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Introduction: Porcine brucellosis, caused by Brucella suis biovar 2, is currently 
the only type of brucellosis officially reported in farm animals in Germany, with 
outbreaks confirmed through direct pathogen detection. In most European 
countries, this bacterial pathogen is also found in wild animals, which are 
considered reservoirs for the disease. Since 2003, 22 outbreaks of porcine 
brucellosis have been reported in Germany.

Methods: A comprehensive study was conducted on German B. suis biovar 2 
isolates obtained from routine diagnostic investigations of domestic pigs and wildlife. 
The dataset included isolates from 18 reported outbreaks. The aim was to assess 
epidemiological links and the genomic diversity of the bacterium. B. suis biovar 2 
isolates were subjected to whole-genome sequencing (WGS) and analyzed using 
multilocus sequence typing (MLST), core genome MLST, and single-nucleotide 
polymorphism (SNP) analysis.

Results: Three different MLST sequence types were identified and further 
subdivided into eight clusters. This approach conclusively confirmed officially 
reported primary and secondary outbreaks caused by the sale of infected animals. 
In individual cases, remarkable similarities were found between domestic and wild 
animal isolates, that is, differing by only 2–4 nucleotides. This similarity suggests 
brucellosis transmission events. Both wild boars and hares can be considered 
reservoirs of Brucella spp. infections, including brucellosis. In Northern Germany, 
persistent B. suis biovar 2 foci were detected, as well as transmission across 
Germany and potentially to other European countries. Notably, hare isolates varied 
significantly from the majority of German wild boar and domestic pig isolates.

Discussion: As most brucellosis outbreaks occurred in outdoor holdings, 
reliable monitoring of these herds is recommended, although the exposure of 
these animals to external factors (e.g., vectors) poses a challenge. However, it 
is imperative in light of the increase in organic free-range and pasture farming, 
which promotes direct or indirect contact with wild animals.
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Introduction

Brucellosis, which is caused by various species of the genus Brucella, remains a major 
zoonosis worldwide, with over two million new human infections annually (1). Brucella 
melitensis, Brucella abortus, and Brucella suis are the most critical zoonotic Brucella species. 
The species exhibit different host preferences, with humans being accidental hosts who 
typically contract the infection through the consumption of contaminated food or direct 
contact with infected animals. Of the B. suis biovars, biovars 1 and 3 pose the highest risk to 
humans, while B. suis biovar 2 has a lower pathogenicity but can still cause infections in 
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humans. Human infections with biovar 2 are rarely reported and 
mainly affect people with chronic diseases or patients undergoing 
therapies that weaken the immune system (2). Due to its zoonotic 
potential and its potential impact on public health and the economy, 
brucellosis is considered a One Health problem, particularly because 
of the difficult-to-control reservoirs in wildlife populations (3, 4).

The global prevalence of swine brucellosis is 2.1% (5). While 
B. suis biovar 1 and 3 occur in many regions of Asia, America, and 
Australia, there are only rare reports from European countries (6, 7). 
In contrast, B. suis biovar 2 is endemic and widespread in Europe 
(8–13). Here, the main reservoirs for B. suis biovar 2 are wild boar and 
hares (14, 15). The pathogen is often considered endemic in these 
animal species (16–18). The prevalence found in wild boar in Europe 
varies between regions and the period studied, reaching up to 55% 
(11–13, 19–21). However, some studies did not detect Brucella-
specific antibodies in domestic pigs and wild boars, suggesting 
considerable differences in prevalence between regions (22, 23). Less 
information is available about Brucella suis biovar 2  in hares. 
Serological studies indicate that seropositivity rates in hares in Austria, 
Lombardy Region (Italy), and the Czech Republic were approximately 
3.5, 0.2, and 1.6%, respectively (21, 24, 25). However, no positive hare 
was found in a study from Germany and the Czech Republic (26). It 
is worth noting that serological investigations may be biased by cross-
reactions with antibodies other than those against Brucella sp., such 
as those against Yersinia sp. (27). Not all of the studies mentioned 
above checked for these cross-reactions. Thus, the actual prevalence 
in wildlife remains elusive.

Brucellosis was endemic in Germany until the 1980s (28) and the 
majority of human cases were caused by infection with B. abortus, the 
agent of bovine brucellosis. Most human brucellosis cases are now 
travel-associated, caused by B. melitensis (29). Germany achieved 
official brucellosis-free status for cattle through European Union 
Decision 1999/466/EC and for sheep and goats through Decision 
93/52/EEC. This has been achieved through strict control and 
eradication programs and is maintained to this day through ongoing 
testing programs. The status is reassessed regularly by the Directorate 
General for Health and Food Safety (DG Sante) and European Food 
Safety Authority (EFSA), who receive information from EU Member 
States. However, pig herds are not subject to any general surveillance 
obligation regarding brucellosis. There are only testing regulations for 
insemination stations (30), as the venereal route is considered the main 
transmission route for porcine brucellosis. In contrast, cattle older than 
two years herds undergo serological testing every three years.

To date, the knowledge about porcine brucellosis at least in 
Germany is primarily based on serological investigations. In various 
studies, serological tests have been carried out on wild boar in different 
Federal States. In Mecklenburg-Western Pomerania, Bavaria, Lower 
Saxony, and Saxony, seroprevalence rates were found to be 22, 18, 35, 
and 21%, respectively (30–34). In Baden-Württemberg, however, only 
a maximum of 0.2% of samples were found to be positive (30, 35).

In addition to serological studies, pathological and bacteriological 
examinations of shot and fallen animals are carried out in suspected 
cases. In a survey conducted in Mecklenburg-Western Pomerania, 
which examined 888 wild boar samples, 14 testicular samples with 
typical pathological changes were identified. A total of 17 Brucella 
isolates were obtained from these samples, even from pathologically 
normal testicular tissues (36). Comparable results were obtained by 
examining rabbit carcasses (37, 38).

The majority of pigs produced in Germany are raised on intensive 
conventional farms. However, there are also free-range farms in 
climatically suitable regions that essentially practice organic farming, 
particularly in the north of the country.

In this study, we investigated B. suis isolates from 11 different German 
Federal States, obtained from both wild animals and domestic pigs. This 
study aimed to demonstrate the traceability of outbreaks on pig farms and 
to investigate whether a connection can be established between these 
outbreaks and wild animal reservoirs using a sequencing-based 
epidemiological approach. Further, this study gives the first comprehensive 
overview of the B. suis biovar 2 genotypes in Germany.

Materials and methods

Database search on brucellosis outbreaks

The German online database “Tierseuchen-Informationssystem” 
(TNS) was queried on 26 April 2024 for officially notified brucellosis 
outbreaks in Germany over the past 20 years.

Isolate selection and cultivation

As part of its sovereign tasks, the National Reference Laboratory 
for Brucella sp. infections received suspected Brucella sp. isolates for 
analysis from the Federal State investigation offices. After routine 
diagnosis, the results were given to the responsible regional veterinary 
service, and the strains were stored long term in 80% glycerol in a 
strain collection. For the study, all available isolates were re-cultivated 
on nutrient agar (Merck KGaA, Darmstadt, Germany), supplemented 
with whole calf blood, at 37°C for 48 h.

DNA isolation and identification by PCR

DNA was isolated using the High Pure PCR Template Preparation 
Kit (Roche Molecular Systems, Pleasanton, CA, United  States). To 
confirm the identity as Brucella sp. and identify the species, Abortus, 
Melitensis, Ovis, Suis (AMOS) and Bruce-ladder polymerase chain 
reaction (PCR) were conducted as described before (39–41). Additionally, 
Suis-ladder PCR (42) was used for differentiation on the biovar level.

Whole genome sequencing, quality 
control, and assembly

Sequencing libraries were prepared using the Nextera XT library 
preparation kit (Illumina Inc., San Diego, CA, United States). The 
libraries were sequenced on a MiSeq system in paired-end mode using 
v3 chemistry (Illumina Inc., San Diego, CA, United  States) for 
2 × 300 bp long reads. The quality of the raw sequencing reads was 
assessed by FASTQC v0.11.71 and kraken2 v2.0.7_beta (43) for 
checking for contamination and confirming the species identity. 

1  https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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Genomes were assembled in a de novo approach by Shovill v.1.0.4,2 
which utilizes Spades as implemented in Shovill. The quality of the 
resulting assemblies was subsequently assessed by Quast v5.0.2 (44).

In silico genotyping

To identify genotype clusters, Multilocus Sequence Typing 
(MLST) and core genome MLST (cgMLST) were conducted in silico 
based on the assemblies using mlst v2.19.03 employing the public 
databases for molecular typing and microbial genome diversity 
(PubMLST) website (45) and Ridom SeqSphere+ v7.7 (46) applying 
the scheme by Abdel-Glil et  al. (47), respectively. Following the 
cgMLST analysis, a minimum spanning tree was generated based on 
the allelic differences, as implemented in SeqSphere+ with pairwise 
ignoring missing values.

For a more detailed analysis, the clusters were individually 
subjected to core genome single-nucleotide polymorphism (cgSNP) 
analysis as an assembly-independent genotyping approach. In the SNP 
analysis, raw read data of B. suis deposited in the NCBI Sequence Read 
Archive (SRA) (accessed on 28 March 2023) were included 
(Supplementary Table 1). Sequences were chosen based on geographic 
origin and biovar., when available. The quality of this data was first 
controlled as described above.

SNPs were called by Snippy v.4.6.04 in default mode with B. suis 
biovar 2 strain Thomsen/ATCC 23445 (GCF_000018905.1) as 
reference genome. The resulting core genome alignment was used as 
input for maximum likelihood analysis using RAxML v8.2.12 (48) 
with the GTR model (−m ASC_GTRCAT) without correction for rate 
heterogeneity (-V option) and ascertainment bias correction (--asc-
corr= lewis), as recommended by the RAxML manual. The tree was 
visualized by Microreact (49). Further, SNP distance matrices were 
generated with snp-dists v0.7.0.5

Results

Database search

Since 2003, 29 officially notified brucellosis outbreaks among 
domestic animals have been registered in the TierSeuchen-
Nachrichtensystem (TSN). For most of them (n = 22), B. suis was 
identified as the causative agent. Furthermore, three outbreaks were 
reported as being caused by B. melitensis, B. abortus, and B. ovis, 
respectively. For four other outbreaks, the causative species was not 
determined. Of the 22 known B. suis outbreaks, four were exclusively 
confirmed by serological methods; therefore, they could not be considered 
in the current study. The majority of the remaining 18 brucellosis 
outbreaks (Table  1 and Figure  1) occurred in Mecklenburg-Western 
Pomerania (n = 11). For the majority of the outbreaks in other German 
Federal States, the source of infection was suspected to be the purchase of 
animals and contact with wild animals. In contrast, no source was 

2  https://github.com/tseemann/shovill

3  https://github.com/tseemann/mlst

4  https://github.com/tseemann/snippy

5  https://github.com/tseemann/snp-dists

identified for any of the incidents in Mecklenburg-Western Pomerania. 
There were two consecutive outbreaks in 2016 and 2017 on the same farm 
(LP-F4). All primary outbreaks, except 17-Bb-OL-F2, occurred on farms 
where pigs were kept outdoors (free-range farming).

Sample selection and identification by PCR

At least one isolate from each of the notified brucellosis 
outbreaks in Germany (Table 1) was obtained from the responsible 
Federal State investigation offices (Landesuntersuchungsamt) for 
molecular epidemiological investigation. A total of 106 German 
B. suis isolates were included in the analysis, that originated from 
11 different states in Germany (Table  2, Figure  1, and 
Supplementary Table 2) over a 19-year period (2004–2023). The 
German isolates had been recovered from four different animal 
hosts, primarily from wild boar (Sus scrofa), but also from hare 
(Lepus europaeus), domestic pigs (Sus scrofa domesticus), a wild 
boar mix (a crossbreed of pig and wild boar), and from deer 
(Capreolus capreolus). Samples from domestic pigs were exclusively 
obtained from outdoor farms, mainly in Mecklenburg-Western 
Pomerania in the North-East of Germany, with one exception 
(17-Bb-OL-F2). Particularly, B. suis isolates from wild boars were 
retrieved from most of the studied states. In contrast, from Lower 
Saxony, only isolates from the hares were available.

PCR analysis confirmed the identity of the isolates as B. suis. All 
investigated strains were further identified as B. suis biovar 2.

Assembly-based genotyping

De novo assembly of the sequenced strains yielded genomes 
composed of 25–43 contigs with a GC content of 57.18–57.24% and sizes 
ranging between 3,232,502 and 3,324,607 bp with a mean N50 value of 
193 kb. The mean read coverage was 169, ranging between 67 and 570. 
These values accounted for sufficient sequencing depth and quality. Thus, 
all isolates could be included in the downstream analysis. Based on the 
assemblies, the isolates were initially classified in silico by classical MLST-9 
analysis. Three different sequence types (ST) were identified. Most isolates 
(n = 67) belonged to ST16. Further, ST15 (n = 33) and ST104 (n = 8) were 
found. While ST16 and ST104 were primarily found in wild boars and 
domestic pigs, ST15 was dominated by isolates from hares (79%) in 
our dataset.

These sequence types could be further subdivided by cgMLST 
to generate clusters that can then be investigated in detail by SNP 
typing. In all isolates, 95.9–100% of the target loci were identified 
(“good targets”), with a mean value of 99.7% good targets. A cut-off 
of 100 alleles was chosen for cluster definition to optimize the 
number of strains within one cluster, facilitating follow-up 
investigations. Thus, eight different cgMLST clusters were 
identified (Figure 2), which divided ST15 into five and ST16 into 
three clusters. The isolates of ST104 were part of the cgMLST 
Cluster 1. Notably, the cgMLST analysis confirmed the tendency 
found in MLST analysis, as these clusters comprised almost 
exclusively isolates from one host type: either hares or wild boars/
domestic pigs. A distinct connection to the geographic origin of 
the isolates, on the other hand, was not observed. The clusters were 
separated by at least 102 alleles.
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SNP analysis of cgMLST clusters

To investigate the clusters defined by cgMLST in more depth, each 
cluster was subjected to cgSNP typing separately. In this way, minute 
differences between isolates could be  resolved to investigate 
epidemiological links. The results for each cluster are given separately. 
Only the clusters that belonged to MLST ST15 were analyzed together, 
for conciseness.

SNP typing of cgMLST Cluster 1

By far, the largest cluster was the cgMLST Cluster 1, comprising 
45 German isolates. In detail, this cluster comprised isolates from 
most of the notified brucellosis outbreaks, particularly from 
Mecklenburg-Western Pomerania (Figure 3).

From four brucellosis outbreaks among domestic pigs (08-MWP-
VG-F1, 08-MWP-LP-F2, 09-MWP-MS-F1, and 18-MWP-R-F2), two 
to three isolates from different animals per outbreak were available. 
The intra outbreak cgSNP difference was at a maximum of two SNPs. 
However, for three of these outbreaks, all isolates were identical in 
terms of cgSNPs (0 SNP difference).

The earliest outbreak, represented by a single isolate, was reported 
in 2004 in the district of Ludwigslust-Parchim, Mecklenburg-Western 
Pomerania (04-MWP-LP-F1). This isolate differed in at least 41 SNPs 
from others. Four years later, in 2008, four brucellosis outbreaks were 
officially reported in three provinces of Mecklenburg-Western 
Pomerania (Table 1), and at least one isolate of each was included in 
the present analysis, all of which were contained in Cluster 1. Isolates 

FIGURE 1

Map of Germany with relevant states. Circles represent numbers of 
isolates from the respective state, with colors indicating host (blue: 
Sus scrofa; violet: Sus scrofa domesticus; yellow: Lepus europaeus; 
orange: Sus scrofa mix; red: Capreolus capreolus). Written in red are 
the IDs of the notified brucellosis outbreaks (see Table 1).

TABLE 1  Officially notified brucellosis outbreaks in Germany between 2003 and 2023, from which isolates were obtained for analysis.

Year State District Suspected infection source Outbreak ID

2004 Mecklenburg-Western Pomerania* Ludwigslust-Parchim Unknown 04-MWP-LP-F1

2006 Brandenburg Oberspreewald-Lausitz Contact with wildlife 06-Bb-OL-F1

2008 Mecklenburg-Western Pomerania Landkreis Rostock Unknown 08-MWP-R-F1

2008 Mecklenburg-Western Pomerania Ludwigslust-Parchim Unknown 08-MWP-LP-F2

2008 Mecklenburg-Western Pomerania Ludwigslust-Parchim Unknown 08-MWP-LP-F3

2008 Mecklenburg-Western Pomerania Vorpommern-Greifswald Unknown 08-MWP-VG-F1

2009 Mecklenburg-Western Pomerania Mecklenburgische Seenplatte Unknown 09-MWP-MS-F1

2014 Mecklenburg-Western Pomerania Mecklenburgische Seenplatte Unknown 14-MWP-MS-F2

2015 Baden-Württemberg** Biberach Purchase of animals 15-BW-B-F1

2015 Baden-Württemberg Biberach Purchase of animals 15-BW-B-F2

2016 Mecklenburg-Western Pomerania Ludwigslust-Parchim Unknown 16-MWP-LP-F4

2017 Mecklenburg-Western Pomerania Ludwigslust-Parchim Unknown 17-MWP-LP-F4

2017 Brandenburg Oberspreewald-Lausitz Unknown 17-Bb-OL-F2

2018 Mecklenburg-Western Pomerania Landkreis Rostock Unknown 18-MWP-R-F2

2019 Brandenburg Dahme-Spreewald Purchase of animals 19-Bb-DS-F1

2021 Schleswig-Holstein*** Herzogtum Lauenburg Unknown 21-SH-HL-F1

2021 Mecklenburg-Western Pomerania Ludwigslust-Parchim Unknown 21-MWP-LP-F5

2021 Hesse Marburg-Biedenkopf Purchase of animals 21-Hs-MB-F1

Outbreak identification (ID) is composed of year-state-district-farm. *MWP, Mecklenburg-Western Pomerania; **BW, Baden-Württemberg; ***SH, Schleswig-Holstein.
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from these outbreaks did not form a single cluster. Although 
08-MWP-LP-F2 and 08-MWP-LP-F3 occurred in the same district in 
2008, the isolates differed in 39 to 40 SNPs. Furthermore, the 
difference in the other two outbreaks (08-MWP-VG-F1 and 08-MWP-
R-F1), which differed in 46 SNPs, was on average 51 SNPs.

In the following years, more outbreaks were reported in the same 
state, whose corresponding isolates belonged to the same cgMLST 
cluster. In 2009, Mecklenburgische Seenplatte district, an outbreak 
(09-MWP-MS-F1) occurred, whose isolates belonged to the same 
monophyletic group as those of outbreak 08-MWP-LP-F2, but still 
differed in 28 to 29 SNPs from the latter. Five years later, an outbreak 
occurred among outdoor farm pigs in the same district (14-MWP-
MS-F2), with an isolate that differed in 19 SNPs from those of 2009. 
Additionally, in early 2015, two outbreaks were reported on two farms 
in a different state, Baden-Württemberg (15-BW-B-F1, 15-BW-B-F2), 
which could both be  traced back to the 2014 outbreak in 

Mecklenburg-Western Pomerania by the authorities. The 2015 
isolates were identical or differed in one SNP from the 2014 isolate, 
respectively.

A similar incidence of transmission of an outbreak strain from 
Mecklenburg-Western Pomerania to a different Federal State was 
observed in 2018/2019. Isolates from an outbreak in the district of 
Rostock from late 2018 to early 2019 (18-MWP-R-F2) were identical 
in cgSNPs to an isolate that originated from a known secondary 
outbreak on a farm in Brandenburg (19-Bb-DS-F1), a state bordering 
Mecklenburg-Western Pomerania to the south. These outbreak 
isolates exhibited 17 SNP differences to two wild boar isolates from 
Mecklenburg-Western Pomerania in 2009 and 2010.

Notably, one branch comprised isolates from four different 
outbreaks within a 5-year period, whose genomes were almost 
identical (0–4 SNPs difference). The first of these outbreaks, 16-MWP-
LP-F4, was reported in June 2016, followed by a second outbreak on 

TABLE 2  Number of German Brucella suis biovar 2 isolates included in the analysis, according to state of origin and host.

State Host Sum

Wild boar Domestic pig Wild boar mix Hare Deer

Baden-Württemberg 2 2 2 1 7

Bavaria 3 7 10

Brandenburg 3 2 1 6

Hesse 3 2 5

Lower Saxony 13 13

Mecklenburg-Western Pomerania 10 17 27

Rhineland-Palatinate 2 2

Saxony 27 27

Saxony-Anhalt 2 2

Schleswig-Holstein 1 4 5

Thuringia 2 2

Sum 54 24 1 26 1 106

FIGURE 2

Minimum spanning tree based on cgMLST allelic distances of 106 German Brucella suis biovar 2 isolates. Clusters are indicated by gray shading. Leaf 
colors give the host from which the isolate originated. Dashed lines show affiliation of cgMLST clusters to the corresponding MLST sequence type (in 
bold).
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the same farm one year later (17-MWP-LP-F4). Furthermore, 
four years later, in the same district but at a different farm, an isolate 
with the same cgSNP genotype was isolated during outbreak 
investigations (21-MWP-LP-F2). Further, isolates from an outbreak 
in Hesse, notified one month later (21-Hs-MB-F1), also exhibited the 
same genotype. For the later outbreak, it had been noted that the 
purchase of animals was a contributing factor. Remarkably, this cluster 

of outbreak isolates also included one wild boar isolate from 
Mecklenburg-Western Pomerania in 2017, which differed in 2–4 SNPs 
from the farm animals.

Besides the outbreak strains, cgMLST Cluster 1 also included 
isolates from wild boar. Notably, the wild boar isolates from Saxony, 
which were the only isolates with ST104, formed a single branch, 
separate from the other isolates in this cluster, displaying a maximum 

FIGURE 3

Maximum likelihood tree based on cgSNP alignments of German Brucella suis biovar 2 isolates of cgMLST Cluster 1. Leaf colors indicate the German 
state of origin. Foreign strains are colored gray. Leaf shapes indicate the type of isolate (circle: wildlife or unknown; pentagram: notified outbreak 
without known source; diamond: notified secondary outbreak). Leaf labels give strain name, year of isolation, and host. Outbreak identifications (IDs) 
are shown in red after corresponding isolates.
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of 18 SNPs difference from each other. A neighboring branch 
comprised strains from Slovenia, also from wild boar, which differed 
in 71–77 SNPs from the Saxon isolates. No Saxon isolates were present 
in the larger branch of the polytomy, although it included wild boar 
isolates from neighboring as well as more distant German states. Wild 
boar isolates from other states exhibited predominantly larger 
differences. Two isolates from Hesse differed in 48 SNPs. The sole 
Thuringian isolate in this cluster displayed at least 30 SNPs’ difference 
from other isolates, and the Mecklenburg-Western Pomeranian 
isolates differed in 11–60 SNPs.

SNP typing of cgMLST Cluster 4

Cluster 4 was composed of seven German isolates from six 
different Federal States (Figure 4). Despite its geographic heterogeneity, 
the maximum number of other SNPs within this cluster was 17, 
although the isolates were obtained up to 16 years apart. Furthermore, 
this cluster contained the only isolate from deer (Capreolus capreolus) 
in the investigated dataset, isolated in Baden-Württemberg in 2013, 
which was almost identical to an isolate from wild boar from the same 
region from 2018 (four SNPs difference). An isolate from the 
Brandenburg outbreak 06-Bb-OL-F1 also fell within this cluster, 
displaying 7 to 12 SNPs difference from the wild Sus scrofa isolates. 
Notably, contact with wildlife had been suspected as the source of 
infection for this outbreak by the authorities.

SNP typing of cgMLST Cluster 2

The German isolates in Cluster 2 were exclusively isolated from 
wild boar, predominantly from Saxony, over a 17-year period (2004–
2021) (Figure 5). SNP variations between the isolates were low, for 
example, ranging from 2–28 SNP differences within the Saxon 
population. The only two wild boar isolates from Saxony-Anhalt, 
isolated in 2004 and 2021, differed in 20 SNPs. Notably, a strain from 
France, isolated from Sus scrofa domesticus in 2001, differed in a single 
SNP from a German wild boar isolate from Saxony-Anhalt found 
three years later. The difference to the Saxon isolates was 4–13 SNPs.

SNP typing of MLST ST15 clusters

The cgMLST Clusters 3, 5, 6, 7, and 8, which all belonged to MLST 
ST15, were analyzed together (Figure  6). The cgSNP analysis 
confirmed that the hare isolates formed clusters, separate from other 
wildlife isolates, with one exception: one isolate obtained from a wild 
boar in 2021 in Bavaria exhibited 10 SNPs difference from a hare 
isolate from the same state that was isolated four years before. 
Interestingly, the majority of foreign strains included in the analysis 
were also isolated from hares in various European countries.

In contrast to the Bavarian hare isolates, which formed a separate 
branch within cgMLST Cluster 3, isolates from Lower Saxony were 
found on different branches. However, the isolates from both states 
originated from a comparable time frame spanning eight and 
ten years, respectively. Likewise, four isolates from Schleswig–Holstein 
formed a separate branch, which also comprised one hare isolate from 
Lower Saxony, that displayed eight SNP differences to an isolate from 
the same year. Two hare isolates from Baden-Württemberg formed a 
distinct cluster with another German isolate and a French isolate from 
1995, both of which originated from hares.

Separated from the hare isolates by more than 358 SNPs, a branch 
was formed by Sus scrofa isolates from Belgium, Italy, and France, as 
well as wild boar isolates from four different districts of Germany. 
Notably, an outbreak isolate from a domestic pig in Brandenburg in 
2017 (17-Bb-OL-F2) was also included in this cluster and exhibited 10 
SNP differences to a wild boar isolate from the same state, isolated 
three years prior. Both isolates differed from an isolate from Belgium 
in 33 and 38 SNPs, respectively. The difference between a French 
isolate from 2014 and a wild boar isolate from Saxony, a Federal State 
located in eastern Germany, was merely 17 SNPs.

Discussion

The German Brucella isolates analyzed in this study originated 
from samples routinely submitted to the NRL for brucellosis in cattle, 
pigs, sheep, and goats. The detection of brucellosis caused by 
B. melitensis, B. abortus, and B. suis is notifiable in Germany. The 
National Animal Disease Notification System (TSN) is used to record 

FIGURE 4

Maximum likelihood tree based on cgSNP alignments of German Brucella suis biovar 2 isolates of cgMLST Cluster 4. Leaf colors indicate the German 
state of origin. Foreign strains are colored gray. Leaf shapes indicate the type of isolate (circle: wildlife or unknown; pentagram: notified outbreak 
without known source). Leaf labels give strain name, year of isolation, and host. Outbreak IDs are displayed in red next to the corresponding isolates.
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reported outbreaks. Of the 29 brucellosis outbreaks registered in the 
TSN between 2003 and 2023, 18 outbreaks could be traced back to 
infections with B. suis biovar 2. To facilitate comparison with wild 
animal isolates in the present study, isolates identified as B. suis biovar 
2 from wild boar, hares, and a deer from the same period were 
included. Genomes of all isolates were sequenced and 
bioinformatically analyzed.

All 106 isolates were initially classified using in silico MLST-9. 
Three sequence types were identified. Most of the wild boar isolates 
and all but one of the outbreak isolates belonged to the ST16, which 
has previously been described in isolates from France and Croatia 
(50). Isolates of this sequence type were also found in Slovenian and 
Italian wild boar (51, 52). It is a single-locus variant of ST15, which is 
the sequence type of the reference strain Thomsen (50). All of the 
investigated hare isolates, a few wild boar isolates, and only one 
outbreak isolate belonged to ST15. By this result, a study from Bavaria 
also found only sequence types 15 and 16 in a total of five B. suis 
isolates from wild boar isolated between 2019 and 2021 (32). The 
majority of isolates of ST15 described to date originated from wild 
boar, but there are also a few from hares (45). Furthermore, in our 
study, ST104 was only found in wild boar. To our knowledge, this 
sequence type has so far only been identified in wild boar in 
Slovenia (51).

The resolution of the MLST-9 and the MLST-21, scheme is known 
to be insufficient for carrying out precise analyses of the genotypes of 
individual isolates (53). Therefore, we performed cgMLST analysis to 
further subdivide the isolates and identified eight clusters, which were 
then analyzed in detail.

CgMLST and cgSNP typing are commonly applied to investigate 
outbreaks and epidemiological links. In cgMLST, allelic profiles of 

genes are generated, whereby multiple nucleotide changes in a locus 
are reduced to a single allelic number shift, thereby simplifying the 
complexity. SNP typing, on the other hand, provides a more detailed 
insight into base substitutions, as it includes intergeneric regions and 
considers all changes. Nevertheless, many laboratories use cgMLST 
for outbreak investigations (54).

Interestingly, the result of the MLST analysis was confirmed by 
the clustering of the strains in cgMLST analysis, insofar as the hare 
and pig isolates were essentially placed in different clusters. 
Additionally, the hare isolates clustered more closely according to 
their geographic origin. Such observations have already been made 
based on multilocus variable-number tandem repeat analysis 
(MLVA) and SNP analyses (16): the authors identified different 
clades which were in accordance with their geographic origin, with 
hares belonging to two clusters of the Central European clade. Hare 
isolates also differed from wild boar isolates in MLVA investigations 
in Hungary (18). In another study, Brucella isolates with similar 
MLVA profiles were obtained from both animal species (55). It can 
be assumed that although hares share the same habitat with other 
wildlife, they do not have particularly close contact with wild boars. 
Thus, pathogen transmission could be  impeded. The observed 
examples of high genetic similarity of Brucella isolates from both 
animal species are probably rare occurrences of possible direct 
pathogen transmission. These results are consistent with published 
data on the relatively limited habitats of hares compared to wild boar 
(56, 57). Furthermore, the different sequence types in isolates from 
wild boar and hares might also represent a host specificity of B. suis 
biovar 2 MLST ST15. However, more data are required to substantiate 
this hypothesis and assess the role of hares in the transmission cycle 
of porcine brucellosis.

FIGURE 5

Maximum likelihood tree based on cgSNP alignments of German Brucella suis biovar 2 isolates of cgMLST Cluster 2. Leaf colors indicate the German 
state of origin. Foreign strains are colored gray. Leaf labels display the strain name, year of isolation, and host.
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The cgMLST clusters were further analyzed in terms of their 
cgSNP differences. In Cluster 1, the largest of the observed cgMLST 
clusters, a total of 45 German isolates comprising 22 wild boar 
isolates and 23 outbreak isolates, were identified from 17 of the 19 
outbreaks that occurred during the investigated period. Several 
isolates were available from each of the four outbreaks, allowing 
for the investigation of intraoutbreak SNP differences. The 
sequences of isolates from the same outbreak were either identical 
or differed by a maximum of two SNPs in the cgSNP typing. This 
demonstrates the high reliability of sequencing results in relation 

to possible sequencing errors. It can also be assumed that each 
outbreak was caused by a single B. suis biovar 2 genotype, that is, 
from a single source of infection.

From the German Animal Disease Notification System (TSN), 
information on the nature of the outbreak, i.e. whether it was a 
primary or secondary outbreak, was obtained. Further, the identified 
reasons for secondary outbreaks were stated in this database. 
Secondary outbreaks were caused by the purchase of animals from 
other farms, which raises the question of why infected animals could 
be sold. In one case, this was a shortcoming of the state veterinarian, 

FIGURE 6

Maximum likelihood tree based on cgSNP alignments of German Brucella suis biovar 2 isolates of cgMLST Clusters 3 and 5–8. Leaf colors indicate the 
German state of origin. Foreign strains are colored gray. Leaf shapes indicate the type of isolate (circle: wildlife or unknown; pentagram: notified 
outbreak without known source). Leaf labels give strain name, year of isolation, and host. Outbreak identification (ID) is shown in red after the 
corresponding isolate.
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who misinterpreted the applicable legal provisions and moved animals 
under four months to other herds (personal communication). Under 
German law, these animals are not included in outbreak investigations 
because they are not yet considered fully immunocompetent. 
However, they cannot be regarded as free of Brucella infection. This 
misjudgment underscores the importance of raising awareness about 
the epidemiology of brucellosis among veterinarians, for example, 
through regular training on surveillance practices. In the second 
primary outbreak case, animals were sold a few days before the 
Brucella infection was detected in the original herd. As part of 
traceability investigations, these animals were later diagnosed as 
infected and reported as secondary outbreaks. The sequences of the 
isolates from corresponding primary and secondary outbreaks were 
identical or differed only in a maximum of one SNP. With these 
results, epidemiological links between outbreaks can be  proven 
beyond doubt.

The isolates in cgMLST Cluster 1 primarily originated from 
Mecklenburg-Western Pomerania, suggesting that this genotype is 
a persistent, dominant lineage in Northeast Germany, as it was 
found repeatedly between 2004 and 2024. Outbreaks 09-MWP-
MS-F1 and 14-MWP-MS-F2, for example, which occurred five years 
apart but in the same district, were caused by the same B. suis biovar 
2 lineage, that is, isolates differed in 19 cgSNPs, indicating 
genetically stable brucellosis foci. Since the overall differences 
between the wild and domestic pig isolates, as well as between the 
outbreaks themselves, were not high, particularly considering the 
period, it can be assumed that there were frequent transmissions 
between wild and domestic animals. Accordingly, Keuling, et. al. 
(58) found that in Mecklenburg-Western Pomerania, in the same 
region from which most isolates of cgMLST Cluster 1 originated, 
wild boars predominantly did not leave their home range (natal 
area). This could allow for the stabilization of brucellosis foci. A 
transmission between wild animals and pigs can be assumed for 
outbreak 17-Bb-OL-F2 from the cgMLST Cluster 5, as its isolate 
was highly similar in cgSNP to a wild boar isolate from the same 
federal state. Other studies have shown that contact between 
domestic pigs and wild boars is challenging to prevent, particularly 
when the animals are reared outdoors (10, 59). In Saxony, a study 
reported brucellosis cases on a pig farm in 1994 following the birth 
of pig-boar hybrids three months prior, from which also B. suis 
biovar 2 was isolated (34).

The high similarity between isolates from different farms 
(21-MWP-LP-F2 and 16-MWP-LP-F4) even indicated a transmission 
between two domestic herds via an unknown vector.

The fact that the isolates from outbreaks 17-MWP-LP-F4 and 
16-MWP-LP-F4 on the same farm differed merely in individual SNPs 
suggested that the pathogen persisted in the herd, despite the 
brucellosis control measures taken. In the event of a brucellosis 
outbreak in Germany, the requirements of the Brucellosis Ordinance 
must be followed. This requires all animals in the outbreak herd to 
be serologically tested, except for those younger than four months. 
Positive animals must be removed from the herd. Apparently, in the 
case of outbreak 16-MWP-LP-F4, not all infected animals have been 
removed; i.e. there were asymptomatic carriers, or an additional 
Brucella reservoir may have existed. It could be  assumed that 
individual animals may show false negative results or that young pigs 
are already infected and therefore remain in the herd. These may pass 

on the infection. Some authors assume that, depending on the 
husbandry conditions, transmission from wild animals to domestic 
pigs, which are kept outdoors, can occur. If pigs are kept under high 
safety standards, such as double fencing, this transmission route is 
rather unlikely. Other animate and inanimate vectors come into 
question here (60, 61), as B. suis can also infect different hosts, for 
example, dogs and rats (62–65), which could pass the infection on. 
However, B. suis can also persist in the environment, for example, on 
concrete, particularly at low temperatures (66).

In cgMLST Cluster 4 was a previously described B. suis biovar 2 
isolate from a deer (67). This showed only four cgSNPs difference to 
an isolate from a wild boar from the same Federal State. Other very 
similar genotypes from different years and neighboring Federal States 
can also be found in this cluster, suggesting that this genotype persists 
in southern and central Germany, as seen by other studies (32).

Looking at the B. suis biovar 2 diversity in the different Federal 
States, it was noticeable that there was at least one wild boar isolate 
from Saxony in each cgMLST cluster, except for the hare isolate-
dominated clusters. The majority of Saxon wild boar isolates were 
found in the cgMLST Cluster 2, suggesting a dominant genetic 
lineage. Since the allelic differences between isolates were high (>100), 
this diversity in Saxony can be  attributed to animal movement, 
probably also across the borders to Poland and the Czech Republic. A 
comparison of B. suis biovar 2 genotypes in neighboring regions 
would help elucidate the dynamics of regional porcine brucellosis 
transmission. Interestingly, the wild boar isolates from Saxony in the 
cgMLST Cluster 1 clustered with isolates from the Slovenian wild boar 
rather than German isolates. Further, isolates from other European 
countries were also found in all clusters, indicating a mixing of wild 
boar populations in relatively large geographical areas. It is known 
that wild boars can migrate long distances during their lifetime (68–
70). Additionally, resettlements of wild boar could lead to the 
establishment of their pathogen’s genotypes in distant regions (37, 
71, 72).

In Germany, almost exclusively free-range holdings are affected 
by B. suis biovar 2. Wild boar, hares, and, to a lesser extent, other wild 
animals serve as reservoirs for the pathogen. However, direct contact 
between these animals and domestic pigs is not the only route of 
infection. Transmission between farms can occur through the trade 
of animals from already infected herds. Therefore, indoor holdings 
can also be affected. The existing tendency to prefer organic animal 
husbandry, including outdoor or pasture-based husbandry, can 
increase the risk of infection not only with Brucella spp. from wild 
animals, but also with other pathogens. Additionally, studies predict 
that climate change could lead to an increase in the wild boar 
population in central Europe (73). Therefore, appropriate monitoring 
measures must be  implemented to address this situation, as no 
systematic surveillance of brucellosis in wildlife is currently carried 
out in Europe. This monitoring should take into account that 
symptom-free animals might act as carriers for brucellosis, and 
brucellae can even be isolated from apparently healthy animals (74). 
Therefore, molecular diagnostics, including WGS, must be an integral 
component of the surveillance system. Concerted, Europe-wide 
monitoring of the wildlife population is desirable, not only for 
monitoring the brucellosis situation, but also to enable a prompt 
response to developments. Here, also rarely investigated reservoirs, 
like deer, should be  included. Such a cross-border One Health 
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initiative can help elucidate the role of reservoirs and the dynamics of 
the B. suis population.
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