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Ketosis is a prevalent metabolic disease in dairy cows, characterized by adverse 
effects on both animal health and production performance. Propylene glycol 
(PG), recognized for its glucogenic properties, is widely utilized in the therapeutic 
management of ketosis. This study evaluated the efficacy of two PG-based treatment 
protocols in mitigating ketosis and enhancing the metabolic health of Holstein 
cows. Ninety cows were randomly allocated into three groups (n = 30 each): 
control (Group C, no PG), original PG protocol (Group O, 500 mL PG orally 
drenched once daily on days 0, 1, 2, 7, 8, and 9 post-calving), and novel PG 
protocol (Group N, 500 mL PG orally drenched once daily on days 0, 7, and 14 
post-calving). Data were collected for body condition score, milk yield, metabolic 
biomarkers, and the incidence of ketosis from 14 (±3) days prepartum to 50 days 
postpartum. The results demonstrated that the novel PG protocol, compared 
with the control group, significantly enhanced energy metabolism by modulating 
glucose, insulin, and leptin levels while reducing β-hydroxybutyric acid and non-
esterified fatty acid concentrations (p < 0.05). Additionally, the novel PG protocol 
effectively decreased the incidence of ketosis (from 33.3% in Group C to 6.7% in 
Group N at 14 days postpartum), alleviated liver injury, and mitigated oxidative 
stress in dairy cows (p < 0.05). These findings underscore the potential of the 
novel PG protocol to improve metabolic health and reduce the risk of ketosis 
during the critical transition period in dairy cows. This offers a promising strategy 
for managing this condition in modern dairy production systems.
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1 Introduction

The transition period in dairy cows, defined as the 3 weeks before calving to the 3 weeks after 
calving (1), is a critical phase marked by significant physiological changes associated with 
pregnancy, parturition, and lactation. These changes result in a rapid increase in energy demands, 
yet dry matter intake (DMI) often fails to meet these physiological requirements, leading to a 
state of negative energy balance (NEB) (2, 3). To compensate for this energy deficit, dairy cows 
mobilize substantial body fat reserves, which increases circulating concentrations of 
non-esterified fatty acids (NEFA) (4). Excessive NEFA is channeled into the ketone body 
synthesis pathway, producing high levels of β-hydroxybutyrate (BHBA), acetoacetate, and 
acetone, thereby contributing to the onset and progression of ketosis in dairy cows (5). Globally, 
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the prevalence of ketosis in high-producing dairy cows is estimated to 
be approximately 15%, with an increasing trend in incidence (6, 7).

Studies have shown that ketosis not only causes a significant decline 
in milk yield but also adversely affects milk quality (8). Furthermore, 
ketosis severely impairs reproductive performance, as evidenced by 
reduced conception rates and prolonged intervals from calving to first 
insemination (9). Additionally, ketosis predisposes dairy cows to various 
secondary disorders, including displaced abomasum, mastitis, and 
metritis (10, 11). The combined impact of these factors leads to 
increased treatment costs, elevated culling rates, and substantial 
economic losses for the dairy industry (12). In this context, propylene 
glycol (PG) has emerged as a promising intervention strategy. Its 
potential as a preventive and therapeutic solution for managing ketosis 
warrants further investigation to improve the health and productivity 
of dairy cows during the transition period.

Propylene glycol is widely utilized as both a therapeutic and 
prophylactic agent for mitigating ketosis in dairy cows (13, 14). Its mode 
of action primarily involves increasing serum glucose levels and 
reducing circulating ketone body concentrations (15, 16). Recent studies 
have demonstrated that PG supplementation can effectively lower the 
incidence of both clinical and subclinical ketosis, improve milk yield, 
and enhance overall health during the transition period (17, 18). Despite 
these benefits, the long-term use of PG raises certain challenges. 
Prolonged reliance on PG may reduce feed palatability, while excessive 
administration can lead to rumen acidosis and other metabolic 
disturbances (19). Consequently, research has predominantly focused 
on optimizing PG administration, either as a dosing agent or as a feed 
additive, to minimize the incidence of ketosis (15, 20, 21). Despite these 
efforts, ketosis continues to pose a significant challenge in modern dairy 
management systems, highlighting the pressing need for innovative and 
more effective strategies to further reduce its prevalence and impact.

Extensive research has shown that oral administration of PG can 
significantly lower plasma BHBA concentrations, elevate serum 
glucose levels, and improve both the health status and milk yield of 
dairy cows (22, 23). Emerging evidence suggests that PG alleviates 
oxidative stress and enhances immunity in ketotic cows by modulating 
amino acid and lipid metabolism (24). Despite these benefits, current 
treatment protocols have notable limitations, particularly in 
addressing the effects of different PG regimens on energy metabolism 
and oxidative stress in dairy cows, which remain insufficiently 
explored. This study introduces a novel health management protocol 
based on PG. It was hypothesized that, compared to the original PG 
regimen, the new PG regimen would demonstrate improved efficacy 
in alleviating oxidative stress, enhancing liver function, and improving 
energy metabolism in dairy cows. These findings offer valuable 
theoretical insights and present innovative strategies for advancing 
health management practices in modern dairy farming systems.

2 Materials and methods

2.1 Ethics

This study was carried out in strict accordance with the guidelines 
for the care and use of animals of Heilongjiang Bayi Agricultural 
University. All animal experimental procedures were approved by the 
Animal Welfare and Research Ethics Committee of Heilongjiang Bayi 
Agricultural University (Daqing, China) (protocol code 

DWKJXY2023057; approval date: August 1st, 2023) and the study 
complied with the ARRIVE guidelines.

2.2 Animals and diets

The experiment was conducted using Holstein cows on a large 
intensive cattle farm in the central region of Heilongjiang Province. 
This experiment was performed using a completely randomized 
design. Ninety multiparous Holstein cows of similar age, parity, body 
condition score (BCS) and milk yield (40.33 ± 2.22 months of age, 
2.37 ± 0.10 of parity, 3.06 ± 0.09 of BCS, 9383.29 ± 111.26 kg of 305 
d milk yield, mean ± SEM) were randomly selected 21 (±3) days 
before their expected calving date as experimental subjects. From 14 
(±3) days prepartum, the cows were randomly allocated into three 
groups: the control group (Group C, n = 30; 41.69 ± 4.21 months of 
age, 2.40 ± 0.16 of parity, 3.00 ± 0.15 of BCS, 9407.43 ± 209.86 kg of 
305 d milk yield), the original protocol group (Group O, n = 30; 
47.96 ± 3.81 months of age, 2.40 ± 0.22 of parity, 3.05 ± 0.18 of BCS, 
9123.40 ± 173.39 kg of 305 d milk yield), and the novel protocol 
group (Group N, n = 30; 41.36 ± 3.7 months of age, 2.30 ± 0.15 of 
parity, 3.13 ± 0.14 of BCS, 8910.53 ± 184.34 kg of 305 d milk yield). 
All cows were provided with a scientifically formulated total mixed 
ration based on NRC (2001) standards (25), with the composition 
and nutritional levels of the basal diet detailed in Table 1.

2.3 Experimental design and management

The experimental dairy cows were housed in three isolated 
tie-stall barns, each containing 30 cows from a homogeneous group. 
These barns were physically segregated from the primary housing 
facilities utilized by other cattle herds. Feeding was conducted three 
times daily (07:00, 14:00, and 21:00) with ad libitum access to fresh 
water. The feed intake of each barn was recorded for 3 consecutive 
days per week from 2 weeks prepartum to 7 weeks postpartum. The 
DMI of each group was calculated by analyzing the dry matter 
content in the feed. The average of the 3 daily values recorded each 
week was used as the weekly DMI average for each group. Following 
calving, the cows were milked three times per day (06:00, 13:00, and 
22:00) until 50 days postpartum, and individual milk yields were 
recorded. Cows in Group C did not receive PG. Those in Group O 
were administered 500 mL of PG on the day of calving, at 1 and 
2 days postpartum, and at 7, 8, and 9 days postpartum, totaling 
3,000 mL. Cows in Group N received 500 mL of PG on the day of 
calving and at 7 and 14 days postpartum, totaling 1,500 mL. Cows 
treated with PG were given orally drenched.

2.4 Data collection

Specific software (Afifarm, Afimilk, Kibbutz Afikim, 1,514,800, 
Israel) was utilized to record data on age, parity, milk yield, and ketosis 
incidence in the experimental cows. Body condition score was 
assessed by two trained veterinarians using a standardized 5-point 
scale (26). Clinical ketosis was defined as a serum BHBA concentration 
≥ 3.0 mmol/L, while subclinical ketosis was diagnosed when serum 
BHBA exceeded 1.2 mmol/L (27). In this study, cows with serum 
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BHBA concentrations ≥1.20 mmol/L were classified as having ketosis 
based on the diagnostic criteria.

2.5 Sample collection

The official experimental period spanned from 14 (±3) days 
prepartum to 50 days postpartum. Blood samples (10 mL) were 
collected from the coccygeal vein prior to morning feeding on days −14 
(±3), 0, + 7, + 14, + 21, + 28, and + 50 relative to calving. Samples were 
placed into centrifuge tubes left at room temperature for 30 min to allow 
for full clotting and centrifuged and at 3500 × g for 10 min. The resulting 
serum was aliquoted and stored at −80°C for subsequent analysis.

2.6 Serum detection

Serum concentrations of calcium, phosphorus, magnesium, 
potassium, aspartate aminotransferase (AST), albumin (ALB), total 
cholesterol (TC), and glucose were determined using commercial 
biochemical reagent kits (Mindray Bio-Medical Electronics Co., Ltd., 

Shenzhen, China) and analyzed with a fully automated biochemical 
analyzer (Mindray BS-830S). Serum total antioxidant capacity 
(T-AOC), malondialdehyde (MDA), glutathione peroxidase (GSH-Px), 
superoxide dismutase (SOD) activities, and NEFA levels were measured 
using a microplate reader (Multiskan FC, Thermo Fisher Scientific Co., 
Ltd., Shanghai, China) and commercial colorimetric reagent kits 
(Nanjing Jiancheng Bioengineering Institute Co., Ltd., Nanjing, China). 
Additionally, serum levels of leptin and insulin were quantified using 
bovine-specific enzyme-linked immunosorbent assay (ELISA) kits 
(Shanghai Lengton Bioscience Co., Ltd., Shanghai, China), while serum 
total bilirubin (TBIL) and BHBA levels were measured using bovine-
specific ELISA kits (Shanghai Enzyme-linked Biotechnology Co., Ltd., 
Shanghai, China). The intra-assay and inter-assay coefficients of 
variation for all assays were maintained below 10%.

2.7 Statistical analysis

IBM SPSS Statistics 26.0 software (SPSS Inc., Chicago, IL, USA) 
was used to perform the biostatistical analysis of the experimental 
data. Baseline characteristics including age, parity, BCS, and 305 d 
milk yield, as well as DMI were compared across the three groups (C, 
O, and N) using one-way analysis of variance (ANOVA) with Tukey’s 
post-hoc test. A Chi-square test was employed to assess the risk of 
subclinical ketosis in the test cows, and the odds ratio (OR) along with 
the 95% confidence interval (CI) were calculated. Serum data were 
analyzed using univariate ANOVA, as in previous studies that did not 
conduct repeated measures analysis (28–30). Statistical significance 
was defined as p < 0.05, and results are presented as means ± SEM.

3 Results

3.1 Effects of different PG protocols on 
DMI, Milk yield, and BCS in dairy cows

There was no significant difference in DMI among the three 
groups of cows from 2 weeks prepartum to 7 weeks postpartum 
(p > 0.05) (Table 2). On day 7 postpartum, the milk yield of cows in 
Group O was higher than that of cows in the other two groups 
(p < 0.05). At 14, 21, 28, and 50 days postpartum, the milk yield of 
cows in Group N increased rapidly, surpassing that of both Group C 
and Group O (p < 0.05). On days 14, 21, and 50 postpartum, cows in 
Group O exhibited higher milk yield than those in Group C (p < 0.05) 
(Figure 1a). From days 7 to 21 postpartum, the BCS of cows in Group 
O was higher than that of cows in the other two groups (p < 0.05). 
From days 14 to 21 postpartum, cows in Group N had higher BCS 
than those in Group C (p < 0.05). On day 28 postpartum, the BCS of 
cows in Group N had increased, surpassing that of cows in both 
Group C and Group O (p < 0.05). No significant differences in BCS 
were observed among the groups on day 50 postpartum (Figure 1b).

3.2 Incidence and risk analysis of ketosis in 
dairy cows

On day 7 postpartum, cows in Group C exhibited the highest 
incidence of ketosis, followed by those in Group N, while cows in 
Group O had the lowest incidence. At 14 and 21 days postpartum, 

TABLE 1 Composition and nutrient level of the basal diet.

Item Prepartum Postpartum

Ingredients, % of dry matter

Soybean meal 3.06 4.87

Distillers dried grain with soluble 4.29 –

Alfalfa hay (first cut) 2.55 6.49

Sugar beet pulp 10.22 3.25

Corn gluten meal 5.11 1.95

Oat grass 13.28 2.60

Corn 10.22 19.79

Corn silage 45.97 38.92

CaCO3 1.02 –

Na2CO3 – 0.81

CaHPO4 – 0.32

Fat powder – 0.97

Rumen-protected glucose – 1.62

Cottonseed – 3.24

Urea – 0.58

Soybean husk – 8.11

Molasses – 3.24

Premix 1 4.28 3.24

Nutrient levels, % of dry matter

Crude protein 15.7 16.7

Starch 16.8 21.5

Net energy for lactation, Mcal/kg 1.52 1.76

Neutral detergent fiber 33.7 30.7

Calcium 1.00 1.00

Phosphorus 0.40 0.40

1 Concentration per kilogram of premix DM: 40,000 IU of vitamin A, 37,000 IU of vitamin 
D, 500 IU of vitamin E, 30 mg of copper, 25 mg of iron, 140 mg of manganese, 140 mg of 
zinc, and 0.8 mg of selenium.
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cows in Group N demonstrated lower incidence of ketosis compared 
to the other two groups (Table 3). Additionally, the risk of ketosis in 
Group N decreased by 6-fold compared to Group O (p < 0.05), the risk 
of ketosis in Group N decreased by 7-fold compared to Group C 
(p < 0.05). Overall, these results demonstrate that the risk of ketosis in 
Group N was 2.57 times lower than that in Group C (p < 0.05) 
(Table 4).

3.3 Effects of different PG protocols on 
serum energy metabolites in dairy cows

No differences were observed in serum levels of BHBA, glucose, 
NEFA, and TC across the groups from 14 (± 3) days prepartum to the 
day of calving, and at 50 days postpartum. On day 14 postpartum, 
serum BHBA levels in cows from Group N were lower than those in 
Groups C and O (p < 0.05). At 21 days postpartum, serum BHBA 
levels in cows from Group N were lower than those in Group C 
(p < 0.05). Similarly, at 28 days postpartum, serum BHBA levels in 
cows from Group N were lower than those in Group C (p < 0.05) 
(Figure 2a). At 7 days postpartum, serum glucose levels in cows from 
Group O were higher than those in Groups C and N (p < 0.05). From 
days 14 to 21 postpartum, serum glucose levels in cows from Groups 
O and N were higher than those in Group C (p < 0.05) (Figure 2b). 
From days 7 to 21 postpartum, serum NEFA levels in cows from 
Groups O and N were lower than those in Group C (p < 0.05), with 
Group N showing lower levels than Group O at the same time points. 
At day 28 postpartum, serum NEFA levels in cows from Group N 
were lower than those in Groups C and O (p < 0.05) (Figure 2c). On 
day 7 postpartum, serum TC levels in cows from Group N were 
higher than those in the other two groups (p < 0.05). From days 14 
to 28 postpartum, serum TC levels in cows from Groups C and N 
were lower than those in Group O (p < 0.05) (Figure 2d).

3.4 Effects of different PG protocols on 
serum hormone levels in dairy cows

No differences were observed in serum insulin and leptin levels 
between Group C and Group O. Notably, serum insulin levels in cows 

from Group N were higher than those in Group C on day 7 
postpartum (p < 0.05). From days 14 to 28 postpartum, serum insulin 
levels in cows from Group N were higher than those in Groups O and 
C (p < 0.05) (Figure 3a). At day 7 postpartum, serum leptin levels in 
cows from Group O were higher than those in Groups C and N 
(p < 0.05), and this difference persisted until day 28 postpartum 
(Figure 3b).

3.5 Effects of different PG protocols on 
serum liver function indicators in dairy 
cows

In terms of liver function, no differences were observed in serum 
levels of AST and ALB among the three groups from 14 days 
prepartum to the day of calving, and from days 28 to 50 postpartum. 
On days 7 and 14 postpartum, serum AST levels in cows from Groups 
O and N were lower than those in Group C (p < 0.05). On day 21 
postpartum, serum AST levels in Group C remained higher than 
those in Group N (p < 0.05) (Figure 4a). At 7 days postpartum, serum 
ALB levels in cows from Group N were higher than those in the other 
two groups (p < 0.05). On day 14 postpartum, serum ALB levels in 
cows from Groups O and N were higher than those in Group C 
(p < 0.05). At day 21 postpartum, serum ALB levels in cows from 
Group O were higher than those in Group C (p < 0.05) (Figure 4b). 
Notably, no differences in serum TBIL levels were observed among 
the three groups during the lactation period (Figure 4c).

3.6 Effects of different PG protocols on 
serum mineral status in dairy cows

At 7 days postpartum, cows in Group O had higher serum calcium 
levels compared to those in Group C (p < 0.05). No differences in 
serum calcium levels were observed among the three groups at other 
time points (Figure 5a). Throughout the study period, no differences 
in serum phosphorus or magnesium levels were observed among the 
three groups (p > 0.05) (Figures 5b,c). Cows in Group N had higher 
serum potassium levels than those in the other groups at days 21 and 
28 postpartum (p < 0.05) (Figure 5d).

3.7 Effects of different PG protocols on 
serum oxidative stress biomarkers in dairy 
cows

From days 7 to 21 postpartum, serum MDA levels in cows from 
Groups O and N were lower than those in Group C (p < 0.05). At 
21 days postpartum, serum MDA levels in cows from Group N were 
also lower than those in Group O (p < 0.05) (Figure 6a). At 7 days 
postpartum, serum T-AOC levels in cows from Groups O and N 
were higher than those in Group C (p < 0.05). At 14 days postpartum, 
serum T-AOC levels in cows from Group N were higher than those 
in Groups C and O (p < 0.05) (Figure 6b). At 7 days postpartum, 
serum GSH-Px levels in cows from Group N were increased and 
higher than those in Group C. Additionally, at 14 days postpartum, 
serum GSH-Px levels in Group N were higher than those in both 
Groups C and O (p < 0.05) (Figure  6c). From days 7 to 14 

TABLE 2 Comparison of dry matter intake (DMI, kg/d) in dairy cows with 
different PG protocols.

Time Group C 1 Group O 2 Group N 3

-2 wk 15.6 ± 4.1 15.7 ± 4.0 16.5 ± 4.6

-1 wk 15.2 ± 3.5 15.4 ± 2.5 15.6 ± 2.2

1 wk 13.3 ± 3.5 13.3 ± 2.6 13.7 ± 2.1

2 wk 15.9 ± 3.4 15.6 ± 2.7 15.5 ± 2.5

3 wk 18.8 ± 1.8 18.9 ± 3.1 18.7 ± 4.1

4 wk 20.8 ± 2.9 21.0 ± 2.9 20.7 ± 3.0

5 wk 23.7 ± 2.1 23.8 ± 4.3 23.6 ± 2.4

6 wk 25.6 ± 2.8 25.7 ± 2.7 25.6 ± 2.8

7 wk 27.3 ± 5.5 27.5 ± 1.8 27.4 ± 2.8

1 Group C: cows not treated with propylene glycol (PG); 2 Group O: cows were given 500 mL 
PG on the day of calving, 1 and 2 days postpartum, and 7, 8, and 9 days postpartum; 3 Group 
N: cows were given 500 mL PG on the day of calving and at 7 and 14 days postpartum.
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postpartum, serum SOD levels in cows from Group N were higher 
than those in Groups C and O. At 21 days postpartum, serum SOD 
levels in Group N remained higher than those in Group C (p < 0.05) 
(Figure 6d).

4 Discussion

Energy metabolism and oxidative stress are pivotal in dairy cows’ 
ketosis onset and progression. Postpartum, NEB triggers lipolysis and 
ketone body production, impacting health, liver function, and 
oxidative stress. Understanding metabolic interventions’ impact is 
vital for enhancing cow health and performance. This study aims to 
evaluate the effects of a novel PG protocol on ketosis, energy 
metabolism, liver function, and oxidative stress in dairy cows, 
providing a scientific foundation for optimizing health management 
and enhancing production outcomes.

High-yielding cows experience an increased demand for glucose 
during early lactation, leading to a hypoglycemic state, which 
subsequently results in elevated levels of BHBA (31). This 
phenomenon is primarily due to the mobilization of fatty acids, which 
suppresses gluconeogenesis, thereby decreasing serum glucose levels 
and increasing BHBA levels (32). When energy intake fails to meet 
energy requirements, cows enter a state of NEB. This increased fat 
mobilization associated with NEB leads to elevated concentrations of 
plasma NEFA (33), resulting in large amounts of NEFA accumulating 
in the liver, where they are oxidized to produce ketone bodies, 
consequently triggering ketosis (5). Cholesterol plays important 
physiological roles in the body, including the formation of cell 
membranes and hormone synthesis (34, 35). The increase in BHBA 

levels in ketosis cows disrupts cholesterol metabolism and leads to a 
decrease in TC levels (36, 37). Studies by Nguyen and Singh et al. have 
demonstrated that PG supplementation elevates serum glucose levels 
while reducing NEFA and BHBA levels, thereby alleviating the 
symptoms of ketosis (38, 39). Our results are consistent with these 
findings, showing that cows in Group N had the lowest incidence of 
ketosis, while cows in Groups C and O exhibited higher BHBA and 
NEFA levels and lower TC levels. Notably, the lack of reduction in 
BHBA and NEFA levels in Group O cows after PG supplementation 
may be attributed to the potential production of toxic compounds due 
to excessive PG intake, possibly resulting in adverse toxic effects (19). 
On days 7 and 14 postpartum, the serum BHBA and glucose levels in 
cows from Groups O and N did not exhibit the expected inverse 
relationship due to PG supplementation during this period, which 
influenced glucose and ketone dynamics. These results suggest that 
the PG health protocol in Group N was more effective than that in 
Group O.

Research indicates that during ketosis, downstream insulin 
signaling in adipose tissue is disrupted, leading to a decreased 
secretion of insulin by the body (40–43). Insulin plays a critical role in 
promoting glucose uptake and utilization, as well as facilitating the 
synthesis of fats and proteins (44). When insulin levels are low, fat 
mobilization increases, the rate of fatty acid oxidation rises, and the 
formation of ketone bodies is promoted (45). Consistent with these 
findings, the present study demonstrated that insulin levels in cows 
from Groups C and O were lower than those in Group N. Additionally, 
studies have shown that higher body fat reserves are associated with 
increased leptin secretion (46), which suppresses appetite and reduces 
feed intake in cows (47, 48). For postpartum cows, this suppression of 
appetite often results in insufficient DMI to meet energy demands, 
causing NEB and subsequently leading to ketosis (19). In our study, 
postpartum cows in Group O exhibited higher leptin levels than those 
in Groups N and C. Cows in Group C had the lowest leptin levels, yet 
the highest incidence of ketosis, which may be attributed to their 
lower BCS and greater loss of BCS throughout the experimental 
period. These findings suggest that the novel PG protocol not only 
effectively increases insulin levels but also reduces leptin secretion 
in cows.

Liver damage compromises cell membrane integrity, resulting in 
the leakage of intracellular components, such as AST, into the 

FIGURE 1

Effects of different propylene glycol protocols on (a) milk yield and (b) body condition score (BCS) in dairy cows. C = control group (●), O = original 
protocol group (■), N = novel protocol group (▲). Significant differences (p < 0.05) are indicated by different lowercase letters.

TABLE 3 Incidence (%) of ketosis in three groups of dairy cows.

Time Group C 1 Group O 2 Group N 3

7 d 20.0 (6/30) 10.0 (3/30) 16.7 (5/30)

14 d 33.3 (10/30) 30.0 (9/30) 6.7 (2/30)

21 d 13.3 (4/30) 16.7 (5/30) 6.7 (2/30)

1 Group C: cows not treated with propylene glycol (PG); 2 Group O: cows were given 500 mL 
PG on the day of calving, 1 and 2 days postpartum, and 7, 8, and 9 days postpartum; 3 Group 
N: cows were given 500 mL PG on the day of calving and at 7 and 14 days postpartum.
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TABLE 4 Risk analysis of ketosis in three groups of dairy cows.

Time Group C 1 vs. Group O 2 Group C vs. Group N 3 Group O vs. Group N

OR 4 95% CI 5 p 6 OR 95% CI p OR 95% CI p

7 d 2.25 0.25–20.65 0.47 1.25 – 1.00 0.56 0.20–1.54 0.26

14 d 1.17 – 1 7.00 1.28–38.41 0.03 6.0 1.02–35.19 0.04

21 d 0.77 1.58–3.65 0.47 2.15 0.06–73.06 0.67 2.80 0.22–35.16 0.43

Total 1.22 0.41–3.65 0.71 2.57 1.03–6.42 0.04 2.10 0.79–5.58 0.14

1 Group C: cows not treated with propylene glycol (PG); 2 Group O: cows were given 500 mL PG on the day of calving, 1 and 2 days postpartum, and 7, 8, and 9 days postpartum; 3 Group N: 
cows were given 500 mL PG on the day of calving and at 7 and 14 days postpartum; 4 The OR represents the odds ratio, indicating the relative increase in risk; 5 The 95% CI refers to the 95% 
confidence interval. 6 The p-value less than 0.05 indicates statistical significance.

FIGURE 2

Effects of different propylene glycol protocols on serum (a) BHBA, (b) Glucose, (c) NEFA, and (d) TC levels in dairy cows. BHBA = β-hydroxybutyrate, 
NEFA = non-esterified fatty acids, TC = total cholesterol, C = control group (●), O = original protocol group (■), N = novel protocol group (▲). 
Significant differences (p < 0.05) are indicated by different lowercase letters.

FIGURE 3

Effects of different propylene glycol protocols on serum (a) insulin and (b) leptin levels in dairy cows. C = control group (●), O = original protocol 
group (■), N = novel protocol group (▲). Significant differences (p < 0.05) are indicated by different lowercase letters.
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FIGURE 4

Effects of different propylene glycol protocols on serum (a) AST, (b) ALB, and (c) TBIL levels in dairy cows. AST = aspartate aminotransferase, 
ALB = albumin, TBIL = total bilirubin, C = control group (●), O = original protocol group (■), N = novel protocol group (▲). Significant differences 
(p < 0.05) are indicated by different lowercase letters.

FIGURE 5

Effects of different propylene glycol protocols on serum (a) calcium, (b) phosphorus, (c) magnesium, and (d) potassium levels in dairy cows. 
C = control group (●), O = original protocol group (■), N = novel protocol group (▲). Significant differences (p < 0.05) are indicated by different 
lowercase letters.

https://doi.org/10.3389/fvets.2025.1609300
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Song et al. 10.3389/fvets.2025.1609300

Frontiers in Veterinary Science 08 frontiersin.org

bloodstream. Consequently, elevated AST levels are commonly 
regarded as biomarkers of liver cell damage (49, 50). In this study, 
serum AST levels in cows from all three experimental groups 
increased as postpartum days progressed. This trend may be associated 
with enhanced fat mobilization and the accumulation of NEFA in the 
liver, leading to fatty infiltration (51). Albumin is primarily synthesized 
by hepatocytes, and a reduction in ALB levels reflects decreased 
protein synthesis or an insufficient protein supply in the liver (52, 53). 
In this study, cows in Groups C and O exhibited compromised liver 
function, as indicated by higher AST levels and lower ALB levels, 
compared to cows in Group N. These findings suggest that the novel 
PG protocol employed in Group N effectively mitigated liver damage 
associated with ketosis.

Oxidative stress is a critical factor contributing to the onset and 
progression of ketosis, leading to metabolic disturbances and health 
complications in dairy cows. Malondialdehyde, a byproduct of lipid 
peroxidation, is generated when oxidative stress induces the 
peroxidation of lipids within cell membranes. Elevated serum MDA 
levels are indicative of exacerbated oxidative stress (54, 55). Cows 
with ketosis often experience a NEB, which accelerates lipolysis. This 
imbalance between pro-oxidant and antioxidant processes results in 
oxidative stress and subsequent cellular damage. The T-AOC, SOD, 
and GSH-Px are essential components of the antioxidant defense 
system in dairy cows. Reduced activity of these enzymes reflects 
compromised antioxidant defenses during ketosis (56, 57). Tan et al. 
(24) reported that oxidative stress in ketotic cows was alleviated 
through oral administration of PG. Our findings align with these 

observations. Serum MDA levels in cows from Groups N and O were 
lower than those in Group C. Moreover, MDA levels in Group N 
were lower than in Group O, suggesting milder oxidative stress in 
Group N. Additionally, serum T-AOC, SOD, and GSH-Px levels 
were higher in Group N compared to Groups C and O, indicating 
enhanced antioxidant capacity in Group N cows. These results 
suggest that the novel PG protocol employed in Group N effectively 
strengthened antioxidant defenses, thereby mitigating 
oxidative stress.

5 Conclusion

In conclusion, the novel PG protocol demonstrates substantial 
efficacy in mitigating oxidative stress, enhancing liver function, and 
improving energy metabolism in dairy cows. Cows in Group N 
exhibited superior energy metabolism, as evidenced by the modulation 
of glucose, insulin, and leptin levels, compared to those in Groups C 
and O. This metabolic improvement was accompanied by a reduction 
in serum BHBA and NEFA concentrations and improved liver 
function. Furthermore, the elevated levels of antioxidant markers, 
including T-AOC, GSH-Px, and SOD, indicate enhanced antioxidant 
defense mechanisms in Group N cows. While most existing studies 
have predominantly focused on the short-term effects of PG 
supplementation, future research should prioritize investigating its 
long-term impacts, particularly its sustained efficacy across the entire 
lactation period in dairy cows.

FIGURE 6

Effects of different propylene glycol protocols on serum (a) MDA, (b) T-AOC, (c) GSH-Px, and (d) SOD levels in dairy cows. MDA = malondialdehyde, 
T-AOC = total antioxidant capacity, GSH-Px = glutathione peroxidase, SOD = superoxide dismutase, C = control group (●), O = original protocol 
group (■), N = novel protocol group (▲). Significant differences (p < 0.05) are indicated by different lowercase letters.
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