbial homeostasis, and
regulating lipid metabolism. Despite its promising potential, TCYP
still presents several challenges compared to conventional antibiotics.
For instance, the multi-component nature of herbal formulations
leads to complex active ingredients, which may vary between batches
due to differences in geographical origin, harvest season, and
processing methods. Additionally, the high cost of raw medicinal
materials and the complexity of extraction processes may hinder
large-scale industrial production.

However, this study has several limitations that warrant
discussion. First, although metabolomic analysis identified multiple
differential metabolites, the lack of functional validation experiments
makes it difficult to definitively establish their specific contributions
to TCYP-mediated intestinal health improvement. To address this,
we plan to employ in vitro cell models and animal intervention studies,
where exogenous supplementation of key metabolites (e.g., L-malic
acid, esculin) will be used to assess their regulatory effects on intestinal
barrier function, inflammation, and metabolism. Second, while
bioinformatics analysis suggests that the PPAR signaling pathway may
mediate TCYP’s beneficial effects on broiler gut health, the absence of
commercially available antibodies for certain key proteins (e.g.,
MMP1, PDPK1) has hindered protein-level validation. To overcome
this limitation, we will utilize targeted proteomic approaches for
quantitative protein analysis in future investigations. Furthermore,
integrating organoid culture systems and single-cell sequencing could
provide higher spatiotemporal resolution in elucidating TCYP’s effects
on intestinal epithelial differentiation and host-microbiota crosstalk.
While the 42-day experiment encompassed the full growth cycle of
broiler chickens, further multi-generational studies are necessary to
fully assess the long-term stability and safety of TCYP as a sustainable
antibiotic alternative. Finally, this study demonstrates that TCYP
exhibits clear dose-dependent effects on broiler growth performance,
serum biochemical parameters, intestinal health, and the PPAR
signaling pathway. However, the impact of higher TCYP doses on
broiler physiological functions and the underlying mechanisms
require further systematic dose-response studies for comprehensive
elucidation. These refinements will facilitate a more comprehensive
understanding of TCYP’s multi-component synergistic mechanisms
and support its standardized application in poultry production.

5 Conclusion

The results of this study demonstrate that dietary supplementation
with 1,500 mg/kg TCYP significantly enhances broiler growth
performance and serum biochemical parameters compared to lower
doses (500 mg/kg and 1,000 mg/kg). Furthermore, 1,500 mg/kg TCYP
improves intestinal morphology, stabilizes gut microbiota composition,
and promotes intestinal health by modulating lipid and amino acid
metabolism. Bioinformatics and gene expression analyses suggest that
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the PPAR signaling pathway may play a key role in these effects, with
TCYP dose-dependently regulating the mRNA expression of this
pathway. These findings indicate that TCYP could be a candidate for
further investigation as a potential alternative to feed antibiotics, though
additional validation is required to confirm its efficacy and mechanisms.
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Glossa ry PPAR - peroxisome proliferator-activated receptor
TCYP - BaiRui YuPingFeng Powder qPCR - Quantitative PCR

CON - control group WGCNA - weighted gene co-expression network analysis
ATB - antibiotic group IBW - Initial body weight

TCYP-L - 500 mg/kg dose of TCYP FBW - final body weight

TCYP-M - 1,000 mg/kg dose of TCYP TC - total cholesterol

TCYP-H - 1,500 mg/kg dose of TCYP HDL-C - high-density lipoprotein cholesterol

UHPLC-QE-MS - Ultra-high-performance liquid chromatography

LDL-C - low-density li tein cholesterol
coupled with quadrupole-Orbitrap mass spectrometry ow-density ipoprotein cholestero

ASV - li .
ADG - average daily gain SV - amplicon sequence variant

ADFI - average daily feed intake PCA - Principal Component Analysis

F/G - feed-to-gain ratio PCoA - Principal Coordinates Analysis

T-CHO - total cholesterol SD - standard deviation
TG - triglycerides GO - Gene Ontology
LDH - lactate dehydrogenase CC - cellular components
ALT - alanine aminotransferase MF - molecular functions
ALB - albumin BP - biological processes
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